Abstract: In this informal talk, I discuss the stability of cycles within a heteroclinic network formed by different cycles, for a one-parameter model developed in the context of game theory. I describe an asymptotic technique to decide which cycle (within the network) is visible in numerics. The technique consists of reducing the relevant dynamics to a suitable one-dimensional map -- the projective map. Stability of the fixed points of the projective map determines the stability of the associated cycles. All concepts will be gently introduced and the talk will be accessible to non-specialists. This is a joint work with Telmo Peixe (ISEG, CEMAPRE).