
HAUSDORFF DIMENSION OF THE EXCEPTIONAL
SET OF INTERVAL PIECEWISE AFFINE

CONTRACTIONS

JOSÉ PEDRO GAIVÃO

Abstract. Let I = [0, 1), −1 < λ < 1 and f : I → I be a piece-
wise λ-affine map of the interval I, i.e., there exist a partition
0 = a0 < a1 < · · · < ak−1 < ak = 1 of the interval I into k ≥ 2
subintervals and b1, . . . , bk ∈ R such that f(x) = λx+ bi for every
x ∈ [ai−1, ai) and i = 1, . . . , k. The exceptional set Ef of f is the
set of parameters δ ∈ R such that Rδ ◦ f is not asymptotically
periodic, where Rδ : I → I is the rotation of angle δ. In this paper
we prove that Ef has zero Hausdorff dimension. We derive this
result from a more general theorem concerning piecewise Lipschitz
contractions on R that has independent interest.

1. Introduction

Let I = [0, 1) and −1 < λ < 1. We say that an interval map
f : I → I is piecewise λ-affine if there exist k ≥ 2, real numbers
b1, . . . , bk and a partition of the interval I,

0 = a0 < a1 < · · · < ak−1 < ak = 1,

such that f(x) = λx + bi for every x ∈ [ai−1, ai) and i = 1, . . . , k.
Given a piecewise λ-affine map f , consider the one-parameter family
of piecewise λ-affine maps fδ : I → I defined by

fδ = Rδ ◦ f,
where Rδ(x) = {x + δ} is the rotation of angle δ ∈ R and {·} denotes
the fractional part. See Figure 1 for an illustration of the graph of fδ.

We are interested in the dimension of the exceptional set

Ef = {δ ∈ R : fδ is not asymptotically periodic}.
A map f : I → I is asymptotically periodic if f has at most a finite
number of periodic orbits and the ω-limit set ω(f, x) of any x ∈ I is a
periodic orbit of f . We recall that ω(f, x) is the set of accumulation
points of the forward orbit of x under f . It is known that Ef has zero
Lebesgue measure [10, Theorem 1.1], but the question of the Hausdorff
dimension of Ef was still open.
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Figure 1. Plots of fδ.

In this paper, we settle this question.

Theorem A.

dimH Ef = 0.

A notable example of piecewise λ-affine maps is the family of con-
tracted rotations, f(x) = {λx + b} with 0 < λ < 1 and 1 − λ <
b < 1. Contracted rotations have been extensively studied by many
authors either as a dynamical system or related to applications, e.g.
[3, 4, 9, 8, 5, 2]. In the case of contracted rotations, the exceptional set
Ef has a Cantor structure and in this case Theorem A was proved by
Laurent and Nogueira in [9, Theorem 5] by exploiting a combinatorial
structure, associated to Ef , which is reminiscent of the classical Stern-

Brocot tree. Janson and Öberg improved in [8] the result of Laurent
and Nogueira by considering other gauge functions in the definition of
the Hausdorff dimension.

For general piecewise λ-affine maps, Theorem A was proved in [1] by
Pires using the theory of b-adic expansions and under the assumptions
that f is injective, λ−1 = b is a positive integer ≥ k and the connected
components of I \ f(I) have equal length. In order to remove all these
assumptions and prove Theorem A for any piecewise λ-affine map f we
use a different strategy inspired by a recent work dealing with piecewise
increasing contractions [7].

We will deduce Theorem A from a more general result, Theorem B
below. We say that a function f : R → R is a piecewise contraction if
it has a finite number of discontinuity points and on each connected
component D of the domain of continuity of f the restriction map f |D
is a Lipschitz contraction. Let k ≥ 2 and

Ωk = {(a1, . . . , ak−1) ∈ Rk−1 : a1 < · · · < ak−1}.

A finite collection of Lipschitz contractions Φ = {φi : R → R}ki=1 is
called an iterative function system (IFS). An IFS Φ = {φ1, . . . , φk} to-
gether with a ∈ Ωk, determine a piecewise contraction f = fΦ,a : R→



INTERVAL PIECEWISE CONTRACTIONS 3

R defined by

f(x) =


φ1(x), x ∈ (−∞, a1),

φi(x), x ∈ [ai−1, ai) i ∈ {2, . . . , k − 1},
φk(x), x ∈ [ak−1,+∞).

(1)

Notice that (Φ,a) 7→ fΦ,a is not injective, i.e., a piecewise contraction
is not uniquely determined by a pair (Φ,a). In [10] the authors prove
the following result.

Theorem 1.1 ([10, Theorem 1.4]). Let Φ = {φ1, . . . , φk} be an IFS.
There is a Lebesgue full measure set W ⊂ R such that for every a ∈
Ωk ∩W k−1, the map fΦ,a is asymptotically periodic and has at most k
periodic orbits.

We consider a very specific perturbation of fΦ,a. To simplify the
notation, we shall write a + δ = (a1 + δ, . . . , ak−1 + δ). Notice that
a + δ ∈ Ωk for every δ ∈ R.

We say that an IFS is injective if all its contractions are injective
functions. Under the assumption that the IFS is injective, we prove
the following result.

Theorem B. Let Φ = {φ1, . . . , φk} be an injective IFS and a ∈ Ωk.
Then

dimH {δ ∈ R : fΦ,a+δ is not asymptotically periodic} = 0.

The injectivity assumption of Theorem B can be weakened to the
assumption that the functions of the IFS have a finite number of local
extrema. This hypothesis guarantees that the pre-image of any point
is a finite set, a crucial property that we use in our arguments to prove
Theorem B. By Sard’s theorem for Lipschitz functions, the pre-image of
almost every point is a finite set. However, this property is not sufficient
for our arguments to work in the general situation. The injectivity of
the IFS is a natural condition, and piecewise contractions appearing in
applications satisfy this condition. Moreover, assuming the injectivity
of the IFS, the authors in [6] have obtained a spectral decomposition
of the attractor of a piecewise contraction, i.e., the attractor is a finite
union of periodic orbits together with a finite union of Cantor sets.
Our Theorem B excludes the Cantor attractors in a very strong metric
sense, i.e., piecewise contractions can only have Cantor attractors for
a parameter set of zero Hausdorff dimension.

As a final remark, the definition (1) of f at the points {a1, . . . , ak−1}
is not relevant for proving Theorem B, i.e., the proof of Theorem B can
be adapted to any other choice of values f(ai) ∈

{
f(a−i ), f(a+

i )
}

.
The rest of the paper is organized as follows. In Section 2 we collect

the lemmas that we need to prove Theorem B and complete its proof in
Section 3. Then, in Section 4, we use Theorem B to deduce Theorem A.
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2. Preliminary results

Throughout this section, let Φ = {φ1, . . . , φk} be an injective IFS
and a = (a1, . . . , ak−1) ∈ Ωk with k ≥ 2. Define

λΦ := max
i

Lip(φi) and rΦ :=
1 + λΦ

1− λΦ

max
i
|zi|,

where Lip(φi) denotes the Lipschitz constant of φi and zi is the unique
fixed point of φi. Clearly, 0 ≤ λΦ < 1.

Our first observation is that the recurrent dynamics of fΦ,a occurs
inside an attracting compact interval

KΦ := [−2rΦ, 2rΦ].

Given n ∈ N and ω ∈ {1, . . . , k}n, let

φω := φωn ◦ · · · ◦ φω1 .

Lemma 2.1. The following holds:

(1) φω(KΦ) ⊂ KΦ for every ω ∈ {1, . . . , k}n and n ∈ N,
(2) fΦ,a(KΦ) ⊂ KΦ,
(3) For every x ∈ R there is n ≥ 0 such that fnΦ,a(x) ∈ KΦ,
(4) ω(fΦ,a, x) ⊂ KΦ for every x ∈ R.

Proof. To show (1) let |x| ≤ 2rΦ. Then

|φi(x)| = |φi(x)− zi + zi| ≤ λΦ|x− zi|+ |zi|
≤ 2λΦrΦ + |zi|(1 + λΦ)

≤ 2λΦrΦ + max
i
|zi|(1 + λΦ)

= 2λΦrΦ + (1− λΦ)rΦ

= (1 + λΦ)rΦ

< 2rΦ,

which proves (1). Item (2) follows immediately from (1). Next, to prove
(3), let |x| ≤ rΦ. Repeating the above estimates we get |φi(x)| ≤ rΦ.
For any ω ∈ {1, . . . , k}n and n ∈ N, this shows that |φω(x)| ≤ rΦ

whenever |x| ≤ rΦ. Consequently, the unique fixed point zω of φω
satisfies |zω| ≤ rΦ. Now, given any x ∈ R, choose n ≥ 1 such that
λnΦ <

rΦ
|x|+rΦ

. Then, for any ω ∈ {1, . . . , k}n

|φω(x)| = |φω(x)− zω + zω|
≤ λnΦ|x− zω|+ |zω|
≤ λnΦ(|x|+ rΦ) + rΦ

< 2rΦ.

This proves (3). Finally, (4) follows immediately from (2) and (3). �

Let
Sa := {a1, . . . , ak−1}.
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Definition 2.1. We say that the pair (Φ,a) has a singular connection
if there exist n ∈ N and ω ∈ {1, . . . , k}n such that

φω(Sa) ∩ Sa 6= ∅.

Lemma 2.2. The set

{δ ∈ R : (Φ,a + δ) has a singular connection}
is countable.

Proof. Given ω ∈ {1, . . . , k}n, the map φω is a Lipschitz contraction on
R. Given (i, j) ∈ {1, . . . , k − 1}2, the map R 3 δ 7→ φω(ai + δ) − aj
is also a Lipschitz contraction on R, hence it has a unique fixed point,
say zω,i,j ∈ R. Let

∆ :=
⋃
n∈N

⋃
ω∈{1,...,k}n

k−1⋃
i=1

k−1⋃
j=1

{zω,i,j}.

Observe that (Φ,a + δ) has a singular connection if and only if δ ∈ ∆.
Since ∆ is a countable set, the claim follows. �

Definition 2.2. Given x ∈ KΦ and n ∈ N, we say that x is an n-regular
point of (Φ,a) if f jΦ,a(x) /∈ Sa for every 0 ≤ j < n.

Let D
(0)
a := Sa, D

(n)
a := f−1

Φ,a(D
(n−1)
a ) for n ≥ 1 and

Q(n)
a :=

n−1⋃
i=0

D(i)
a , n ∈ N.

Notice that the sets {Q(n)
a }n≥0 are finite. Indeed, this follows from the

fact that Sa is finite and Φ is injective. Given x ∈ KΦ, it is also clear

that x is an n-regular point of (Φ,a) if and only if x /∈ Q(n)
a .

Let X1 := (−∞, a1), Xi := (ai−1, ai) with i = 2, . . . , k − 1, and
Xk := (ak−1,+∞). By construction, these open intervals are disjoint
and their union equals R \ Sa.

Definition 2.3. Given n ∈ N, a tuple (ω0, ω1, . . . , ωn−1) ∈ {1, . . . , k}n
is called an itinerary of order n of (Φ,a) if there is an n-regular point
x of (Φ,a) such that f jΦ,a(x) ∈ Xωj for every 0 ≤ j < n.

We define the set of all itineraries of order n of (Φ,a),

I(n)
Φ,a := {ω ∈ {1, . . . , k}n : ω is an itinerary of order n of (Φ,a)} .

The set I(n)
Φ,a is in a one-to-one correspondence with the set of connected

components of KΦ \Q(n)
a . Indeed, for each connected component J of

KΦ \ Q(n)
a , all points in J are n-regular points of (Φ,a) and because

the sets J, fΦ,a(J), . . . , fn−1
Φ,a (J) are subintervals of KΦ not intersecting

Sa, we conclude that there is an itinerary of order n of (Φ,a), say

(ω0, ω1, . . . , ωn−1) ∈ I(n)
Φ,a, such that f jΦ,a(J) ⊂ Xωj for every 0 ≤ j < n.
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Given ε ≥ 0, we enlarge the set I(n)
Φ,a as follows,

I(n)
Φ,a(ε) :=

⋃
|δ|≤ε

I(n)
Φ,a+δ.

The following result establishes that the number of itineraries grows
subexponentially, a crucial property to prove Theorem B.

Lemma 2.3. Suppose that (Φ,a) has no singular connections. Then

lim
ε→0+

lim sup
n→+∞

1

n
log #I(n)

Φ,a(ε) = 0.

Proof. Given ρ > 1, let m = dlog 2/ log ρe and τ(m,a) > 0 be the

minimum distance between any pair of distinct points of Q
(m)
a . Notice

that the sets {D(n)
a }n≥0 are pairwise disjoint. Indeed, suppose that

there is x ∈ D
(n1)
a ∩ D(n2)

a with n2 > n1 ≥ 0. Then fn1
Φ,a(x) = ai

and fn2
Φ,a(x) = aj for some i, j ∈ {1, . . . , k − 1}. This implies that

fn2−n1
Φ,a (ai) = aj, contradicting the assumption that (Φ,a) has no sin-

gular connections. Since Q
(m)
a = D

(0)
a ∪ D(1)

a ∪ · · · ∪ D(m−1)
a and Φ is

injective, there is an ε0 = ε0(m) > 0 such that the set-valued map

(−ε0, ε0) 3 δ 7→ Q
(m)
a+δ varies continuously in the Hausdorff metric of

compact subsets of R, and for every |δ| < ε0, the set Q
(m)
a+δ has the same

number of elements of Q
(m)
a and

τ(m) := inf
|δ|<ε0

τ(m,a + δ) > 0.

Let αn(ε) := #I(n)
Φ,a(ε) with 0 ≤ ε < ε0. Clearly, αm(ε) = αm(0) =

#I(m)
Φ,a . Now, choose n0 ≥ 0 sufficiently large so that for every |δ| < ε0,

every n ≥ n0 and every connected component J of KΦ \ Q(n)
a+δ, the

length of the interval fnΦ,a+δ(J) is smaller than τ(m). Notice that this
is possible since |fnΦ,a+δ(J)| ≤ λnΦ|J | ≤ 4λnΦrΦ. Since, for every |δ| < ε0,

any interval J ⊂ KΦ with length < τ(m) will intersect Q
(m)
a+δ in at most

a single point, we conclude that

αn+m(ε) ≤ 2αn(ε), ∀n ≥ n0.

Thus, αn(ε) ≤ 2
n−n0
m αn0(ε) for every n ≥ n0. By our choice of m, we

get αn(ε) ≤ Cρn for every n ≥ n0 where C := 2−n0/mαn0(ε0). This
shows that

lim sup
n→∞

αn(ε)

n
≤ log ρ, ∀ ε ∈ [0, ε0).

As ρ > 1 is arbitrary, the claim follows. �

Let

Qa :=

(⋃
n≥0

Q(n)
a

)
∩KΦ.
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The following result is adapted from the results of [10] (cf. [7, The-
orem 20]). We include here a proof for the convenience of the reader.

Lemma 2.4. Suppose that (Φ,a) has no singular connections. If Qa

is finite, then fΦ,a is asymptotically periodic.

Proof. To simplify the notation, let f = fΦ,a. Let P = {J`}m`=1 denote
the collection of connected components of KΦ \ Qa. This collection
is finite by hypothesis. Notice that there is a map σ : {1, . . . ,m} →
{1, . . . ,m} such that f(J`) ⊂ Jσ(`) for every ` ∈ {1, . . . ,m}. Indeed,
suppose by contradiction that there is J` ∈ P such that f(J`)∩Qa 6= ∅.
Then J` ∩ f−1(Qa) 6= ∅. But f−1(Qa) ∩KΦ ⊂ Qa, which implies that
J` ∩Qa 6= ∅, thus a contradiction.

Now we show that ω(f, x) is a periodic orbit for every x ∈ R. By
Lemma 2.1, we may assume that x ∈ KΦ. We split the proof in two
cases:

(1) When x ∈ KΦ \ Qa, then x ∈ J`0 for some `0 ∈ {1, . . . ,m}.
Thus, fn(x) ∈ J`n for every n ≥ 0 where (`n)n≥0 is the sequence
in {1, . . . ,m} defined by `n+1 = σ(`n) for every n ≥ 0. Clearly,
the sequence (`n)n≥0 is eventually periodic, i.e., there must exist
q ≥ 0 and p ≥ 1 such that `n+p = `n for every n ≥ q. We assume
that p is the smallest positive integer with that property, i.e.,
p is the period. In particular, we have fp(J`q) ⊂ J`q . Let
ω ∈ {1, . . . , k}p such that fp|J`q = φω|J`q . Then, fnp+q(x)→ zω
as n → ∞ where zω is the unique fixed point of φω which
belongs to the closure of the interval J`q . By hypothesis, (Φ,a)
has no singular connections, which implies that zω ∈ J`q , and
thus zω is a periodic point of f of period p. Therefore, ω(f, x) =
{zω, f(zω), . . . , f p−1(zω)}.

(2) When x ∈ Qa, then two situations can happen. Either the
forward orbit of x under f belongs to Qa and thus it is periodic
or the forward orbit of x under f eventually leaves Qa. The
former situation cannot happen, because (Φ,a) has no singular
connections. Thus, there exists n0 ≥ 1 such that y := fn0(x) ∈
KΦ \ Qa. But then ω(f, x) = ω(f, y) and we know from the
previous case that ω(f, y) is a periodic orbit.

At last, because P is finite, f has only a finite number of periodic orbits
and the claim follows. �

Given ε ≥ 0, let

Ωε
Φ,a :=

⋂
m≥1

⋃
n≥m

⋃
ω∈I(n)

Φ,a(ε)

{φω(0)}.

Notice that Ωε
Φ,a ⊂ KΦ and Ωε

Φ,a is compact (see Lemma 2.1).
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Lemma 2.5. For every n ∈ N, the set Ωε
Φ,a can be covered by finitely

many intervals of length 2(1 + 2rΦ)λnΦ centered at the points φω(0) with

ω ∈ I(n)
Φ,a(ε).

Proof. Let x ∈ Ωε
Φ,a and n ∈ N. By definition of Ωε

Φ,a, there is an

increasing sequence of positive integers mj →∞ and a sequence ω(j) ∈
I(mj)

Φ,a (ε) such that φω(j)(0) → x as j → ∞. Let j ≥ 1 be sufficiently

large such that mj ≥ n and |x − φω(j)(0)| ≤ λnΦ. Denote by ω(j,n) =

(ω
(j)
mj−n+1, . . . , ω

(j)
mj) ∈ I

(n)
Φ,a(ε) the last n entries of ωj. Then

|φω(j)(0)− φω(j,n)(0)| = |φω(j,n)(y)− φω(j,n)(0)| ≤ λnΦ|y| ≤ 2rΦλ
n
Φ,

where y := φ
ω

(j)
mj−n

◦ · · · ◦ φ
ω

(j)
1

(0) and, by Lemma 2.1, |y| ≤ 2rΦ. Thus,

|x− φω(j,n)(0)| ≤ |x− φω(j)(0)|+ |φω(j)(0)− φω(j,n)(0)|
≤ (1 + 2rΦ)λnΦ.

�

Lemma 2.6. Let |δ| < ε. If Ωε
Φ,a ∩ Sa+δ = ∅, then Qa+δ is finite.

Proof. By hypothesis, there is τ > 0 such that

min
1≤i<k

|ai + δ − φω(0)| ≥ τ, ∀ω ∈ I(n)
Φ,a(ε), n ∈ N. (2)

Suppose, by contradiction, that Qa+δ is not finite. Then,

Q
(1)
a+δ ∩KΦ  Q

(2)
a+δ ∩KΦ  Q

(3)
a+δ ∩KΦ  · · ·

So, we can pick a sequence (xn)n≥1 in Qa+δ having the property that

xn ∈ Q(n+1)
a+δ ∩KΦ\Q(n)

a+δ for every n ∈ N. Thus, xn is an n-regular point
of (Φ,a+ δ) and fnΦ,a+δ(xn) = ajn + δ for some jn ∈ {1, . . . , k− 1}. Let

ω(n) ∈ I(n)
Φ,a(ε) denote the itinerary of order n of (Φ,a + δ) associated

to xn.
Now, choose n ∈ N sufficiently large so that 2rΦλ

n
Φ < τ . Then,

taking into account that xn ∈ KΦ, we have

|ajn + δ − φω(n)(0)| = |fnΦ,a+δ(xn)− φω(n)(0)|
= |φω(n)(xn)− φω(n)(0)|
≤ λnΦ|xn|
≤ 2rΦλ

n
Φ

< τ,

contradicting (2). �
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3. Proof of Theorem B

We are now ready to prove Theorem B. Let Φ = {φ1, . . . , φk} be an
injective IFS and a = (a1, . . . , ak−1) ∈ Ωk with k ≥ 2. By Lemma 2.2,
the set

E = {δ ∈ R : (Φ,a + δ) has a singular connection}

is countable. Thus, it is sufficient to show that

Z := {δ ∈ R \ E : fΦ,a+δ is not asymptotically periodic}

has zero Hausdorff dimension. By Lemma 2.4, Z ⊂ Z ′ where

Z ′ := {δ ∈ R \ E : QΦ,a+δ is not finite}.

Given δ ∈ R and ε > 0, let ∆ε(δ) := (δ − ε, δ + ε) and Z ′ε(δ) :=
Z ′ ∩ ∆ε(δ). We claim that for every d > 0 and δ ∈ Z ′ there is an
ε = ε(δ, d) > 0 such that

Hd(Z ′ε(δ)) = 0,

where Hd is the d-dimensional Hausdorff measure. This claim is suf-
ficient to conclude the proof of Theorem B, since by Lindelöf Lemma,
Z ′ is a countable union of sets Z ′εi(δi), each having zero d-dimensional

Hausdorff measure. Hence, Hd(Z ′) = 0 for every d > 0. This implies
that dimH Z

′ = 0.
Now we prove the claim. Let d > 0, δ0 ∈ Z ′ and ε > 0 that will be

chosen later in the proof. By Lemma 2.6,

Z ′ε(δ0) ⊂ {δ ∈ ∆ε(δ0) : Ωε
Φ,a0
∩ Sa+δ 6= ∅}

where a0 := a + δ0. According to Lemma 2.5, for each n ∈ N, the set

Ωε
Φ,a0

can be covered by #I(n)
Φ,a0

(ε) intervals of length `n := 2(1+2rΦ)λnΦ
centered at the points φω(0) with ω ∈ I(n)

Φ,a0
(ε). Thus, for each n ∈ N,

we can also cover Z ′ε(δ0) using finitely many intervals of length `n,

Z ′ε(δ0) ⊂
⋃

ω∈I(n)
Φ,a0

(ε)

k−1⋃
i=1

Wω,i

where Wω,i =
[
yω,i − `n

2
, yω,i + `n

2

]
, n = |ω| and yω,i = φω(0) − ai .

Using this cover, it is easy to see that there is an ε > 0 such that the
d-dimensional Hausdorff measure of Z ′ε(δ0) is zero. Indeed, for every
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n ∈ N,

Hd
2`n(Z ′ε(δ0)) = inf

{
∞∑
i=1

(diamUi)
d :

∞⋃
i=1

Ui ⊃ Z ′ε(δ0), diamUi < 2`n

}

≤
∑

ω∈I(n)
Φ,a0

(ε)

k−1∑
i=1

(diamWω,i)
d

=
∑

ω∈I(n)
Φ,a0

(ε)

k−1∑
i=1

`dn

= (k − 1)2d(1 + 2rΦ)d(#I(n)
Φ,a0

(ε))λndΦ .

Notice that, (Φ,a0) has no singular connections because δ0 ∈ Z ′.
Hence, by Lemma 2.3, there is an ε = ε(δ0, d) > 0 such that

lim
n→∞

(#I(n)
Φ,a0

(ε))λndΦ = 0,

from which it follows that Hd(Z ′ε(δ0)) = limn→∞Hd
2`n

(Z ′ε(δ0)) = 0, thus
proving the claim. �

4. Proof of Theorem A

Recall that I = [0, 1) and let f : I → I be a piecewise λ-affine map
as defined in the introduction with −1 < λ < 1. We may suppose that
λ 6= 0, otherwise Ef = ∅ and the result trivially holds. Let fδ = Rδ ◦ f
where Rδ(x) = {x+ δ} is the rotation map of angle δ ∈ R. Notice that
fδ is also a piecewise λ-affine map and

Ef = Efδ + δ.

Therefore, to prove Theorem A it is sufficient to prove that for any
piecewise λ-affine map f we have dimH(Ef ∩ (−δ0, δ0)) = 0 for some
δ0 > 0.

Since |λ| < 1, the map f has a gap, i.e., I \ f(I) 6= ∅. This gap also
has non-empty interior, so we can choose a point c ∈ I \f(I) such that
` := dist(c, f(I)) > 0. Here, dist denotes the distance in I induced from
the circle R/Z through the canonical identification I ↪→ R→ R/Z.

Now, we define g : I → I by

g = R−c ◦ f ◦Rc.

The map g is again a piecewise λ-affine map of I. Clearly, ` =
dist(0, g(I)) since Rc is an isometry of (I, dist). We claim that

dimH(Eg ∩ (−`, `)) = 0. (3)

From (3) we conclude the proof of Theorem A, because f and g are
conjugated through Rc, which implies that Ef = Eg.
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Figure 2. Plots of f and g = R−c ◦ f ◦Rc. The shaded
region in (A) illustrates the gap of f .

In order to prove claim (3), notice that, for every 0 ≤ δ < `, we have
dist(0, gδ(I)) > 0 where gδ = Rδ ◦ g. Equivalently,

gδ(I) ⊂ (0, 1), ∀ δ ∈ [0, `). (4)

Next, extend gδ in a canonical way to a piecewise λ-affine map Gδ

defined on the whole of R. We call Gδ the affine extension of gδ. The
map Gδ has the property that Gδ(x) = G(x) + δ where G : R → R is
the affine extension of g. Notice that this property holds because of
(4). Moreover, since the orbit of any x ∈ R under Gδ eventually enters
I, we conclude that Gδ is asymptotically periodic if and only if gδ is
asymptotically periodic. Thus, (3) is equivalent to

dimH {δ ∈ (−`, `) : Gδ is not asymptotically periodic} = 0. (5)

Let (Φ,a) be a pair defining G, i.e., an injective IFS Φ = {φ1, . . . , φk}
and a = (a1, . . . , ak−1) ∈ Ωk such that G = fΦ,a. Notice that the φi’s
are λ-affine maps. By Theorem B, we know that

dimH {δ ∈ R : fΦ,a+δ is not asymptotically periodic} = 0.

It is easy to see that Gδ and fΦ,a−δ/(1−λ) are conjugated by the affine
map x 7→ x + δ/(1 − λ) (cf. [10, Reduction lemma]). This shows (5),
thus proving Theorem A. �
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8. S. Janson and C. Öberg, A piecewise contractive dynamical system and election
methods, Bull. Soc. Math. France 147 (2019), no. 3, 395–441.

9. M. Laurent and A. Nogueira, Rotation number of contracted rotations, Journal
of Modern Dynamics 12 (2018), 175.

10. A. Nogueira, B. Pires, and R. A. Rosales, Topological dynamics of piecewise
λ-affine maps, Ergodic Theory Dynam. Systems 38 (2018), no. 5, 1876–1893.
MR 3820005
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