
Neural Networks:
recent advances - Deep learning -

and some (mathematical ?) problems

Rui Rodrigues

FCT/UNL, CMA



Linear and Logistic Regression

If we have a finite set, Z ⊂ X × R, of data points from a
’universe’, U, the basic choices to model U are

I Linear Regression: (x , y) : y = x ∗W + b

I Logistic Regression (x , y) : y = σ(x ∗W + b)

σ(t) =
1

1 + e−t

σ(t) ∈]0, 1[, used mostly for binary classification 0/1
(it can be generalized for finite number of classes: softmax)



They will fail to model very simple situations:

They can not even model the given set of examples.
However they can be used as the elementar blocks of a general
model: neuralnetworks



Neuralnetworks

Deep Learning = many hidden layers
Hidden layers can be seen as representations or features of the
input data



Neuralnetworks

Nowadays neuralnetworks have thousands of units on the hidden
layers and millions of parameters. These parameters have to be
estimated to fit ≈ the set of examples.

Main idea: Gradient Descend on the error
Successive Approximations

Wk+1 = Wk − ε∇Error



Neuralnetworks

Nowadays neuralnetworks have thousands of units on the hidden
layers and millions of parameters. These parameters have to be
estimated to fit ≈ the set of examples.

Main idea: Gradient Descend on the error
Successive Approximations

Wk+1 = Wk − ε∇Error



Stochastic Gradient Descend

I A bit more concrete: Stochastic Gradient Descend

I We run throught the training set of examples many times
(epochs).

I In one epoch, we don’t use the whole training set of examples
on each step (parameters update):
the training set is randomly divided in mini-batches(≈ 100?)
used for each update.

I Why dont we get stuck on local minima?



Some of the Deep Learning Main Achievements

I Object recognition on images

I Voice recognition (transcription voice to text)

I Voice synthesization (text to speech)

I Language translation

I Deep Reinforcement Learning (winner of ’GO’)



How to avoid overfitting

I The intention is not only to fit the model to the training data
set of examples but also to generalize to new ’similar’
examples.

I A large (complex) model may model the training set but not
generalize.

I We use regularization to try to avoid overfitting - apply
further constrainst on the weights :

I Early stop the training
I L1 or L2 penalty on the weights.
I Dropout: randomly set to zero the output of a

percentage of the neuralnetwork units
I There exist some other very new regularization methods
I new regularization methods?



Some variants of the feedforward neural network model

I Convolution neural networks

I Recurrent neural networks

I Generative Models

I Deep Reinforcement Learning



Recurrent neural networks
I They are used to work with sequential data: time series, voice

recognition, text understanding and translation

I single hidden layer:

I several hiden layers:



Recurrent neural networks
I They are used to work with sequential data: time series, voice

recognition, text understanding and translation
I single hidden layer:

I several hiden layers:



Recurrent neural networks
I They are used to work with sequential data: time series, voice

recognition, text understanding and translation
I single hidden layer:

I several hiden layers:



Recurrent neural networks

I Weights coming from previous time steps transmit information
from the past

I However W n may explode or get too near to zero.
To train recurrent neural networks we need to use some tricks.



Generative Models

I the aim is:
I to generate examples ’similar’ to those in the training set
I and/or, to assign a probability to ’examples’

I Possible tasks assigned to generative models:
I produce ’natural images’, or images of certain objects: cats,

persons,..

I Fill in missing data in some dataset (time series?). Could be
replacing a part of an image.

I Given an image, generate the same image at a higher
resolution (with more details)

I generate text similar to the one written by somebody
(Saramago?).

I Given a text, produce the sound of somebody reading that text.

I It is very difficult to evaluate generative models.



Generative Models

I the aim is:
I to generate examples ’similar’ to those in the training set
I and/or, to assign a probability to ’examples’

I Possible tasks assigned to generative models:
I produce ’natural images’, or images of certain objects: cats,

persons,..
I Fill in missing data in some dataset (time series?). Could be

replacing a part of an image.

I Given an image, generate the same image at a higher
resolution (with more details)

I generate text similar to the one written by somebody
(Saramago?).

I Given a text, produce the sound of somebody reading that text.

I It is very difficult to evaluate generative models.



Generative Models

I the aim is:
I to generate examples ’similar’ to those in the training set
I and/or, to assign a probability to ’examples’

I Possible tasks assigned to generative models:
I produce ’natural images’, or images of certain objects: cats,

persons,..
I Fill in missing data in some dataset (time series?). Could be

replacing a part of an image.
I Given an image, generate the same image at a higher

resolution (with more details)
I generate text similar to the one written by somebody

(Saramago?).

I Given a text, produce the sound of somebody reading that text.

I It is very difficult to evaluate generative models.



Generative Models

I the aim is:
I to generate examples ’similar’ to those in the training set
I and/or, to assign a probability to ’examples’

I Possible tasks assigned to generative models:
I produce ’natural images’, or images of certain objects: cats,

persons,..
I Fill in missing data in some dataset (time series?). Could be

replacing a part of an image.
I Given an image, generate the same image at a higher

resolution (with more details)
I generate text similar to the one written by somebody

(Saramago?).
I Given a text, produce the sound of somebody reading that text.

I It is very difficult to evaluate generative models.



Generative Models

There are several types of generative models. We will refer:

I Boltzmann Machines

I Variational autoencoders

I Generative Adversarial Networks (GANs)



Boltzmann Machines

I It is a network of symmetrically connected stochastic binary
units (stochastic version of an Hopfield Network)

I The update rule for the value, si , of a unit i , depends on its
total input
zi = bi +

∑
j sjwi ,j , where sj is the value of a unit j and wi ,j is

the weight of the connection between units i and j .

probs(si = 1) =
1

1 + e−zi



Boltzmann Machines

I It is a network of symmetrically connected stochastic binary
units (stochastic version of an Hopfield Network)

I The update rule for the value, si , of a unit i , depends on its
total input
zi = bi +

∑
j sjwi ,j , where sj is the value of a unit j and wi ,j is

the weight of the connection between units i and j .

probs(si = 1) =
1

1 + e−zi



Boltzmann Machines

I The probabability of a ’state vector’ is

P(v) = e−E(v)∑
u e

−E(u)

where
E (v) = −

∑
svi bi −

∑
svi s

v
j wi ,j

I If the units are updated sequentially the network will
eventually reach an equilibrium or stationary distribution
(Boltzmann Distribution).



Boltzmann Machines

I Often, the network units are divided in two subsets, visible
and hidden units. The values of the visible units might be set
to those of the elements of some dataset of binary vectors.

I Given a data set, we can learn values of the weights such that:
When the Boltzmann Machine is in equilibrium, it generates
on the visible units, with high probability, the elements of the
dataset.



Learning Rule for Boltzmann Machines

I Given that ∂E(v)
∂wi,j

= −svi svj
it can be shown that

〈∂ logP(v)

∂wi ,j
〉data = 〈si sj〉data − 〈si sj〉model

where
I 〈si sj〉model is the expected value of si sj when the Boltzmann

Machine is sampling state vectors from the equilibrium
distribution.

I When si and sj are visible units, 〈si sj〉data is expected value of
si sj in the data. When at least one of them is not a visible
unit, 〈si sj〉data is the average, over all data vectors, of the
expected value of si sj when a data vector is clamped on the
visible units and the hidden units are repeatedly updated until
they reach equilibrium with the clamped data vector.



Learning Rule for Boltzmann Machines

Learning rule:

1. Phase+: Clampe a data vector on the visible units, let the
network run to equilibrium, We then increment the weight
between any two units which are both on. Repeat a large
number of times, with each pattern begin clamped with a
frequency corresponding to the the world(=data) probability.

2. Phase−: we let the network run freely (no units clamped) and
sample the activities of all the units . Once we have reached
equilibrium we take enough samples to obtain reliable
averages of si sj . Then we decrement the weight between any
two units which are both on.



Variational Autoencoder

I Generator

N(0, 1)n Hidden Layers X

I The whole model

X Hidden Layers1 µ

σ2

N(0, 1)n

Hidden Layers2 X

Encoder Decoder



Generative Adversarial Networks (GANs)

I Two competing neuralnetworks:

1. The generator: creates samples that are intended to come
from the same distribution as the training data. The generator
uses an input noise ’z’ to generate each example.

2. The other player is the discriminator. The discriminator
examines samples to determine whether they are real or fake(=
originate from the generator).

I In the training processes two minibatches are sampled : a
minibatch of x values from the dataset and a minibatch
generated from a corresponding set of z values.



Generative Adversarial Networks (GANs)

I Two competing neuralnetworks:

1. The generator: creates samples that are intended to come
from the same distribution as the training data. The generator
uses an input noise ’z’ to generate each example.

2. The other player is the discriminator. The discriminator
examines samples to determine whether they are real or fake(=
originate from the generator).

I In the training processes two minibatches are sampled : a
minibatch of x values from the dataset and a minibatch
generated from a corresponding set of z values.



Generative Adversarial Networks (GANs)

I Two competing neuralnetworks:

1. The generator: creates samples that are intended to come
from the same distribution as the training data. The generator
uses an input noise ’z’ to generate each example.

2. The other player is the discriminator. The discriminator
examines samples to determine whether they are real or fake(=
originate from the generator).

I In the training processes two minibatches are sampled : a
minibatch of x values from the dataset and a minibatch
generated from a corresponding set of z values.



Generative Adversarial Networks (GANs)

The parameters of each of the networks are updated in the
following way:

1. The correction of the generator’s weights are associated to the
errors of this player: they are the correct answers of the
discriminator on the generated samples.

2. The correction of the discriminator’s weights are associated to
the errors on both the dataset and the generated examples.


