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Meaning and use of the Avalanche Principle

Given a long list of SL2(R) matrices A1,A2, . . .An,
the Avalanche Principle gives (quantitative) conditions under
which:

||An · . . . · Aj · . . . · A1|| ≈ ||An|| · . . . ||Aj || · . . . · ||A1||

[First appeared in a 2001 Annals paper by M. Goldstein, W. Schlag]

It is used to prove:

Positivity of the Lyapunov exponent at large disorder

Inductive step of large deviation estimates (LDT)

Hölder continuity / fine continuity properties of the Lyapunov
exponent as a function of energy E and / or jointly
(energy, frequency), (E , ω)



Meaning and use of the Avalanche Principle
The matrices Aj the principle is applied to are typically iterates of
a Schrödinger cocycle:
Given the SL2(R) matrix

A(x) = A(E , x) =

[
λv(x)− E −1

1 0

]
The skew-product mapping:

(T ,A(E )) : X × R2 → X × R2

(x ,

[
u1

u0

]
) 7→ (Tx , A(E , x) ·

[
u1

u0

]
)

is called a Schrödinger cocycle.

Its forward iterates have the form (T nx ,An(E , x), where

An(E , x) = A(E ,T n−1 x) · . . . · A(E , x) =

=

[
λv(T n−1 x)− E −1

1 0

]
· . . . ·

[
λv(x)− E −1

1 0

]
are called the transfer / fundamental matrices.



Avalanche Principle I
Let A1, . . . ,An be a sequence of arbitrary SL2(R) matrices.
Suppose that for all j we have:

||Aj || ≥ µ
where µ > n

||Aj+1 · Aj ||
||Aj+1|| · ||Aj ||

>
1
√
µ

Then

| log ||An · . . . ·A1||−
n∑

j=1

log ||Aj ||−
n−1∑
j=1

log |b++(Aj ,Aj+1)| | ≤ C
n

µ

and

| log ||An · . . . · A1||+
n−1∑
j=2

log ||Aj || −
n−1∑
j=1

log ||Aj+1Aj || | ≤ C
n

µ



Main technical steps in the proof of the AP

Definition: b++(K ,M) := v+
K · u

+
M

where for any SL2(R) matrix A, if we consider the polar
decomposition A = U ·

√
A∗ A, and if u±A are two normalized

eigenvectors of
√

A∗ A, then there are two unit vectors v±A so that:

A u+
A = ‖A‖ v+

A and A u−A = ‖A‖−1 v−A

Lemma 1: Given M,K ∈ SL2(R) we have:

||M · K ||
||M|| · ||K ||

− 1

||K ||2
− 1

||M||2
≤ |b++(K ,M)| ≤ ||M · K ||

||M|| · ||K ||
+

1

||M||2

From here we get, using the assumptions of the AP:

|b++(Aj ,Aj+1)| ·
||Aj || · ||Aj+1||
||Aj+1 · Aj ||

= 1 + O(
1

µ3/2
)

|b++(Aj ,Aj+1)| > 1

2
√
µ



Main technical steps in the proof of the AP

Lemma 2: Given M,K ∈ SL2(R) and u a unit vector, we have:

MKu =
∑

ε1,ε2=±1

||M||ε2 · ||K ||ε1 · bε1,ε2(K ,M) · (uε1K · u) v ε2M

By induction on n we get:

Lemma 3: Given A1,A2, . . .An ∈ SL2(R) and u a unit vector, we
have:

An · . . . · A1 u =
∑

ε1,...,εn=±1

||An||εn · . . . · ||A1||ε1 ·

·
n−1∏
j=1

bεj ,εj+1(Aj ,Aj+1) · (uε1A1
· u) v εnAn



Refinements

Avalanche Principle II:
The same conclusion holds with the same proof if we make the
same assumptions but instead of SL2(R) matrices we take 2× 2
matrices satisfying

max
1≤j≤n

| det (Aj)| ≤ κ

Avalanche Principle III:
The condition µ > n can be replaced by: µ sufficiently large (say
µ > 1000) and large relative to the integer factors of n:

n = n1 · . . . · ns , where 3 ≤ nj <
µ
2 for 1 ≤ j ≤ s − 1 and ns < µ.

For instance if n = 3s and µ were large, the condition would be
met.



Typical application of the Avalanche Principle
We make the following notations:

un(x) = un(E , x) :=
1

n
log‖An(E , x)‖

Ln(E ) = < un > :=

∫
X

un(x) dx

Then the maximal Lyapunov exponent is L(E ) = lim
n→∞

Ln(E )

and the functions un(x) have bounded s.h. extensions.

We want to show:

LDT: mes [x ∈ X : |un(x)− < un > | > n−τ ] < e−nσ

Lower bound for Lyapunov exp: Ln(E ) > c log λ for all n,E

These estimates can be obtained at a large enough initial scale n0

using non-transversality of the potential + large coupling λ.

To obtain them at every scale n, we use an inductive procedure
whose main ingredients are: AP + two estimates on s.h. functions.



Two estimates on subharmonic (s.h.) functions
Assume u : T→ R has a bounded s.h. extension u(z) to a strip.

Averages of shifts of s.h. functions: Assuming a Diophantine
condition on the frequency ω, for some explicit constants σ, τ > 0
and for n large enough we have:

mes [x ∈ T : | 1

n

n−1∑
j=0

u(T jx)− < u > | > n−τ ] < e−nσ
(�)

Boosting mean oscillations (via John-Nirenberg’s inequality and
BMO estimates on s.h. functions): If for ε1 � ε0 � 1 we have

mes [x ∈ T : | u(x)− < u > | > ε0] < ε1 ([)

then for an absolute constant c > 0,

mes [x ∈ T : | u(x)− < u > | >
√
ε0] < e−c(

√
ε0)
−1

(])

The two estimates above have higher dimensional analogues.



Inductive step of LDT and lower bound for Lyapunov exp
As indicated above, these estimates hold at an initial scale n0.
Choose n such that n0 � n� enσ

0 and denote n1 := n · n0.

Then for x outside of a set of measure < e−n
σ1
0 , due to the

estimate on ”averages of shifts of s.h. functions” we get:

Ln0 = < un0 > ≈
1

n

n−1∑
j=0

un0(T jx) (�)

The AP applies to Aj = Aj(x) := ‖An0(T j ·n0 x)‖ and since
An−1 · . . . · A0 = An·n0 = An1 , we obtain:

1

n1
log‖An1(x)‖ =

1

n0

1

n
log‖An−1 · . . . · A0‖

(AP)
≈ 1

n0

1

n

n−1∑
j=0

log‖Aj‖

=
1

n

n−1∑
j=0

1

n0
log‖An0(T j ·n0 x)‖ ≈ 1

n

n−1∑
j=0

un0(T jx)
(�)
≈ Ln0



Inductive step of LDT and lower bound for Lyapunov exp
We then have that for x outside of a set of measure < e−n0

σ1 , the
following holds:

un1(x) =
1

n1
log‖An1(x)‖ ≈ Ln0

hence averaging in x we get:

Ln1 ≈ Ln0 and

mes [x ∈ X : |un1(x)− < un1 > | > n−τ1 ] < e−n0
σ1

To be able to continue this procedure to a larger scale n2 � n1, we
need to boost the above estimate using (]), and we obtain:

mes [x ∈ X : |un1(x)− < un1 > | > n−τ11 ] < e−n1
σ1

We therefore get scales . . . nk+1 � nk � . . . n2 � n1 � n0 such
that the LDT holds at each scale and

. . . Lnk+1
≈ Lnk

≈ . . . Ln2 ≈ Ln1 ≈ Ln0 > c log λ

which establishes positivity of the Lyapunov exponent.


