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The discrete, 1-dim, quasi-periodic Schrödinger equation

− (un+1 + un) + λ v (T nx) · un = E · un

u = [un]n∈Z ⊂ R (state)

E ∈ R (energy)

λ ∈ R (coupling constant)

T is an ergodic transformation on X = T, T2, Td

T n its nth iteration

v : x ∈ X 7→ v(x) ∈ R potential function.



The associated Schrödinger cocycle
Consider the SL2(R) matrix

AE = AE (x) =

[
λv(x)− E −1

1 0

]
The skew-product mapping:

(T ,AE ) : X × R2 → X × R2

(x ,

[
u1

u0

]
) 7→ (Tx , AE (x) ·

[
u1

u0

]
)

is called a Schrödinger cocycle.
Its forward iterates have the form (T nx ,An

E (x)), where

An
E (x) = AE (T n−1 x) · . . . · AE (x) =

=

[
λv(T n−1 x)− E −1

1 0

]
· . . . ·

[
λv(x)− E −1

1 0

]
are called the transfer / fundamental matrices.



Relationship between Schrödinger eqn, transfer matrices

Transfer matrices solve the Schrödinger equation.
Indeed, if u = [un]n∈Z, E are a formal solution to

− (un+1 + un) + λ v (T nx) · un = E · un

then [
un+1

un

]
=

[
λv(T n x)− E −1

1 0

]
·
[

un

un−1

]
so [

un+1

un

]
= An+1

E (x) ·
[

u1

u0

]
It is then natural to study the growth of the norms of these
transfer matrices An

E (x) as n→∞.



The Lyapunov exponent

The average exponential growth of the norms of the the transfer
matrices

An
E (x) =

1∏
j=n

[
λv(Tj x)− E −1

1 0

]
is called the (maximal) Lyapunov exponent:

L(E ) := lim
n→∞

∫
X

1

n
log ||An

E (x)|| dx

The limit above exists due to sub-additivity.
In fact, due to the ergodicity of the transformation T ,

1

n
log ||An

E (x)|| → L(E ) as n→∞ for a.e. x ∈ X



Positivity of the Lyapunov exponent

L(E ) = lim
n→∞

∫
X

1

n
log ||An

E (x)|| dx

Since An
E (x) ∈ SL2(R), the Lyapunov exponent is non-negative.

Goal: prove positivity of the Lyapunov exponent for certain
Schrödinger cocycles, uniformly in the energy E .

In other words, we want to show

L(E ) ≥ c > 0

for fixed potential v but for all energies E (in R or in an interval).

This property is relevant in mathematical physics ; correlation
between positivity of the Lyapunov exponent and absence of
absolutely continuous spectrum, or even Anderson localization,
continuity properties of the integrated density of states etc.

This is also the opposite of reducibility: the energies for which the
Schrödinger cocycle is not uniformly hyperbolic and it is reducible
live inside the set of zero Lyapunov exponent.



”Certain Schrödinger cocycles ” made explicit

(T ,AE ) : X × R2 → X × R2

(x , ~v) 7→ (Tx ,

[
λv(x)− E −1

1 0

]
· ~v )

Transformations T considered:
� 1-dim shift: T : T→ T, Tx = x + ω, ω irrational
� 2-dim shift: T : T2 → T2, T (x1, x2) = (x1 + ω1, x2 + ω2),
where ω1, ω2 are rationally independent
� skew-shift: T : T2 → T2, T (x1, x2) = (x1 + x2, x2 + ω),
where ω is irrational

In general, arithmetic (Diophantine) conditions on ω.

Large potential / coupling constant: λ� 1

”Smooth” potential function v(x) ! ”smooth” cocycle

Generic ”transversality” condition on the function v(x).



Summary of relevant results and methods
M. R. Herman: 1-dim shift model with v(x) = cos x , λ > 2 and

ω any irrational number.

L(E ) ≥ log
λ

2
for all E

Use of subharmonicity method (Jensen’s inequality).
Method also works for trigonometric polynomials but not for
analytic functions.

E. Sorets, T. Spencer: 1-dim shift model with v(x) real analytic,
non-constant function, ω any irrational frequency, λ > λ0(v):

L(E ) ≥ 1

2
log λ for all E

Use of complexification that allows one to avoid the set
[x : v(x) ≈ E ].
Method does not work in higher dimensions or for the skew shift,
or (obviously) for non-analytic functions.



Summary of relevant results and methods

L.H. Eliasson: 1-dim shift model with v(x) Gevrey & satisfying a
generic transversality condition, ω Diophantine, λ > λ0 that
depends on v and on the Diophantine condition:

L(E ) > 0 for a.e E

Use of KAM methods - conjugating the Schrödinger operator to a
diagonal operator through an iterative procedure.

J. Bourgain, M. Goldstein, W. Schlag: one, multi-dim and skew
shift models, Diophantine frequency, analytic, non-constant
potential function v(x), large λ that depends on v and on the
Diophantine condition:

L(E ) & log λ for all E

→ Analytic methods (e.g. estimates on Fourier coefficients of
subharmonic functions, averages of shifts of s.h. functions ...)



Summary of relevant results and methods

K. Bjerklöv, J. Chan: 1-dim shift, more general potential
functions (e.g.Cn) but results require eliminating a positive set of
energies that depends on frequency, coupling constant.

Use of dynamics methods à la Benedicks-Carleson (K. Bjerklöv),
KAM approach & Sard-type arguments (J. Chan).

S. Klein: all three models (one and multi-dim shift, skew-shift)
v(x) Gevrey, satisfying a generic transversality condition, ω
Diophantine, λ > λ0 that depends on v and on the Diophantine
condition:

L(E ) & log λ for all E

Use of analytic methods similar to those of Bourgain, Goldstein,
Schlag & polynomial approximation, Sard-type arguments,
semi-algebraic sets.



Gevrey regularity class, generic transversality condition

Given v : X → R, where X = T, T2.
Gevrey regularity:

sup
x∈X
|∂m v(x)| ≤ MK |m|(m!)s ∀m ∈ N or N2

which is equivalent to the following sub-exponential decay of its
Fourier coefficients:

|v̂(l)| ≤ Me−ρ|l |1/s ∀ l ∈ Z or Z2

The exponent s > 1 is the order of the Gevrey class.

Transversality condition (TC):

∀ x ∈ X ∃m ∈ N or N2, |m| 6= 0 such that ∂m v(x) 6= 0

Gevrey + TC natural extension of analytic, non-constant.



Outline of the analytic method of proof
Main technical result needed is a large deviation estimate (LDT)
for logarithmic averages of transfer matrices. Due to ergodicity,

x a.s. un(x) =
1

n
log ||An

E (x)|| → L(E ) as n→∞

The LDT provides a quantitative version of this convergence:

mes [x ∈ X : |un(x)− < un > | > ε] < δ(n, ε)

where ε = o(1) and δ(n, ε)→ 0 as n→∞
We get the above estimate with ε ≈ n−τ and δ ≈ e−nσ

The proof of this LDT is done by induction on the scale n.
First step requires non degeneracy of the potential & a large

coupling constant. Crucial ingredient: a  Lojasiewicz type estimate.

Inductive step requires regularity of the potential (analyticity or
Gevrey) & the arithmetic condition on the frequency. Main
ingredients: averages of shifts of subharmonic functions, avalanche
principle for SL2(R) matrices.



Inductive step of the LDT in the 1-dim shift, analytic case

v(x) analytic
⇓

v(x) has bounded holomorphic extension to a strip of width ρ > 0

⇓

un(x) :=
1

n
log ||An

E (x)||

has a bounded (by B) subharmonic extension to this strip.
⇓

the Fourier coefficients of un(x) have the decay :

|ûn(k)| . B

ρ

1

|k|
for all k 6= 0

The decay above is uniform in n.



Averages of shifts of subharmonic functions
If u : X → R has a subharmonic extension u(z) to a strip of width
ρ and it is bounded by a number B on that strip, then assuming a
Diophantine condition on the frequency ω, for some explicit
constants σ, τ > 0 & for R large enough we have:

mes [x ∈ X : | 1

R

R−1∑
j=0

u(T jx)− < u > | > B

ρ
R−τ ] < e−Rσ

Idea / moral of the poof / statement: due to ergodicity of the

transformation T , the forward orbit points x ,Tx , . . .T R−1x tend
to be fairly well uniformly distributed throughout the phase space
X for all points x .

Hence the averages of shifts above resemble Riemann sums, which
converge to the Riemann integral / mean of the function u(x).

A quantitative convergence to the mean < u > should presumably
follow from a quantitative description of ergodicity ! arithmetic
condition on the frequency.



The 1-dim shift transformation on T:

Tx := x + ω

Its nth iteration:
T nx = x + n ω



The 2-dim shift transformation on T:

T x := (x1 + ω1, x2 + ω2)

Its nth iteration:

T nx = (x1 + n ω1, x2 + n ω2)



The skew-shift transformation on T2:

T (x1, x2) := (x1 + x2, x2 + ω)

Its nth iteration:

T n(x1, x2) = (x1 + nx2 +
n(n − 1)

2
ω, x2 + nω)



The avalanche principle in SL2(R)

Let A1, . . . ,AR be a sequence of arbitrary SL2(R) matrices.
Suppose that for all j

||Aj || ≥ µ ≥ R

[log ||Aj+1||+ log ||Aj || − log ||Aj+1Aj ||] ≤
1

2
logµ

Then

| log ||AR · . . . · A1||+
R−1∑
j=2

log ||Aj || −
R−1∑
j=1

log ||Aj+1Aj || | ≤ C
R

µ



Large deviation theorem: first step

Recall the transversality condition (TC) on the potential v(x):

∀ x ∈ T2 ∃m ∈ N2 |m| 6= 0 : ∂m v(x) 6= 0

This means that v(x) is not flat at any point. The key ingredient
here is describing this non-flatness in a quantitative way.

 Lojasiewicz type estimate:
Assume v(x) is a smooth function on [0, 1]2 satisfying the (TC).
Then for every ε > 0

sup
E∈R

mes [x ∈ [0, 1]2 : |v(x)− E | < ε] < C · εb

where C , b > 0 depend only on v .

In other words, [x : v(x) ≈ E ] is a set of small measure.
This combined with choosing a large coupling constant leads to
LDT at a large enough initial scale n0.



Proof of the  Lojasiewicz estimate

The proof of this estimate is based on repeatedly applying a
quantitative implicit function theorem, also used by J. Chan, M.
Goldstein, W. Schlag.

Quantitative implicit function theorem:
Given a C 1 function f (x) on a rectangle R = I × J ⊂ [0, 1]2 s.t.

min
x∈R
|∂x2f (x)| =: ε0 > 0

and a small enough constant ε1 � ε0, the points
[(x1, x2) ∈ R : |f (x1, x2)| ≤ ε1] are in a narrow strip at the top or at
the bottom of the rectangle R, or near the graphs of some
functions φj(x1) - i.e. x2 ≈ φj(x1).

We have estimates on the number of such functions φj(x1) and on
their slopes, hence we have estimates on the measure and
’complexity’ of the ’bad’ set [(x1, x2) ∈ R : |f (x1, x2)| ≤ ε1].





Important open problem for the skew-shift transformation
T (x1, x2) := (x1 + x2, x2 + ω)

Due to the weekly mixing properties of the skew-shift, this model is
expected to behave more like the one dimensional random model.
Therefore, one expects positivity of the Lyapunov exponent for all
energies and for all coupling constants.
In other words, the size of the potential function v(x) that defines
the cocycle should not matter.


