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Abstract

For a long time the classical expectation hypothesis has been challenged from both
empirical and theoretical perspective. Still no one could explain entirely the existent
bias between expected future spot rates and forward rates, the so called puzzle in the
expectation hypothesis

In this work we will address this issue through arbitrage theory, in particular, focusing
our attention in a connection of the classical expectation hypothesis to a certain probability
measures where the relation between expected future spot rates and forward rates holds.
We will approach this applying certain instantaneous spot rate models, verifying in these
models that through changes from “real world” probability measure to other probability
measures, we will find adjustments that will able us to explain this bias in the expectation
hypothesis.
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1 Introduction to Expectation Hypothesis

In this work we will approach the expectation hypothesis through the arbitrage theory. The
primary objects in use are the spot rates, forward rates and zero coupon bonds (also known
as pure discount bonds). The forward rate is a rate contracted at time t to start in a future
time S until the maturity of the contract, T . The spot rate is a rate contracted today for a
time interval [t, T ]. The forward rates and spot rates coincide when the time of contracting
the forward rate is equal to the start of the contract over which the forward rate is effective.
A zero coupon bond with maturity T , or T -bond, is a contract which guarantees to the holder
1 euro at maturity T (suppose currency is the Euro). We can obtain the present value of a
T -bond by discounting it the spot rate at the same maturity T . These financial objects will be
fundamental for the results in this work.

The theory of the classical expectation hypothesis postulates that the forward rates are the
unbiased predictor of the future spot rates. Several studies about this theory have been pub-
lished with several empirical and theoretical explanations about the relation between the term
structure of interest rates and future rates.

On one hand studies like Longstaff(19) tested the expected hypothesis at the extreme short
end of the term structure, using repurchase (repo) rates with maturities measured in days or
weeks. He concluded that expectation hypothesis can not be rejected. Note that repo rates are
considered the actual cost of holding riskless securities, as referred by Corte et al.(9).

On the other hand, there are studies that reject empirically the classical expectation hypothesis
(e.g.: Fama(14), Fama and Bliss(15), Campbell and Shiller(8), Bekaert, Hodrick, Marshall(4),
Boudoukh, Richardson and Whitelaw(7)). These empirical studies concluded that there is a
bias due to a risk aversion effect. Some of these studies argue about the risk aversion effect to
be either constant or time varying. Examples of studies in favour of time varying Fama and
Bliss(15), Shaliastovich and Bansal(21), other in favour of constant risk aversion effect Bansal
and Yaron(23), Eraker(13), Piazzesi and Schneider(20).

Some theories have been developed to try explain the risk aversion effect such as liquidity
preferences, preferred habitat and market segmentation, being the first two the most well known.
The definition of liquidity preferences, first introduced by John Keynes(18), is a potentiality or
functional tendency which fixes the quantity of money that agents will hold for a fixed interest
rate. In others words the amount of money in the economy depends directly of a liquidity
function. This theory points that for investors to hold long term securities a premium should
be offered and this risk premium increases with maturity in a decreasing proportion. Preferred
habitat theory states that the risk premium is not uniformly increasing, and agents are willing
to invest if the risk premium received offsets their price.

In terms of the arbitrage theory, this rejection of the classical expectation hypothesis is the
same to say that in “real world” probability measure, or physical probability measure P , the
expectation hypothesis does not hold because of the risk aversion effect. In other words, the
expected future instantaneous spot rate at time T is not equal to the instantaneous forward
rate with maturity T in the “real world” probability measure. On the other hand, there is a
probability measure equivalent to P , the so called risk neutral probability measure or martingale
measure Q, where the risk aversion effect does not influence the value of interest rates. This
way we can relate the previous mentioned empirical studies, which rejected the expectation
hypothesis, by saying that in a risk neutral world probability measure the relation between
future spot rates and forward rates should hold.
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In arbitrage theory this argument in not quite true. For the rejection of the expectation
hypothesis to be related only with risk aversion effect we should guarantee that interest rates
are deterministic. In reality we know they are not, they are stochastic. In arbitrage theory
we know that forward rates are the expected future spot rates in another probability measure
called T -forward measure that we can obtain changing from risk neutral probability measure to
T -forward measure. This way we can say that the so called expectation hypothesis bias exists
not only because of the risk aversion effect but also because of the stochastic effect.

Confirming that the risk aversion effect does not explain the bias entirely we refer to an empir-
ical work done by Backus et al(3). In this work was analyzed the expectation hypothesis with
U.S. Treasury bills, and to work the risk aversion effect they have based their economy con-
sumption on a representative agent, with constant relative risk aversion preferences, with one
single commodity whose preferences are additively separable over time and obey the expected
utility axioms, being the preferences of the representative agent characterized by a expected
utility function. Using constant relative risk aversion utility function (CRRA), they concluded
that only relative risk aversion factors greater than 8 support the risk aversion effect as an
explanation for the expectation hypothesis bias, where common observed factors are lower than
these (Hansen and Singleton(16) refer to factors of 1 and 2 has bounds for the relative risk
aversion factors).

In this work we will take into account both risk aversion and stochastic effects and try to show
that considering the stochastic effect helps explain the puzzling results of Backus et al(3). We
will exploit this through closed form results for the expected value of instantaneous spot rates
in the the probability measures P , Q and T -forward, using instantaneous spot rate dynamic
models. Through this changes in the probability measure we will be able to find risk aversion
adjustment, RA(t, T ), and stochastic adjustment, SA(t, T ).

We will use two popular instantaneous spot rate models, Vasicek(22) and CIR (Cox Ingersoll
and Ross)(12). These are well-known special cases of affine term structure models (ATS). With
this type of models we can easily obtain closed formulas, such as forward rates. Ultimately, from
Vasicek and CIR models, we want to compute the closed form of the expected instantaneous
spot rates in P , Q and T -forward measure. Note that Vasicek and CIR dynamics are defined in
the risk neutral probability measure Q. To obtain the dynamic of these in P measure we need
to change from Q measure to P measure via Girsanov theorem which will only affect the drift
of both Vasicek and CIR dynamics. After, is just a matter of solving a stochastic differential
equation to obtain the expected value in P and Q measure. To obtain the expected value in T -
forward measure we will use a result from the arbitrage theory which relates forward rates with
this same expected value. With these expected values we will obtain the stochastic and risk
aversion adjustments which we will consider the expected bias of the expectation hypothesis.
At the end, the sum of these and the forward rate will represent a unbiased predictor of future
spot rates in the “real world” probability measure

With this work we hope to contribute to an explanation of the expectation hypothesis or guide
into a new direction in solving this puzzle.
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2 Arbitrage Theory

2.1 Concepts

In this section we introduce definitions of the zero coupon bonds, forward rates, spot rates and
instantaneous forward and spot rates.

For the remaining of the work we will adopt notation p(t, T ) to define a T -bond at time t with
maturity T , f(t, T ) to define instantaneous forward rate contracted at time t with maturity T
and instantaneous spot rates at time t as r(t). As previous mentioned, a T -bond at the end
of the maturity will value p(T, T ) = 1, for all T . The bond price p(t, T ) is a stochastic object
with two variables, t and T . For a fixed value of t the bond price will be a function of T which
provides prices for bonds of all possible maturities. The graph of this function is called “the
bond price curve at t” or “Term Structure at time t”. This graph will be differentiable w.r.t.
T . For a fixed maturity T , p(t, T ) will be a stochastic process function of t This process gives
the prices at different times of the bond with fixed maturity T and the trajectory will typically
be very irregular.

Suppose that we stand at time t and we have two bonds with maturities S and T , S < T . The
simple forward rate L(t;S, T ) is defined by

L(t;S, T ) = −p(t, T )− p(t, S)

(T − S)p(t, T )
(1)

while the continuously compounded forward rate R(t;S, T ) is defined by

R(t;S, T ) = − ln p(t, T )− ln p(t, S)

T − S
(2)

In the same context, the simple spot rate L(S, T ) for the period [S, T ] is defined by

L(S, T ) = − p(S, T )− 1

(T − S)p(S, T )
(3)

while the continuously compounded spot rate R(S, T ) is defined by

R(S, T ) = − ln p(S, T )

T − S
(4)

The instantaneous forward rate with maturity T , contracted at t is defined by

f(t, T ) = −∂ ln p(t, T )

∂T
(5)

The instantaneous spot rate at time t is defined by

r(t) = f(t, t) (6)
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2.2 Arbitrage Theory

In this subsection we start by defining the money account process to be

B(T ) = exp

{
−
∫ T

0

r(s) ds

}
(7)

i.e.,

{
dB(t) = r(t)B(t)dt

B(0) = 1

The money account can be seen in two ways, first has describing a bank account with stochastic
rate of interest, second be seen that investing in it is equivalent to invest in a self-financing
“rolling over” trading strategy, which at time t consists entirely of “maturing” the bonds from
t to t+ dt.

We will consider instantaneous spot rate dynamics of the following form

dr(t) = a(t, r(t))dt+ v(t, r(t))dW (t) (8)

where W is a Wiener process.

If we assumed that instantaneous spot rates were deterministic than the price of a T -claim X
(we refer to definition of a T -claim to Björk(6)) in a risk neutral world is given by

Π(t;X ) = e−r·(T−t)EQt,r [X ] (9)

In real life the deterministic risk free rate assumption does not hold because the instantaneous
spot rate r is stochastic.

We introduce the general pricing formula of a T -claim X in a risk neutral valuation, i.e., under
the risk neutral probability measure Q

Π(t;X ) = EQt,r

[
exp

{
−
∫ T

t

r(s) ds

}
X

]
(10)

This expression is the same as if we consider the bank account as the numeraire, with t = 0.

Π(t;X ) = EQ0,r

[
X

B(T )

]
(11)

For more details about this we refer to Björk(6).
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To obtain the price process we need to compute this expected value, but as it is we can not
do much about it. In general it is hard to obtain the probability distribution of X

B(T ) (under

Q). We can’t assume independence between T -claim X and discount factor B(T ) because in
most cases r and X are not independent under Q. We can do something if, instead of having
the Bank account B(t) as numeraire of the price process, we have a T -bond (change from Q
measure to T -forward measure).

As mentioned before, for the probability measure Q we have the bank account Bt as the
numeraire, whereas for the T -Forward measure we have the T -bond p(t, T ) as the specific
numeraire. For these two we can obtain the same pricing process of a specific T -claim X

Π(0;X) = B(0)EQ
[
X

B(T )

]
(12)

Π(0;X) = p(0, T )ET
[
X

p(T, T )

]
(13)

Now changing from Q to T -Forward measure we will use the Bayes theorem, computing equation
(13) and obtaining

Π(0;X) = p(0, T )EQ
[
X

p(T, T )
· LT (T )

]
(14)

where the process LT is the Radon-Nikodym derivative define by

LT (t) =
dT

dQ
, onFt (15)

which is a Q martingale on Ft.

Afterwards we can compute equation (13) since p(T, T ) = 1

Π(0,X ) = p(0, T )ETt,r[X ] (16)

where ET represents the expectation under the T -Forward measure QT .

We can compute equation (12) and (14)

B(0)EQ
[
X

B(T )

]
= p(0, T )EQ

[
X

p(T, T )
· LT

]
(17)

= p(0, T )ET [X ]

for all (sufficiently integrable) T -claims X , we deduce that
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LT (t) =
p(t, T )

B(t)p(0, T )
, onFt (18)

obtaining at the end the Radon Nykodin derivative LT to change from probability measure Q
to T .

Lemma 1. Assume that for all T > 0 we have r(T )/B(T ) in L1(Q), where B is commonly
referred as the bank account and r is the instantaneous spot rate dynamics. Then for every T ,
the process f(t, T ) is a QT -Martingale for 0 ≤ t ≤ T , and in particular we have

ETt [r(T )] = f(t, T ) (19)

where T is the forward measure

Proof. With the change of numeraire we can get to the following result

Π(0;X) = EQt,r

[
r(T ) · e−

∫ T
t
r(s) ds

]
= p(t, T ) · ETt,r[r(T )]

Working the expected value of r(T ) in the T -forward measure we get

ETt,r[r(T )] =
1

p(t, T )
EQt,r

[
r(T ) · e−

∫ T
t
r(s) ds

]
= − 1

p(t, T )
EQt,r

[
∂

∂T
· e−

∫ T
t
r(s) ds

]
= − 1

p(t, T )

∂

∂T
EQt,r

[
·e−

∫ T
t
r(s) ds

]
= −pT (t, T )

p(t, T )

= −∂ ln p(t, T )

∂T
= f(t, T )

where pT (t, T ) is p(t, T ) derivative in order of maturity T .

For more details on this we refer to Björk (6)

2.3 Problem formulation

Most of the studies refer to a bias in the expectation hypothesis related with the risk aversion
effect. In arbitrage theory context this is the same as saying forward rates are good predictors
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of the future spot rates in a risk neutral valuation. The formulation in terms of expected value
is

EQt [r(T )] = f(t, T ) (20)

From previous sections we mentioned this only holds if the rate r(T ) is deterministic. If r is
deterministic than we would have the process LT (t) as

LT (t) =
p(t, T )

B(t)p(0, T )

=
EQt [e−

∫ T
t
r(s) ds]

e
∫ t
0
r(s) ds · EQt [e−

∫ T
0
r(s) ds]

=
e−

∫ T
t
r(s) ds

e
∫ t
0
r(s) ds · e−

∫ T
0
r(s) ds

= 1

Therefore the process L is 1 for all t and thus we would have that Q measure is equal to
T -forward measure.

We know for fact that r is stochastic and because of that the forward rates are not good
predictors of future spot rates in Q measure. This only holds in T -forward measure.

To address the problem of the expectation hypothesis bias we compute the expected value of
r(T ) in P , Q and T -forward probability measures. Ultimately the difference between EP [r(T )]−
EQ[r(T )] and EQ[r(T )] − ET [r(T )] will represent the risk aversion adjustment and stochastic
adjustment respectively. The focus is than to obtain these adjustments, as well as forward
rates. We expect that the sum of these adjustments will correspond to the bias, i.e.,

EP [r(T )] = f(t, T ) + SA(t, T ) +RA(t, T )

To compute these expected values we will assume instantaneous spot rate dynamics for r(T )
as equation (8) in each probability measure. These dynamic models are defined in probability
measure Q and to transform to P measure we will use Girsanov theorem, specifying next what
we will use as Girsanov kernel. For the T -forward measure we will obtain the expected value
as per equation (19), i.e., obtaining the forward rate which we will obtain next in this work.

For the instantaneous spot rate models we will consider the Vasicek and Cox, Ingersoll, Ross
(CIR) models, two of the most popular instantaneous spot rate models.

2.4 Affine Term Structure and Bond pricing

An affine term structure hypothesizes that interest rates, at any point in time, are a time
invariant linear function of a small set of common factors. The linearity can be seen as criticism
because we do not see that in reality. Off course much other models incorporated non linearity
but they generally fail in obtaining closed form solutions for the bond prices. On the contrary
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the linearity assumption of the affine term structure (ATS) models have proven to be remarkably
flexible structure for dynamics of bonds.

Independent of any specific model of bond prices, it is always possible to express the price at
time t of a zero coupon bond that matures at time T as

p(t, T ) = EQt

[
exp

(
−
∫ T

t

r(s) ds

)]
(21)

Pricing bonds boils down to specifying the instantaneous spot rate dynamic model under the
risk neutral measure Q, making easy for us to derive bond prices. It can be showed that the
term structure of interest rates has an affine formulation, assuming that

p(t, T ) = F (t, rt;T ) (22)

where F will have the form

F (t, rt;T ) = eA(t,T )−B(t,T )rt (23)

functions A and B are deterministic. For more details of the ATS formulation we refer to
Bjork(6).

Both Vasicek and CIR models are of the ATS type, so we can obtain closed form formulas for
bond prices. In the next subsections we present both models and the main formulas.

Through this formulation we can obtain closed forms for bonds in the Vasicek and CIR models.

2.4.1 Vasicek model

The Vasicek instantaneous spot rate model is defined by

drt = k(θ − rt)dt+ σdWQ
t (24)

Applying the ATS formulation for this model we compute the function A and B and obtain

A(t, T ) =

(
θ − σ2

2k2

)
[B(t, T )− T + t]− σ2

4k
B2(t, T ) (25)

B(t, T ) =
1

k
[1− e−k(T−t)] (26)

applying A and B to equation (23). For more details we refer to Björk((6))
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2.4.2 CIR model

The CIR instantaneous spot rate model is defined by

drt = k(θ − rt)dt+ σ
√
rtdW

Q
t (27)

As in the Vasicek we will have to apply the ATS formulation to equation (23) where, A(t, T ) =
lnA0(T − t), and

A0(x) =

[
2ηe

x
2 (k+η)

(η + k)(exη − 1) + 2η

] 2kθ
σ2

(28)

B(x) =
2 (exη − 1)

(η + k)(exη − 1) + 2η
(29)

η =
√
k2 + 2σ2

x = T − t

For more details we refer to Cox, Ingersoll and Ross((12))

It is known the connection and interdependence between bond prices and the forward rates.
We recall it from equation (5). Assuming the bond prices to have an ATS formulation (see
equation (23)) we can easily obtain the forward rate

f(t, T ) = −∂ ln p(t, T )

∂T
(30)

= −∂A(t, T )

∂T
+
∂B(t, T )

∂T
rt (31)

This result will be quite handy to obtain, in both Vasicek and CIR, a closed form solution for
the forward rates.

Proposition 1 (Vasicek and CIR forward rate). For the Vasicek model the forward rate is

f(t, T )V asicek =
e−k(T−t)(1− e−k(T−t))σ2

2k2
+
(

1− e−k(T−t)
)(

θ − σ2

2k2

)
+ e−k(T−t)rt (32)

For the CIR model the forward rate is

f(t, T )CIR =
f1(t, T ) + f2(rt, t, T ) + f3(rt, t, T )

f4(rt, t, T )
(33)
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where

f1(t, T ) = 2
(

(e2(T−t)(
√
k2+2σ2) − 1)k3θ + 2

(
e2(T−t)(

√
k2+2σ2) − 1

)
kθσ2

)
f2(rt, t, T ) = 2k2

(
2e(T−t)(

√
k2+2σ2)(rt − θ) + θ

(
1 + e2(T−t)(

√
k2+2σ2)

))√
k2 + 2σ2

f3(rt, t, T ) = 8σ2
√
k2 + 2σ2e(T−t)(

√
k2+2σ2)rt

f4(rt, t, T ) =
√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2

Proof. For the Vasicek model A and B are respectively equations (25) and (26). For the CIR
model A and B are respectively equations (28) and (29). To obtain forward rates we need to
use A and B in equation (31).

For the Vasicek model we have that

∂B(t, T )

∂T
= −1

k

(
∂
(
e−k(T−t)

)
∂T

)
= e−k(T−t)

∂A(t, T )

∂T
=

(
θ − σ2

2k2

)(
∂B(t, T )

∂T
− 1

)
− 2σ2

4k
B(t, T )

∂B(t, T )

∂T

=

(
θ − σ2

2k2

)(
e−k(T−t) − 1

)
− σ2

2k

1

k

(
1− e−k(T−t)

)
e−k(T−t)

= −
e−k(T−t)

(
1− e−k(T−t)

)
σ2

2k2
−
(

1− e−k(T−t)
)(

θ − σ2

2k2

)

Using equation (31) we have the forward rate for Vasicek model

f(t, T )V asicek =
e−k(T−t)

(
1− e−k(T−t)

)
σ2

2k2
+
(

1− e−k(T−t)
)(

θ − σ2

2k2

)
+ rte

−k(T−t)

Similar as for Vasicek, in the case of CIR model we have

∂B(x)

∂x
=

2ηekη [(η + k) (exη − 1) + 2η]− 2ηekη(η + k) (exη − 1)

[(η + k) (exη − 1) + 2η]
2

after some simplifications we obtain
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∂B(x)

∂x
=

4η2ekη

[(η + k) (exη − 1) + 2η]
2

For the case of A0(x) we start by defining this function as a combination of other two

A0(x) =

(
τ1(x)

τ2(x)

) 2kθ
σ2

where

τ1(x) = 2ηe
x
2 (k+η)

τ2(x) = (η + k)(exη − 1) + 2η

Computing the derivative of A(x) we have

∂A(x)

∂x
=

∂A0(x)
∂x

A0(x)

=

2kθ
σ2

(
τ1(x)
τ2(x)

) 2kθ
σ2
−1 ∂τ1(x)

∂x τ2(x)−τ1(x) ∂τ2(x)
∂x

τ2
2 (x)(

τ1(x)
τ2(x)

) 2kθ
σ2

after some computations and simplifications we obtain

∂A(x)

∂x
=

2kθ (exη − 1)

(exη − 1) k + η (exη + 1)

Using equation (31), and after some computations, we have the forward rate for CIR model

f(t, T )CIR =
f1(t, T ) + f2(rt, t, T ) + f3(rt, t, T )

f4(rt, t, T )

where

f1(t, T ) = 2
(

(e2(T−t)(
√
k2+2σ2) − 1)k3θ + 2

(
e2(T−t)(

√
k2+2σ2) − 1

)
kθσ2

)
f2(rt, t, T ) = 2k2

(
2e(T−t)(

√
k2+2σ2)(rt − θ) + θ

(
1 + e2(T−t)(

√
k2+2σ2)

))√
k2 + 2σ2

f3(rt, t, T ) = 8σ2
√
k2 + 2σ2e(T−t)(

√
k2+2σ2)rt

f4(rt, t, T ) =
√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2
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2.5 Physical probability measure and utility functions

We recall the work done by Cox, Ingersoll and Ross(11), and Bick(5), where a formulation of
the general term structure was dervied in a risk neutral valuation. On those the specification of
the general term structure in a risk neutral valuation was similar as ours. In our formulation,
we will use only one state variable, the short rate rt.

The formulation of the term structure equation in a risk neutral world for the zero coupon
bonds is

∂F

∂t
(t, r) + {µ∗(t, rt)− λ}

∂F

∂r
(t, r) +

1

2
σ2(t, rt)

∂2F

∂r2
(t, r)− rF (t, r) = 0 (34)

where F = p(t, T ), µ∗(t, rt) − λ = µ(t, Rt), where µ∗(t, rt) is the drift in the physical measure
and λ can be seen as the risk aversion parameter.

Cox et al.(11) refer that this is equivalent of employing an equivalent “risk neutral” economy.
They use power utility function, with the constant relative risk aversion parameter to determine
λ.

The utility expresses an individual or subjective valuation of money. In other words, it combines
both the risk attitude of agents as well as their valuation of money defined in a parametric utility
function. As an example, when valuing an asset, depending on the agent’s being risk lover or
risk averse, will contribute to the price that he is willing to pay it. The utility function plays
an important roll in the agent representative theory. Representative agents act in such way
that all agents cumulative preferences and actions are the actions of a single one maximizing
its expected utility. One of the main assumptions in the representative agent is that market
is complete. We will also assume that individuals have homogeneous beliefs and time-additive,
state independent utility functions that are strictly concave, increasing and differentiable.

In particular we will use the same utility function as per Cox et al.(11)

U(x) =

{
xε

ε if ε 6= 0

lnx if ε = 0

In the approach of CIR the market risk parameter λ was linked directly with this utility function,
in particular, λ = εv2(t, T ), where v corresponds to the variance of the market portfolio. In the
case of Vasicek v(t, T ) = σ and in the case of CIR v(t, T ) = σ

√
rt. We will assume portfolios only

based in zero coupon bonds which makes the variance of the zero coupon bonds the portfolio
variance.

In the same way, Bick(5) applied a constant relative risk aversion (CRRA) preferences to
approach to measure market risk aversion λ = εv2(t, T ), referring that this preferences sustain
the Black-Scholes model in equilibrium. In this direction we refer to works of Ait-Sahalia and
Lo(2), He and Leland(17).

Summarizing, in a “risk neutral” valuation, our zero coupon bonds term structure equation will
be
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∂F

∂t
(t, r) +

{
µ∗(t, rt)− εv2(t, T )

} ∂F
∂r

(t, r) +
1

2
v2(t, rt)

∂2F

∂r2
(t, r)− rF (t, r) = 0 (35)

where ε is the constant relative risk aversion factor of the utility function U stated above. Note
that where ε = 0, the logarithmic utility, agents are consider to be risk neutral., whereas, values
of ε > 0 are considered to be risk averse and consequently, for ε < 0 investors are assumed to
be risk lovers.

Assuming that our bonds follow an ATS model formulation and that µ∗(t, rt) = a(t, rt) +
εv2(t, rt), for the short rate formulation in the ”real measure” will be

drt = µ∗(t, rt)dt+ v(t, rt)dW
P
t (36)

where

µ∗(t, r) = α(t)r + β(t) + εv2(t, rt)

v2(t, r) = γ(t)r + δ(t) (37)

If we recall the Girsanov theorem and take a look at the change of the instantaneous spot
rate model from Q measure to P measure, we can identify the Girsanov kernel as the constant
relative risk aversion factor of the utility function U , ϕ = εv(t, T ).

In particular, for the Vasicek and CIR models the Girsanov kernel will be

ϕV asicek = εσ (38)

ϕCIR = εσ
√
rt (39)

2.6 Methodology Application

In this section we will start by computing the expected values of the future spot rates in the
physical probability measure P , the risk neutral measure Q and T -forward measure. This
is so that we can obtain solutions for the stochastic adjustment, SA(t, T ), and risk aversion
adjustment RA(t, T ), under the hypothesis that the bias is the sum of these two adjustments.

In the case of the expected values of future spot rates in P and Q measures we will compute
the stochastic differential equations for both Vasicek and CIR models. We already have the
Vasicek and CIR instantaneous spot rate models in risk neutral measure Q. To obtain expected
values in the physical measure P we will use the Girsanov theorem, with the Girsanov kernel
quoted in the previous section, for both instantaneous spot rate models.

On the other hand, there is no need to compute the expected value of future spot rates in
T -forward measure (see equation (19)) and we already have computed the forward prices for
Vasicek and CIR models (recall equations (32) and (34) from Proposition 1).

These results for the expected values will be important when to compute the stochastic and
risk aversion adjustments.

15



We start by defining the stochastic adjustment SA(t, T ) as an expected value obtained when
we change from the T-forward measure to the Q measure, i.e.,

EQt [r(T )] = ETt [r(T )] + SA(t, T ) (40)

⇔

SA(t, T ) = EQt [r(T )]− ETt [r(T )] (41)

Similarly we define the risk aversion adjustment RA(t, T ) as an expected value obtained when
we change from the Q measure to the P measure.

EPt [r(T )] = EQt [r(T )] +RA(t, T ) (42)

⇔

RA(t, T ) = EPt [r(T )]− EQt [r(T )] (43)

2.7 Risk adjustment

From section 2.4 we know the instantaneous spot rate dynamics in risk neutral measure Q, for
both Vasicek and CIR models (equations (24) and (27) respectively). To obtain the closed form
solution for the expected value we need to solve the differential equation in the drift of this
equation.

Proposition 2 (Vasicek and CIR risk adjustment). For the Vasicek model the risk adjustment
is

RAV asicek(t, T ) =
εσ2

k

(
1− e−k(T−t)

)
(44)

For the CIR model the risk adjustment is

RACIR(t, T ) =
εθσ2 − e−k(T−t)(rt − θ)(k − εσ2) + e(εσ

2−k)(T−t)(k(rt − θ)− rtεσ2)

k − εσ2
(45)

Proof. For the Vasicek model computations of the expected value of the instantaneous spot
rate in Q measure we assume an integrating factor u(s) = eks. Using the general equation for
the integrating factor (refer to equation (1.35) from Costa(10)), we have

EQt [r(T )] = e−kT ektr(t) + e−kT
∫ T

t

ekskθds

= r(t)e−k(T−t) + θ
(

1− e−k(T−t)
)

(46)
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From section 2.5 we also know the instantaneous spot rate dynamics but in risk neutral measure
P . We also assume an integrating factor u(s) = eks and again use the general equation for the
integrating factor (refer to equation (1.35) from Costa(10))

EPt [r(T )] = e−kT ektr(t) + e−kT
∫ T

t

eks
(
kθ + εσ2

)
ds

= r(t)e−k(T−t) +
kθ + εσ2

k

(
1− e−k(T−t)

)
(47)

Similar as in the case of Vasicek model, for the CIR model we assume an integrating factor
u(s) = eks for the computations of the expected value of the instantaneous spot rate in Q
measure. Using the general equation for the integrating factor (refer to equation (1.35) from
Costa(10)), we have

EQt [r(T )] = e−kT ektr(t) + e−kT
∫ T

t

ekskθds

= r(t)e−k(T−t) + θ
(

1− e−k(T−t)
)

(48)

From section 2.5 we also know the instantaneous spot rate model in “real world” measure
P . We also assume an integrating factor, but in here needs to be slightly different, u(s) =

e(k−εσ
2)s. Again use the general equation for the integrating factor (refer to equation (1.35)

from Costa(10))

EPt [r(T )] = e−(k−εσ
2)T e(k−εσ

2)tr(t) + e−(k−εσ
2)T

∫ T

t

kθe(k−εσ
2)sds

= r(t)e−(k−εσ
2)(T−t) +

kθ

(k − εσ2)

(
1− e−(k−εσ

2)(T−t)
)

(49)

With the results above we can compute the risk adjustment for the Vasicek model

RAV asicek(t, T ) = EPt,ε[r[T ]]− EQt [r[T ]]

=
εσ2

k

(
1− e−k(T−t)

)
and the risk adjustment for the CIR model

RA(t, T )CIR = EPt,ε[r[T ]]− EQt [r[T ]]

=
εθσ2 − e−k(T−t)(rt − θ)(k − εσ2) + e(εσ

2−k)(T−t)(k(rt − θ)− rtεσ2)

k − εσ2
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2.8 Stochastic adjustment

Proposition 3 (Vasicek and CIR stochastic adjustment). For the Vasicek model the risk ad-
justment is

SAV asicek(t, T ) =
e−2kT (ekt − ekT )2σ2

2k2
(50)

For the CIR model the risk adjustment is

SACIR(t, T ) = SA1(t, T ) + SA2(t, T ) + SA3(t, T ) + SA4(t, T ) (51)

where

SA1(t, T ) = rte
−k(T−t) + θ

(
1− e−k(T−t)

)

SA2(t, T ) = −
2
(

(e2(T−t)(
√
k2+2σ2) − 1)k3θ + 2

(
e2(T−t)(

√
k2+2σ2) − 1

)
kθσ2

)
√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2

SA3(t, T ) = −
2k2

(
2e(T−t)(

√
k2+2σ2)(rt − θ) + θ

(
1 + e2(T−t)(

√
k2+2σ2)

))√
k2 + 2σ2

√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2

SA4(t, T ) = − +8rtσ
2
√
k2 + 2σ2e(T−t)(

√
k2+2σ2)

√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2
Proof. Here we also use the expected value of instantaneous spot rate in risk neutral measure
Q obtain in section 2.7 for both Vasicek and CIR models (equations (46) and (CIR expected
Q) respectively.

For the Vasicek model the stochastic adjustment is

SA(t, T )V asicek = EQt,ε[r[T ]]− ETt [r[T ]]

= EQt,ε[r[T ]]− f(t, T )V asicek

=
e−2kT (ekt − ekT )2σ2

2k2

For the CIR model the stochastic adjustment is
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SA(t, T )CIR = EQt,ε[r[T ]]− ETt [r[T ]]

= EQt,ε[r[T ]]− f(t, T )CIR

= EQt,ε[r[T ]]−
(
f1(t, T ) + f2(rt, t, T ) + f3(rt, t, T )

f4(rt, t, T )

)
= SA1(t, T ) + SA2(t, T ) + SA3(t, T ) + SA4(t, T )

where

EQt,ε[r[T ]] ≡ SA1(t, T ) = rte
−k(T−t) + θ

(
1− e−k(T−t)

)
and

SA2(t, T ) = −f1(t, T )

f4(t, T )

= −
2
(

(e2(T−t)(
√
k2+2σ2) − 1)k3θ + 2

(
e2(T−t)(

√
k2+2σ2) − 1

)
kθσ2

)
√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2

SA3(t, T ) = −f2(t, T )

f4(t, T )

= −
2k2

(
2e(T−t)(

√
k2+2σ2)(rt − θ) + θ

(
1 + e2(T−t)(

√
k2+2σ2)

))√
k2 + 2σ2

√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2

SA4(t, T ) = −f3(t, T )

f4(t, T )

= − +8rtσ
2
√
k2 + 2σ2e(T−t)(

√
k2+2σ2)

√
k2 + 2σ2

((
e(T−t)(

√
k2+2σ2) − 1

)
k +

(
e(T−t)(

√
k2+2σ2) + 1

)√
k2 + 2σ2

)2

2.9 Summary

With these results we have enough to compute amounts for the expected bias in the expectation
hypothesis, the stochastic adjustment and risk adjustment.

Our hypothesis is to say that the expected value of the future short rates is given by
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EPt [r(T )] = f(t, T ) + bias(t, T ) (52)

where

bias(t, T ) = RA(t, T ) + SA(t, T ) (53)

3 Results

3.1 Vasicek model results

The Table 1 results refer to the Vasicek model with parameters k = 0.25, σ = 0.01 and θ = 0.1,
varying the constant relative risk aversion factor ε. The subtable (a) contains the parameters
used. For these the parameters k, σ and θ used were obtained from Zeytun and Gupta(24).
The purpose is to give a sense of the values of the stochastic adjustment (equation (50)) and
risk aversion adjustment (RA equation (44)), and how much they are responsible for what we
define as expectation hypothesis bias. Along side we include the forward rate value obtained
from equation (32), the expected instantaneous spot rate in P measure (47), the percentage
of the expectation hypothesis bias in this expected spot rate in P measure ( bias

EP [r(T )]
), and the

percentage of each adjustments in the so called bias (SA(t,T )
bias and RA(t,T )

bias ). All of the values
presented in the subtables (b) to (f) are in percentage (%).

Value
rt 2,5%
θ 0,1
σ 0,01
k 0,25

(a) Parameters Table

1 2 5 10
f(t,T) 4,16 5,44 7,81 9,32
EP [R(T )] 4,16 5,45 7,85 9,38
SA(t,T) 0 0,01 0,04 0,07
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 0,09 0,23 0,52 0,72
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 4,16 5,44 7,81 9,32
EP [R(T )] 4,16 5,46 7,87 9,4
SA(t,T) 0 0,01 0,04 0,07
RA(t,T) 0 0,01 0,01 0,02
bias weight in E[r(T)] 0,2 0,37 0,7 0,91
SA weight in bias 47,05 61,1 74,03 78,62
RA weight in bias 52,88 38,97 26 21,46

(c) ε = 0.5

1 2 5 10
f(t,T) 4,16 5,44 7,81 9,32
EP [R(T )] 4,17 5,47 7,88 9,42
SA(t,T) 0 0,01 0,04 0,07
RA(t,T) 0,01 0,02 0,03 0,04
bias weight in E[r(T)] 0,31 0,52 0,88 1,11
SA weight in bias 30,77 43,97 58,76 64,73
RA weight in bias 69,18 55,73 41,12 35,24

(d) ε = 1

1 2 5 10
f(t,T) 4,16 5,44 7,81 9,32
EP [R(T )] 4,18 5,48 7,91 9,46
SA(t,T) 0 0,01 0,04 0,07
RA(t,T) 0,02 0,03 0,06 0,07
bias weight in E[r(T)] 0,52 0,8 1,24 1,49
SA weight in bias 18,11 28,23 41,64 47,86
RA weight in bias 81,87 71,8 58,38 52,12

(e) ε = 2

1 2 5 10
f(t,T) 4,16 5,44 7,81 9,32
EP [R(T )] 4,2 5,53 7,99 9,57
SA(t,T) 0 0,01 0,04 0,07
RA(t,T) 0,04 0,08 0,14 0,18
bias weight in E[r(T)] 1,14 1,65 2,29 2,62
SA weight in bias 8,13 13,6 22,2 26,85
RA weight in bias 91,85 86,42 77,8 73,14

(f) ε = 5

Table 1: Vasicek ε calculations for parameters: rt = 2.5%, θ = 0.1, σ = 0.01, k = 0.25

Table 2 refers to parameters k = 0.25, σ = 0.05 and θ = 0.1, varying the constant relative risk
aversion factor ε.
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Value
rt 2,5%
θ 0,1
σ 0,05
k 0,25

(a) Parameters Table

1 2 5 10
f(t,T) 4,06 5,14 6,83 7,7
EP [R(T )] 4,16 5,45 7,85 9,38
SA(t,T) 0,1 0,31 1,02 1,69
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 2,35 5,68 12,97 17,96
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 4,06 5,14 6,83 7,7
EP [R(T )] 4,27 5,65 8,21 9,84
SA(t,T) 0,1 0,31 1,02 1,69
RA(t,T) 0,11 0,2 0,36 0,46
bias weight in E[r(T)] 4,88 8,97 16,75 21,78
SA weight in bias 46,94 61,14 74,05 78,6
RA weight in bias 53,06 38,84 25,94 21,41

(c) ε = 0.5

1 2 5 10
f(t,T) 4,06 5,14 6,83 7,7
EP [R(T )] 4,38 5,84 8,56 10,3
SA(t,T) 0,1 0,31 1,02 1,69
RA(t,T) 0,22 0,39 0,71 0,92
bias weight in E[r(T)] 7,28 12,03 20,22 25,27
SA weight in bias 30,67 44,04 58,8 64,74
RA weight in bias 69,33 55,96 41,2 35,26

(d) ε = 1

1 2 5 10
f(t,T) 4,06 5,14 6,83 7,7
EP [R(T )] 4,6 6,24 9,28 11,22
SA(t,T) 0,1 0,31 1,02 1,69
RA(t,T) 0,44 0,79 1,43 1,84
bias weight in E[r(T)] 11,74 17,58 26,35 31,38
SA weight in bias 18,11 28,24 41,64 47,86
RA weight in bias 81,89 71,76 58,36 52,14

(e) ε= 2

1 2 5 10
f(t,T) 4,06 5,14 6,83 7,7
EP [R(T )] 5,27 7,42 11,42 13,97
SA(t,T) 0,1 0,31 1,02 1,69
RA(t,T) 1,11 1,97 3,57 4,59
bias weight in E[r(T)] 22,87 30,69 40,16 44,9
SA weight in bias 8,13 13,6 22,2 26,86
RA weight in bias 91,87 86,4 77,8 73,14

(f) ε= 5

Table 2: Vasicek ε calculations for parameters: rt = 2.5%, θ = 0.1, σ = 0.05, k = 0.25

We refer to Appendix subsection A for other results of the Vasicek model where we change the
parameter θ.

As expected, the bias increases with the increase of the maturity.

Comparing tables we can check that when σ increase forward rates decrease but expected
instantaneous spot rate under P measure increases (for instance, compare subtable 1d with
table 2d). As a result the bias increases, being the stochastic effect the one with the biggest
impact, although we see an increase of the risk aversion effect as we would have expected.

By looking at subtables 1d and 2d we can see that the weight of stochastic and risk aversion
adjustment in the bias does not change.

We can also see that when we increase k, both forward rates and expected instantaneous spot
rate increases, although the expectations hypothesis bias decreases (for instance, compare table
1c with table 10c, this last one in the Appendix subsection A).

3.2 CIR model results

Next we present some results for the CIR model. As per Vasicek, parameters k, σ and θ used
were obtained from Zeytun and Gupta(24) (in the case of CIR model, the volatility parameter
σ is in a different proportion when compared with the one in Vasicek model). The purpose
is to give a sense of the values of the stochastic adjustment (equation (51)) and risk aversion
adjustment (equation (45)), and how much they are responsible for what we define as expect-
ation hypothesis bias. Along side we include the forward rate value obtained from equation
(34), the expected instantaneous spot rate in P measure (49), the percentage of the expectation
hypothesis bias in this expected spot rate in P measure ( bias

EP [r(T )]
), and the percentage of each
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adjustments in the so called bias (SA(t,T )
bias and RA(t,T )

bias ). All of the values presented in the tables
(b) to (f) are in percentage (%).

Table 3 refers to parameters k = 0.25, σ = 0.05 and θ = 0.1, varying the constant relative risk
aversion factor ε. The subtable (a) contains the parameters used.

Value
rt 2,5%
θ 0,1
σ 0,05
k 0,25

(a) Parameters Table

1 2 5 10
f(t,T) 4,16 5,44 7,8 9,26
EP [R(T )] 4,16 5,45 7,85 9,38
SA(t,T) 0 0,01 0,06 0,13
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 0,07 0,21 0,7 1,35
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 4,16 5,44 7,8 9,26
EP [R(T )] 4,16 5,46 7,87 9,42
SA(t,T) 0 0,01 0,06 0,13
RA(t,T) 0 0,01 0,02 0,04
bias weight in E[R(T)] 0,16 0,36 0,98 1,75
SA weight in bias 44,53 58,26 71,24 76,79
RA weight in bias 55,47 41,74 28,76 23,21

(c) ε = 0.5

1 2 5 10
f(t,T) 4,16 5,44 7,8 9,26
EP [R(T )] 4,17 5,47 7,9 9,46
SA(t,T) 0 0,01 0,06 0,13
RA(t,T) 0,01 0,02 0,04 0,08
bias weight in E[r(T)] 0,25 0,52 1,26 2,15
SA weight in bias 28,93 40,92 55,26 62,25
RA weight in bias 71,07 59,08 44,74 37,75

(d) ε = 1

1 2 5 10
f(t,T) 4,16 5,44 7,8 9,26
EP [R(T )] 4,17 5,48 7,94 9,54
SA(t,T) 0 0,01 0,06 0,13
RA(t,T) 0,02 0,03 0,09 0,15
bias weight in E[R(T)] 0,44 0,82 1,83 2,95
SA weight in bias 16,82 25,71 38,07 45,02
RA weight in bias 83,18 74,29 61,93 54,98

(e) ε = 2

1 2 5 10
f(t,T) 4,16 5,44 7,8 9,26
EP [R(T )] 4,2 5,53 8,08 9,78
SA(t,T) 0 0,01 0,06 0,13
RA(t,T) 0,04 0,08 0,23 0,4
bias weight in E[R(T)] 0,97 1,72 3,5 5,34
SA weight in bias 7,48 12,11 19,54 24,29
RA weight in bias 92,52 87,89 80,46 75,71

(f) ε = 5

Table 3: CIR ε calculations for parameters: rt = 2.5%, θ = 0.1, σ = 0.05, k = 0.25

Table 4 refers to parameters k = 0.25, σ = 0.25 and θ = 0.1. The difference between the tables
is the constant relative risk aversion factor ε which varies between 0 and 5.

We refer to Appendix subsection B for other results for the CIR model where we change the
parameters k and θ.

As in the case of Vasicek, the expectation hypothesis bias increases with the increase of the
maturity.

Like in the Vasicek model, with the increase of σ we can see a decrease in the forward rate and
an increase in the expected instantaneous spot rate which increases the expectation hypothesis
bias, being the stochastic effect the one with the biggest increase. We can see this by comparing
tables 3d with table 4d.

With the increase of k and θ we see that forward rates and expected instantaneous spot rates
increases. Although, the increasing θ influences little the expectation hypothesis bias (we can
see this by comparing table 3e with table 12e, this last one in the Appendix section). On
the other hand, for the increase of k, we see a decrease in the expectation hypothesis bias, as
per Vasicek model (we can see this by comparing table 3e with table 11e, this last one in the
Appendix subsection B).
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Value
rt 2,5%
θ 0,1
σ 0,25
k 0,25

(a) Parameters Table

1 2 5 10
f(t,T) 4,08 5,18 6,72 7,25
EP [R(T )] 4,16 5,45 7,85 9,38
SA(t,T) 0,08 0,27 1,13 2,13
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 1,81 5,02 14,39 22,73
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 4,08 5,18 6,72 7,25
EP [R(T )] 4,25 5,66 8,44 10,43
SA(t,T) 0,08 0,27 1,13 2,13
RA(t,T) 0,1 0,21 0,59 1,04
bias weight in E[r(T)] 4,01 8,59 20,34 30,46
SA weight in bias 44,08 56,26 65,82 67,17
RA weight in bias 55,91 43,72 34,18 32,83

(c) ε = 0.5

1 2 5 10
f(t,T) 4,08 5,18 6,72 7,25
EP [R(T )] 4,35 5,89 9,09 11,67
SA(t,T) 0,08 0,27 1,13 2,13
RA(t,T) 0,19 0,44 1,24 2,29
bias weight in E[r(T)] 6,17 12,07 26,07 37,87
SA weight in bias 28 38,54 47,68 48,25
RA weight in bias 72 61,46 52,32 51,75

(d) ε = 1

1 2 5 10
f(t,T) 4,08 5,18 6,72 7,25
EP [R(T )] 4,56 6,37 10,63 14,99
SA(t,T) 0,08 0,27 1,13 2,13
RA(t,T) 0,4 0,92 2,78 5,6
bias weight in E[r(T)] 10,37 18,74 36,79 51,61
SA weight in bias 15,9 22,94 28,89 27,58
RA weight in bias 84,09 77,06 71,11 72,42

(e) ε = 2

1 2 5 10
f(t,T) 4,08 5,18 6,72 7,25
EP [R(T )] 5,24 8,16 18,09 39,4
SA(t,T) 0,08 0,27 1,13 2,13
RA(t,T) 1,08 2,71 10,24 30,02
bias weight in E[r(T)] 22,08 36,54 62,85 81,6
SA weight in bias 6,49 9,18 9,94 6,63
RA weight in bias 93,51 90,82 90,06 93,36

(f) ε= 5

Table 4: CIR ε calculations for parameters: rt = 2.5%, θ = 0.1, σ = 0.25, k = 0.25

3.3 Implicit risk aversion

The main goal of this work is to show that the bias of the expectation hypothesis is not only
due to a risk aversion effect, but also with a stochastic effect.

On one hand, some consider the expectation hypothesis bias as to be related only with risk
aversion effect

bias ≡ RA(t, T )∗ (54)

where we consider RA(t, T )∗ the implicit risk aversion. On the other hand we say the expect-
ation hypothesis bias is a combination of risk aversion effect and stochastic effect

bias ≡ RA(t, T ) + SA(t, T ) (55)

In Backus et al.(3) was considered that the bias is only due to a risk aversion effect. Although
they found that this to hold the constant relative risk aversion (CRRA) factor needed to be 8
or greater, opposite to other studies (Hansen and Singleton(16)) that consider a normal CRRA
factor between 1 and 2.

Our approach is that the high CRRA factors found by Backus et al. can be explained if we
consider a stochastic effect and a risk aversion effect but with suitable CRRA factor values.

By comparing equations (54) and (55), we want to obtain a CRRA factor ε∗ (of equation 54)
as a function of ε (of equation 55).

RA(t, T )∗ = RA(t, T ) + SA(t, T ) (56)
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Ultimately we want to see if for values of ε ∈ [1, 2], we can find a values of ε∗ greater than 8 as
in Backus et al.(3)

3.3.1 Vasicek implicit risk aversion

Lemma 2. In the Vasicek model the calculation for the implicit constant relative risk aversion
ε∗ is

RA(t, T )∗ = RA(t, T ) + SA(t, T ) ⇐⇒ ε∗ =
e−k(T−t)

(
−1 + ek(T−t) + 2εkek(T−t)

)
2k

(57)

Next we present some results for the implicit CRRA factor ε∗

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,4424 1,4424 2,4424 3,4424 4,4424 5,4424
T=2 0,7869 1,7869 2,7869 3,7869 4,7869 5,7869
T=5 1,427 2,427 3,427 4,427 5,427 6,427
T=10 1,8358 2,8358 3,8358 4,8358 5,8358 6,8358
T=20 1,9865 2,9865 3,9865 4,9865 5,9865 6,9865

Table 5: Vasicek: Values of ε∗ considering k = 0.25
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Figure 1: Graphic of ε∗ considering that bias is only risk aversion effect: k=0.25
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ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,4975 1,4975 2,4975 3,4975 4,4975 5,4975
T=2 0,9901 1,9901 2,9901 3,9901 4,9901 5,9901
T=5 2,4385 3,4385 4,4385 5,4385 6,4385 7,4385
T=10 4,7581 5,7581 6,7581 7,7581 8,7581 9,7581
T=20 9,0635 10,0635 11,0635 12,0635 13,0635 14,0635

Table 6: Vasicek: Values of ε∗ considering k = 0.01
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Figure 2: Graphic of ε∗ considering that bias is only risk aversion effect: k=0.01

We refer to Appendix subsection C for other results for implicit risk aversion of the Vasicek
model where we change the parameter k.

With the decrease of k we see that the ε∗ increases and with that a closer approximation to the
CRRA factors referred by Backus et al.(3), for higher maturities.

3.3.2 CIR implicit risk aversion

For the CIR model the calculations for the constant relative risk aversion ε∗ are obtained
numerically by approximating this by Newton–Raphson method (see Alves(1) for more details).

The equation to be determined numerically was

RA(t, T )∗ = RA(t, T ) + SA(t, T ) (58)

where equation SA(t, T ) refers to equation (51) and equations RA(t, T ) and RA(t, T )∗ refer to
equation (45), but with different constant relative risk aversion parameters ε and ε∗ respectively.

Tables 7–9 present some results for the implicit CRRA factor ε∗. We refer to Appendix sub-
section D for other results for implicit risk aversion of the CIR model where we change the
parameters k and θ.
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With an increase of k we see a decrease of ε∗, as in the Vasicek model. On the contrary of
Vasicek model, the σ effects the value of ε∗. As for parameter k, with the increase of σ we see
a decrease of ε∗. We can only find results closer to the ones in Backus et al.(3) for relative low
values of both k and σ.

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,476 1,4748 2,4737 3,4725 4,4714 5,4703
T=2 0,9075 1,9032 2,899 3,8948 4,8906 5,8864
T=5 1,9775 2,9562 3,935 4,9141 5,8934 6,8729
T=10 3,1938 4,132 5,0713 6,0116 6,9529 7,8952
T=20 4,359 5,2162 6,0771 6,9418 7,81 8,6818

Table 7: CIR: Values of ε∗: rt = 2.5%, θ = 0.1, σ = 0.05, k = 0.05
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Figure 3: Graphic of ε∗ considering that bias is only risk aversion effect: rt = 2.5%, θ = 0.1, σ = 0.05,
k = 0.05
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ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,3409 1,3243 2,3084 3,2932 4,2787 5,2649
T=2 0,5173 1,474 2,4337 3,3964 4,3618 5,3299
T=5 0,7044 1,5963 2,5009 3,4174 4,3452 5,2834
T=10 0,7373 1,5856 2,4544 3,3438 4,2531 5,1811
T=20 0,7342 1,5693 2,4245 3,3009 4,2 5,1225

Table 8: CIR: Values of ε∗: rt = 2.5%, θ = 0.1, σ = 0.25, k = 0.5
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Figure 4: Graphic of ε∗ considering that bias is only risk aversion effect: rt = 2.5%, θ = 0.1, σ = 0.25,
k = 0.5
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ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,4949 1,4946 2,4943 3,4941 4,4938 5,4934
T=2 0,9792 1,978 2,9767 3,9756 4,9744 5,9731
T=5 2,3629 3,3558 4,3487 5,3417 6,3346 7,3275
T=10 4,4174 5,3918 6,3663 7,3411 8,3159 9,2907
T=20 7,5416 8,4607 9,3807 10,3015 11,223 12,1452

Table 9: CIR: Values of ε∗: rt = 2.5%, θ = 0.1, σ = 0.025, k = 0.01
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Figure 5: Graphic of ε∗ considering that bias is only risk aversion effect: rt = 2.5%, θ = 0.1, σ = 0.025,
k = 0.01

4 Conclusions

The main purpose of this work was to explain the expectation hypothesis bias through the
arbitrage theory, considering two instantaneous spot rate models, Vasicek and CIR. We showed
that the forward rates are unbiased predictors of the future spot rates in a T -forward measure,
a probability measure where we define a T -bond as the numeraire. On the other hand, we
needed to obtain an unbiased predictor of the instantaneous spot rates in “real world” measure
P, since this is the probability measure where prices are observed. Because of this we derived
adjustments to allow for an unbiased closed solution for the expected future instantaneous spot
rate in P measure.

28



In particular for the Vasicek and CIR models, their dynamics are defined in the risk neutral
probability measure Q. To change their dynamics from the Q measure to P measure we use the
same methodology used in Cox et al.(11) using representative agent theory. To approach this
change they assumed all agents have homogeneous beliefs represented by a constant relative
risk aversion utility function, where the CRRA factor was used as Girsanov kernel. After we
were able to obtain closed form solution for the expected instantaneous spot rate in Q and P
measures. We used the fact that the expected value of instantaneous spot rates in T -forward
measure are the forward rates for our computations. To obtain solution for the forward rates in
these models, we have based on the fact that they can be seen as affine term structure. Through
this formulation we can obtain closed forms for forward rates.

With all these we were able to compute risk aversion and stochastic adjustments to be added
along side forward rates, obtaining an unbiased closed form solution for the expected future
spot rates. With the parameters extracted from Zeytun and Gupta(24) we computed some
calculations for both models. In particular, we focus results from subsection 3.3 were we tried
to give an answer for the results obtained by Backus et al.(3). Only for some parameters we were
able to explain the high values of CRRA factors found by them. In particular in the Vasicek
model only for lower values of k and higher maturities we could find values of ε∗ greater than
8. For the CIR model only for lower values of k and σ we could find values of ε∗ greater than 8.
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A Vasicek table results

Table 10 refers to Vasicek model with parameters k = 0.5, σ = 0.01 and θ = 0.1, varying the
constant relative risk aversion factor ε.

Value
rt 2,5%
θ 0,1
σ 0,01
k 0,5

(a) Parameters Table

1 2 5 10
f(t,T) 5,45 7,23 9,37 9,93
EP [R(T )] 5,45 7,24 9,38 9,95
SA(t,T) 0 0,01 0,02 0,02
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 0,06 0,11 0,18 0,2
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 5,45 7,23 9,37 9,93
EP [R(T )] 5,46 7,25 9,39 9,96
SA(t,T) 0 0,01 0,02 0,02
RA(t,T) 0 0,01 0,01 0,01
bias weight in E[R(T)] 0,13 0,2 0,28 0,3
SA weight in bias 43,73 55,92 64,84 66,5
RA weight in bias 55,08 44,09 35,4 33,37

(c) ε = 0.5

1 2 5 10
f(t,T) 5,45 7,23 9,37 9,93
EP [R(T )] 5,46 7,25 9,4 9,97
SA(t,T) 0 0,01 0,02 0,02
RA(t,T) 0,01 0,01 0,02 0,02
bias weight in E[r(T)] 0,2 0,29 0,37 0,4
SA weight in bias 28,2 38,63 47,89 49,86
RA weight in bias 71,95 60,9 52,29 50,29

(d) ε = 1

1 2 5 10
f(t,T) 5,45 7,23 9,37 9,93
EP [R(T )] 5,47 7,27 9,42 9,99
SA(t,T) 0 0,01 0,02 0,02
RA(t,T) 0,02 0,03 0,04 0,04
bias weight in E[r(T)] 0,35 0,46 0,57 0,6
SA weight in bias 16,4 24,01 31,45 33,18
RA weight in bias 83,16 76 68,48 66,76

(e) ε = 0.5

1 2 5 10
f(t,T) 5,45 7,23 9,37 9,93
EP [R(T )] 5,49 7,3 9,48 10,05
SA(t,T) 0 0,01 0,02 0,02
RA(t,T) 0,04 0,06 0,09 0,1
bias weight in E[r(T)] 0,77 0,97 1,15 1,18
SA weight in bias 7,29 11,23 15,5 16,57
RA weight in bias 92,51 88,78 84,46 83,4

(f) ε = 1

Table 10: Vasicek ε calculations for parameters: rt = 2.5%, θ = 0.1, σ = 0.01, k = 0.5
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B CIR table results

Table 11 refers to CIR model with parameters k = 0.5, σ = 0.05 and θ = 0.1. The difference
between the tables is the constant relative risk aversion factor ε which varies between 0 and 5.

Value
rt 2,5%
θ 0,1
σ 0,05
k 0,5

(a) Parameters Table

1 2 5 10
f(t,T) 5,45 7,23 9,35 9,9
EP [R(T )] 5,45 7,24 9,38 9,95
SA(t,T) 0 0,01 0,03 0,05
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 0,05 0,14 0,34 0,47
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 5,45 7,23 9,35 9,9
EP [R(T )] 5,46 7,25 9,4 9,97
SA(t,T) 0 0,01 0,03 0,05
RA(t,T) 0 0,01 0,02 0,02
bias weight in E[R(T)] 0,13 0,26 0,55 0,71
SA weight in bias 40,92 52,44 62,74 65,92
RA weight in bias 59,08 47,56 37,26 34,08

(c) ε = 0.5

1 2 5 10
f(t,T) 5,45 7,23 9,35 9,9
EP [R(T )] 5,46 7,26 9,42 10
SA(t,T) 0 0,01 0,03 0,05
RA(t,T) 0,01 0,02 0,04 0,05
bias weight in E[r(T)] 0,2 0,38 0,75 0,96
SA weight in bias 25,9 35,41 45,67 49,09
RA weight in bias 74,1 64,59 54,33 50,91

(d) ε = 1

1 2 5 10
f(t,T) 5,45 7,23 9,35 9,9
EP [R(T )] 5,47 7,28 9,46 10,05
SA(t,T) 0 0,01 0,03 0,05
RA(t,T) 0,02 0,04 0,08 0,1
bias weight in E[R(T)] 0,36 0,63 1,15 1,44
SA weight in bias 14,78 21,51 29,52 32,42
RA weight in bias 85,22 78,49 70,48 67,58

(e) ε = 2

1 2 5 10
f(t,T) 5,45 7,23 9,35 9,9
EP [R(T )] 5,49 7,33 9,58 10,2
SA(t,T) 0 0,01 0,03 0,05
RA(t,T) 0,04 0,09 0,19 0,25
bias weight in E[R(T)] 0,81 1,36 2,37 2,89
SA weight in bias 6,49 9,84 14,22 15,92
RA weight in bias 93,51 90,16 85,78 84,08

(f) ε= 5

Table 11: CIR ε calculations for parameters: rt = 2.5%, θ = 0.1, σ = 0.05, k = 0.5
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Table 12 refers to CIR model with parameters k = 0.25, σ = 0.05 and θ = 0.2. The difference
between the tables is the constant relative risk aversion factor ε which varies between 0 and 5.

Value
rt 2,5%
θ 0,2
σ 0,05
k 0,25

(a) Parameters Table

1 2 5 10
f(t,T) 6,37 9,37 14,89 18,32
EP [R(T )] 6,37 9,39 14,99 18,56
SA(t,T) 0 0,02 0,1 0,24
RA(t,T) 0 0 0 0
bias weight in E[r(T)] 0,06 0,18 0,64 1,3
SA weight in bias 100 100 100 100
RA weight in bias 0 0 0 0

(b) ε = 0

1 2 5 10
f(t,T) 6,37 9,37 14,89 18,32
EP [R(T )] 6,38 9,4 15,03 18,64
SA(t,T) 0 0,02 0,1 0,24
RA(t,T) 0,01 0,01 0,04 0,07
bias weight in E[R(T)] 0,14 0,31 0,9 1,69
SA weight in bias 43,08 56,58 70,37 76,5
RA weight in bias 56,92 43,42 29,63 23,5

(c) ε = 0.5

1 2 5 10
f(t,T) 6,37 9,37 14,89 18,32
EP [R(T )] 6,38 9,41 15,07 18,71
SA(t,T) 0 0,02 0,1 0,24
RA(t,T) 0,01 0,03 0,08 0,15
bias weight in E[r(T)] 0,22 0,45 1,16 2,08
SA weight in bias 27,47 39,35 54,25 61,86
RA weight in bias 72,53 60,65 45,75 38,14

(d) ε = 1

1 2 5 10
f(t,T) 6,37 9,37 14,89 18,32
EP [R(T )] 6,39 9,44 15,15 18,86
SA(t,T) 0 0,02 0,1 0,24
RA(t,T) 0,02 0,05 0,16 0,3
bias weight in E[R(T)] 0,38 0,72 1,69 2,87
SA weight in bias 15,93 24,45 37,12 44,63
RA weight in bias 84,07 75,55 62,88 55,37

(e) ε = 2

1 2 5 10
f(t,T) 6,37 9,37 14,89 18,32
EP [R(T )] 6,42 9,52 15,39 19,33
SA(t,T) 0 0,02 0,1 0,24
RA(t,T) 0,05 0,13 0,41 0,76
bias weight in E[R(T)] 0,86 1,53 3,27 5,2
SA weight in bias 7,04 11,42 18,91 24,01
RA weight in bias 92,96 88,58 81,09 75,99

(f) ε= 5

Table 12: CIR ε calculations for parameters: rt = 2.5%, θ = 0.2, σ = 0.05, k = 0.25
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C Vasicek implicit risk aversion results

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,4877 1,4877 2,4877 3,4877 4,4877 5,4877
T=2 0,9516 1,9516 2,9516 3,9516 4,9516 5,9516
T=5 2,212 3,212 4,212 5,212 6,212 7,212
T=10 3,9347 4,9347 5,9347 6,9347 7,9347 8,9347
T=20 6,3212 7,3212 8,3212 9,3212 10,3212 11,3212

Table 13: Vasicek: Values of ε∗ considering k = 0.05
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Figure 6: Graphic of ε∗ considering that bias is only risk aversion effect: k=0.05

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,3935 1,3935 2,3935 3,3935 4,3935 5,3935
T=2 0,6321 1,6321 2,6321 3,6321 4,6321 5,6321
T=5 0,9179 1,9179 2,9179 3,9179 4,9179 5,9179
T=10 0,9933 1,9933 2,9933 3,9933 4,9933 5,9933
T=20 0,9999 1,9999 2,9999 3,9999 4,9999 5,9999

Table 14: Vasicek: Values of ε∗ considering k = 0.5
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Figure 7: Graphic of ε∗ considering that bias is only risk aversion effect: k=0.5

D CIR implicit risk aversion results

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,4635 1,4624 2,4613 3,4602 4,4591 5,458
T=2 0,8688 1,865 2,8611 3,8572 4,8534 5,8495
T=5 1,8561 2,8374 3,8188 4,8004 5,7821 6,7641
T=10 3,0108 3,9565 4,903 5,8504 6,7986 7,7476
T=20 4,2264 5,0953 5,9675 6,8429 7,7214 8,603

Table 15: CIR: Values of ε∗: rt = 2.5%, θ = 0.2, σ = 0.05, k = 0.05

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5
T=1 0,4062 1,4053 2,4044 3,4035 4,4026 5,4017
T=2 0,6949 1,6921 2,6894 3,6866 4,6838 5,6811
T=5 1,234 2,2237 3,2135 4,2033 5,1932 6,1831
T=10 1,6418 2,6198 3,5979 4,5763 5,5549 6,5337
T=20 1,8562 2,8224 3,7889 4,7558 5,7231 6,6908

Table 16: CIR:l Values of ε∗: rt = 2.5%, θ = 0.1, σ = 0.05, k = 0.25
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Figure 8: Graphic of ε∗ considering that bias is only risk aversion effect: rt = 2.5%, θ = 0.2, σ = 0.05,
k = 0.05
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Figure 9: Graphic of ε∗ considering that bias is only risk aversion effect: rt = 2.5%, θ = 0.1, σ = 0.05,
k = 0.25
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