

Theory of shadowing and its applications.

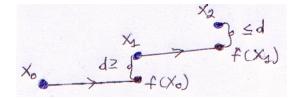
Alexey V. Osipov¹

¹Chebyshev Lab of Saint-Petersbourg State University

May 2011

- *M* manifold, dist, $f \in \text{Diff}^1(M)$, $O(p, f) = \{f^n(p)\}_{n \in \mathbb{Z}}$
- $\xi = \{x_n\}$ is a *d*-pseudotrajectory, if

 $\operatorname{dist}(x_{n+1}, f(x_n)) \leq d \quad \forall n \in \mathbb{Z}.$



 ∀ε > 0 ∃d > 0 such that ∀d-pseudotrajectory ξ there exists an exact trajectory {p_n = fⁿ(p)} such that

$$\operatorname{dist}(x_n, p_n) < \epsilon \quad \forall n \in \mathbb{Z}.$$

• Example, where POTP holds:

f ∈ OSP ⇔ ∀ε > 0 ∃*d* > 0 such that ∀*d*-pseudotrajectory ξ there exists an exact trajectory *O*(*p*, *f*) of a point *p* such that

 $\xi \subset N(\epsilon, O(p, f))$ and $O(p, f) \subset N(\epsilon, \xi)$.

• Example where OSP holds and POTP does not hold: an irrational rotation of the circle

$$x \mapsto g(x) = x + \alpha \quad \text{for } \alpha \notin \mathbb{Q}.$$

 f ∈ WSP ⇔ ∀ε > 0 ∃d > 0 such that ∀d-pseudotrajectory ξ there exists an exact trajectory O(p, f) of a point p such that

$$\xi \subset N(\epsilon, O(p, f)).$$

Main problems

- H(M) with C^0 -metric, $\text{Diff}^1(M)$ with C^1 -metric
- a set is **generic** if it contains a countable intersection of open and dense sets
- (P1) Is the set of mappings having some shadowing property generic in Baire sense (for space H(M), Diff¹(M))?
- (P2) Characterisation of sets of diffeomorphisms having some shadowing property in terms of hyperbolic theory.

Results

	POTP	OSP	WSP
C-topology	genezic, Pilyugin, Plamenevskaza 1929	generic	genezic
C ¹ -topology	Nondense, Bonatti, Diaz,Tuzcat 2000	nondense, Osipov, 2010	geheric, czovisiez 2006

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hyperbolic set, definition.

A is a **hyperbolic set** for $f \in \text{Diff}^1(M) \Leftrightarrow$

A is a compact f-invariant set and there exist constants C and λ such that for all $p \in A$ there exist complementary linear subspaces $E^{s}(p)$ and $E^{u}(p)$ of $T_{p}M$ and

$$|Df^{k}(p)v| \leq C\lambda^{k}|v|, \quad \forall v \in E^{s}(p), k \geq 0,$$

 $|Df^{-k}(p)v| \leq C\lambda^{k}|v|, \quad \forall v \in E^{u}(p), k \geq 0.$

Hyperbolic set, stable and unstable manifolds.

If A is a hyperbolic set then ∀p ∈ A there exist manifolds
 W^s(p) and W^u(p) (stable and unstable manifolds) such that

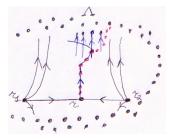
$$\dim W^s(p) = s, \quad \dim W^u(p) = u,$$

$$f^n(x) \longrightarrow p$$
, as $n \to +\infty$ $\forall x \in W^s(p)$,
 $f^{-n}(x) \longrightarrow p$, as $n \to +\infty$ $\forall x \in W^u(p)$.

- The number *u* is called an **index** of a hyperbolic set *A*.
- Hyperbolic periodic point.

C^1 -nondensity of POTP

DA-diffeomorphism of Williams on \mathbb{T}^2 :

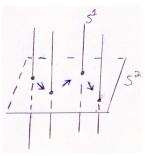


 r_1, r_2 are hyperbolic repellers, r — saddle, Λ — hyperbolic attractor.

C^1 -nondensity of OSP

Example of Ilyashenko and Gorodetski: domain $W \subset \operatorname{Diff}^1(S^2 imes S^1)$

• partially hyperbolic set *S* homeomorphic to the product of a Cantor set and a circle



• hyperbolic points with different indices are dense in S

C^1 -nondensity of OSP, case (A1)

There exist two hyperbolic periodic points r_1 and r_2 with $\dim(W^s(r_1)) = 2 = \dim(W^u(r_2))$ and $\dim(W^u(r_1)) = 1 = \dim(W^s(r_2))$ such that

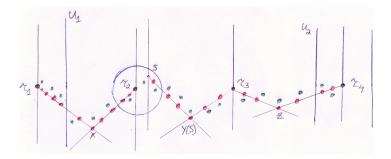
 $W^{u}(r_{1}) \cap W_{s}(r_{2}) \neq \emptyset.$



C^1 -nondensity of OSP, case (A2)

Not case (A1). Fix hyperbolic periodic points r_1, \ldots, r_4 such that

 $\dim W^u(r_1) = \dim W^u(r_2) = 1, \quad \dim W^s(r_3) = \dim W^s(r_4) = 1.$



Nonwandering set

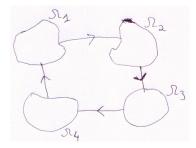
- A point p is wandering for f if $\exists U \ni p$ such that $f^n(U) \cap U = \emptyset$ for all n with sufficiently large |n|.
- Alternative definition: a point p is nonwandering for f if $\exists \{p_k\}_{k\geq 0}, \{n_k\}_{k\geq 0}$ such that $n_k \to \infty$ and

$$p_k \rightarrow p$$
, $f^{n_k}(p_k) \rightarrow p$.

Structural stability

- $f \in \mathbb{S} \Leftrightarrow \exists U$ such that $\forall g \in U \ \exists h \in H(M)$ such that hf = gh.
- (Robbin,Robinson,*Mañé*, 1988) **structural stability** is equivalent to **Axiom A** (the nonwandering set is hyperbolic and is the closure of periodic points) and **strong transversality condition**
- Spectral decomposition theorem (Smale): Axiom A implies Ω(f) = Ω₁ ∪ . . . ∪ Ω_m, Ω_j is hyperbolic and has a dense semi-trajectory.

- $f \in \Omega \mathbb{S} \Leftrightarrow f$ and any diffeomorphism from its small neighborhood are topologically conjugate on nonwandering sets
- (Palis, 1987) Ω-stability is equivalent to Axiom A and no cycle condition



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions	Main problems	Genericity problem	Characterisation problem	Shadowing for flows
Results				

$$\mathsf{POTP} \neq \mathbb{S},$$
$$\mathsf{Int}^1(\mathsf{POTP}) = \mathsf{Int}^1(\mathsf{OSP}) = \mathbb{S},$$

LipSP, Lipschitz shadowing: (POTP with ε = Ld) ∃L, d₀ such that for any d-pseudotrajectory ξ with d ≤ d₀ there exists a point p such that

$$\operatorname{dist}(x_k, f^k(p)) \leq Ld \quad \forall k \in \mathbb{Z}.$$

• (Pilyugin, Tikhomirov, 2010) LipSP = S.

Periodic shadowing

Periodic shadowing (PerSh)

 $\forall \epsilon > 0 \ \exists d > 0$ such that \forall periodic *d*-pseudotrajectory ξ there exists a periodic exact trajectory $\{p_n\}$ such that

$$\operatorname{dist}(x_n, p_n) < \epsilon \quad \forall n \in \mathbb{Z}.$$

- Lipschitz periodic shadowing (LipPerSh) PerSh with $\epsilon = Ld$.
- (Pilyugin, Tikhomirov, Osipov, 2010)

 $Int^1(PerSh) = LipPerSh = \Omega S.$

General Scheme of the Proof

- $\Omega S \subset \mathsf{LipPerSh}$
- $Int^1(PerSh) \subset \Omega S$
- $f \in \text{LipPerSh} \Rightarrow f \in \Omega S$
 - Step 1. hyperbolicity of periodic points
 - Step 2. uniform hyperbolicity of periodic points
 - Step 3. f has the Axiom A
 - Step 4. f satisfies the no-cycle condition

Proof of $\Omega S \subset LipPerSh$

- Spectral decomposition theorem:
 Ω(f) = Ω₁ ∪ ... ∪ Ω_m, Ω_j is hyperbolic and has a dense semi-trajectory
- ξ is a periodic *d*-pseudotrajectory, $\xi \subset U(\Omega_j)$ for some j
- Shadowing lemma: if Λ is hyperbolic then f has LipSh and is expansive in some U(Λ)
- Expansivity means that a *d*-pseudotrajectory can be shadowed only by one *p*

Proof of $Int^1(PerSh) \subset \Omega S$

- HP set of diffeomorphisms f such that every periodic point of f is hyperbolic Lemma (Aoki, 1992, Hayashi, 1992). Int¹(HP) = ΩS
- It is enough to prove that $Int^1(PerSh) \subset HP$
- h is a C^1 -small pertubation of f that is linear in U(p), p is a nonhyperbolic periodic point for h

Proof of LipPerSh $\subset \Omega S$, Steps 1 and 2

- $f, f^{-1} \in \text{LipPerSh}$ with L > 1
- Lemma: Every periodic point is hyperbolic
- Key lemma: Set of all periodic points of *f* has all properties of a standard hyperbolic set except compactness.

$$|Df^{j}(p)v_{s}| \leq C\lambda^{j}|v_{s}|, \quad |Df^{-j}(p)v_{u}| \leq C\lambda^{j}|v_{u}|,$$

where $j \ge 0$, $v_s \in S(p)$, $v_u \in U(p)$

• p is an m-periodic point, let $v_0 = v_u \in U(p)$, $v_{i+1} = Df^i(p)v_i$,

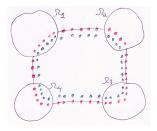
$$\lambda_i = |\mathbf{v}_{i+1}|/|\mathbf{v}_i|, \quad \mathbf{a}_0 = \tau, \quad \mathbf{a}_{i+1} = \lambda_i \mathbf{a}_i - 1,$$

where τ is chosen such that $a_m = 0$

- $w_i = a_i v_i / |v_i|$ for $0 \le i \le m 1$, $\{w_i\}$ is an m(n+1)-periodic
- $|Df^{i}(p)v_{u}| = \lambda_{0} \cdots \lambda_{i-1} > \frac{1}{16L} \left(1 + \frac{1}{8L}\right)^{i} |v_{u}|, \quad 0 \leq i \leq m-1.$

Proof of LipPerSh $\subset \Omega S$, Steps 3 and 4

- Lemma: f satisfies the Axiom A
 - P_{I} the set of periodic points of index I
 - CIP₁ is a hyperbolic set.
 - density of periodic points in $\Omega(f)$
- Lemma: f has no cycles
 - any cycle is approximated by periodic pseudotrajectories
 - any cycle is approximated by periodic exact trajectories
 - ۲



・ロット 全部 マイロット

• A *d*-**pseudomethod** is a sequence of continuous mappings $\{\Psi_k\}_{k\in\mathbb{Z}}$ such that

$${
m dist}(\Psi_k(x),f(x))\leq d\quad orall k\in\mathbb{Z}.$$

We say that a sequence {x_k} is a pseudotrajectory generated by a *d*-pseudomethod {Ψ_k}_{k∈Z} if

$$x_{k+1} = \Psi_k(x_k) \quad \forall k \in \mathbb{Z}.$$

 f ∈ InvSh ⇔ ∀ε > 0 ∃d > 0 such that for any point p and for any d-pseudomethod {Ψ_k}_{k∈ℤ} there exists a pseudotrajectory {x_k} generated by this method such that

$$\operatorname{dist}(x_k, f^k(p)) < \epsilon, \quad \forall k \in \mathbb{Z}.$$

Inverse periodic shadowing

- $Int^{1}(InvSh) = LipInvSh = S.$
- Inverse periodic shadowing (InvPerSh) = inverse shadowing for periodic points.
- LipInvPerSh: InvPerSh with $\epsilon = Ld$.
- Theorem: 1) $Int^{1}(InvPerSh) = \Omega S$,
 - 2) LipInvPerSh is equivalent to hyperbolicity of Cl(Per(f)).

Shadowing for flows

- Φ is the flow, $\Phi : \mathbb{R} \times M \mapsto M$
- standard shadowing: ∀ε > 0 ∃d > 0 such that for any increasing {Δ_k}_{k∈ℤ} such that

$$|\Delta_{k+1} - \Delta_k| \le 1 \ \forall k \in \mathbb{Z}, \quad \lim \Delta_k = \infty \ ext{for} \ k o \infty$$

 $\forall \{x_k\}_{k \in \mathbb{Z}}$ such that

$$|x_{k+1} - \Phi(\Delta_{k+1} - \Delta_k, x_k)| \leq d \quad orall k \in \mathbb{Z}$$

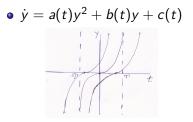
 $\exists p \text{ and } \exists \{t_k\} \text{ such that }$

$$ert x_k - \Phi(t_k, p) ert \leq \epsilon \quad orall k \in \mathbb{Z}$$
 and $ert (\Delta_{k+1} - \Delta_k) - (t_{k+1} - t_k) ert \leq \epsilon.$

• for oriented shadowing the last condition is changed to

$$(\Delta_{k+1} - \Delta_k)/(t_{k+1} - t_k) > 0$$

Finite time blow-up



• $\forall \epsilon > 0 \ \exists d > 0$ and $\{d_k\} \leq d$ such that for any increasing $\{\Delta_k\}_{k \geq 0}$ such that $\lim \Delta_k$ is finite $\exists K \ \forall \{x_k\}_{k \geq 0}$

$$|x_{k+1} - \Phi(\Delta_{k+1} - \Delta_k, x_k)| \le d_k \le d \quad orall k \le K$$

 $\exists p \text{ and } \exists \{t_k\} \text{ such that }$

$$|x_k - \Phi(t_k, p)| \le \epsilon \quad \forall k \ge K$$

and $\sum_{k \ge K} |(\Delta_{k+1} - \Delta_k) - (t_{k+1} - t_k)| \le \epsilon.$

Definitions	Main problems	Genericity problem	Characterisation problem	Shadowing for flows

Thank you very much for your attention!