On the Gap Lemma

Pedro Duarte

February, 2011

Pedro Duarte On the Gap Lemma

・ロン ・四 と ・ ヨ と ・ モ と

Э

 $\mathcal{K}_1+\mathcal{K}_2=\set{t\in\mathbb{R}\,:\,\mathcal{K}_1\cap(t-\mathcal{K}_2)
eq\emptyset}$

M. Hall, 'On the sum and products of continued fractions', Annals of Mathematics 48, (1947).

S. Newhouse, 'Non density of Axiom A(a) on \mathbb{S}^{2} ', Proc. AMS Symp. Pure Math. 14, (1970).

A topological Hausdorff space K is called a **Cantor Set** iff K is

- compact,
- perfect,
- and totally disconnected.

From now on we shall consider Cantor sets on the real line

 $K \subset \mathbb{R}$.

イロン イヨン イヨン イヨン

æ

Gaps of a Cantor Set

A connected component of $\mathbb{R} - K$ is called a **gap** of K.

The complement of the unbounded connected component of $\mathbb{R} - K$ is called the **supporting interval** of *K*.

Let $K_1, K_2 \subset \mathbb{R}$ be Cantor sets.

A pair of gaps U_1 of K_1 and U_2 of K_2 is said to be **linked** iff $U_1 \cap U_2 \neq \emptyset$, $U_1 \not\subseteq U_2$ and $U_2 \not\subseteq U_1$.

The pair of Cantor sets K_1 , K_2 is said to be **linked** iff their unbounded gaps are linked.

Thickness, Geometric Definition

Given a bounded gap U of K define its **right** and **left bridges**

- $L_U =$ largest interval left adjacent to U that contains no gap of K of length $\geq |U|$.
- $R_U =$ largest interval right adjacent to U that contains no gap of K of length $\geq |U|$.

The **thickness** of K at a bounded gap U of K is

$$au_U(K) = \min\left\{\frac{|L_U|}{|U|}, \frac{|R_U|}{|U|}
ight\} \;.$$

The **thickness** of the Cantor set K is defined by

 $\tau(K) = \inf\{\tau_U(K) : U \text{ is a bounded gap of } K\}.$

◆□> ◆□> ◆臣> ◆臣> 善臣 のへで

Thick Cantor sets have Hausdorff dimension close to one.

$$\mathsf{dim}_{\mathrm{H}}(\mathcal{K}) \geq rac{\log 2}{\log\left(2 + au(\mathcal{K})^{-1}
ight)} \; .$$

In particular, dim_H(K) \rightarrow 1, as $\tau(K) \rightarrow \infty$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Newhouse Gap Lemma

Gap Lemma Given two linked Cantor sets $K_1, K_2 \subset \mathbb{R}$, $\tau(K_1)\tau(K_2) > 1 \implies K_1 \cap K_2 \neq \emptyset.$

Proof

$$\begin{array}{c} \mathcal{K}_{1} \cap \mathcal{K}_{2} = \emptyset \\ \Downarrow \\ \exists \text{ sequence } (\mathcal{U}_{n}^{(1)}, \mathcal{U}_{n}^{(2)}) \text{ of pairs of linked gaps,} \\ \mathcal{U}_{n}^{(1)} \text{ of } \mathcal{K}_{1} \text{ and } \mathcal{U}_{n}^{(2)} \text{ of } \mathcal{K}_{2} \text{ such that} \\ \left| \mathcal{U}_{n}^{(1)} \right|, \left| \mathcal{U}_{n}^{(2)} \right| \to 0, \text{ as } n \to +\infty. \\ \downarrow \\ \text{ The limit point lies in } \mathcal{K}_{1} \cap \mathcal{K}_{2}. \end{array}$$

(ロ) (同) (E) (E) (E)

The **left thickness** of K is defined by

$$au_L(K) = \inf \left\{ rac{|L_U|}{|U|} : U ext{ is a bounded gap of } U
ight\} \,.$$

The **right thickness** of *K* is defined by

$$au_R(K) = \inf \left\{ rac{|R_U|}{|U|} : U ext{ is a bounded gap of } U
ight\} \,.$$

・ 回 と ・ ヨ と ・ ヨ と

э

Gustavo Moreira's Gap Lemma

Left-Right Gap Lemma Given linked Cantor sets $K_1, K_2 \subset \mathbb{R}$, $\tau_L(K_1) \tau_R(K_2) > 1$ and $\tau_R(K_1) \tau_L(K_2) > 1 \implies K_1 \cap K_2 \neq \emptyset$.

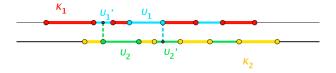
Moreira's Gap Lemma \Rightarrow Newhouse's Gap Lemma

 $au(K) \leq au_L(K)$ and $au(K) \leq au_R(K)$.

 $\tau(K_1) \tau(K_2) \le \min \{ \tau_L(K_1) \tau_R(K_2), \tau_R(K_1) \tau_L(K_2) \}$

Gap Lemma's Proof

Given a pair of linked gaps (U_1, U_2) ,

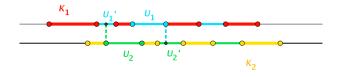


if the left and right endpoints $U_1 \cup U_2$ are not in $K_1 \cap K_2$, then they are inside gaps U'_1 of K_1 and U'_2 of K_2 .

 (U'_1, U_2) and (U_1, U'_2) are new pairs of linked gaps, and either $|U'_1| < |U_1|$ or $|U'_2| < |U_2|$.

▲圖→ ▲ 国→ ▲ 国→

Gap Lemma's Proof



If $L_{U_1} \not\subseteq U_2 \implies |U_1'| < |U_1|$ If $R_{U_2} \not\subseteq U_1 \implies |U_2'| < |U_2|$ If $L_{U_1} \subseteq U_2$ and $R_{U_2} \subseteq U_1 \implies$ $1 < \tau_L(K_1) \tau_R(K_2) \le \frac{|L_{U_1}|}{|U_1|} \frac{|R_{U_2}|}{|U_2|} = \frac{|L_{U_1}|}{|U_2|} \frac{|R_{U_2}|}{|U_1|} \le 1$.

A dynamically defined Cantor set is a pair (K, ψ) where

- ▶ $\psi: K \to K$ extends to a $C^{1+\alpha}$ expanding map $\psi: I_1 \cup \ldots \cup I_m \to I$,
- ► K is a Cantor set with supporting interval I,
- I_1, \ldots, I_m are pairwise disjoint subintervals of I,

•
$$K = \bigcap_{n\geq 0} \psi^{-n}(I_1 \cup \ldots \cup I_m),$$

• $\{I_1, \ldots, I_m\}$ is a Markov Partition for (K, ψ) .

・ロト ・四ト ・ヨト ・ヨト - ヨ

Thickness, Dynamic Definition

Let (K, ψ) be a dynamically defined Cantor set, defined by a $C^{1+\alpha}$ expanding map $\psi: I_1 \cup \ldots \cup I_m \to I$.

Gaps of order 0 are the connected compon. of $I - (I_1 \cup \ldots \cup I_m)$.

Bounded connected components of the complement of $\bigcap_{i=0}^{n} \psi^{-i} (I_1 \cup \ldots \cup I_m)$, which are not gaps of order n-1, are called **gaps of order** n.

 L_U = largest interval left adjacent to U that contains no gap of K of order smaller than U. R_U = largest interval right adjacent to U that contains no gap of K of order smaller than U.

Thickness, Dynamic Definition

Let (K, ψ) be a dynamically defined Cantor set.

The **left** and **right thickness** of (K, ψ) are defined by

$$\tau_L(K,\psi) = \inf_{n \ge 0} \tau_L^{(n)}(K,\psi) \quad \text{and} \quad \tau_R(K,\psi) = \inf_{n \ge 0} \tau_R^{(n)}(K,\psi) ,$$

where

$$\begin{aligned} \tau_L^{(n)}(K,\psi) &= \min\left\{ \frac{|L_U|}{|U|} : U \text{ is a gap of order } n \right\} \\ \tau_R^{(n)}(K,\psi) &= \min\left\{ \frac{|R_U|}{|U|} : U \text{ is a gap of order } n \right\} . \end{aligned}$$

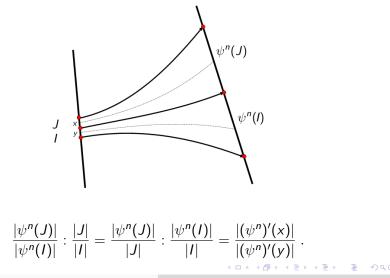
Pedro Duarte

.

・ロト ・回 ト ・ヨト ・ヨト

Distortion of a Dynamically Defined Cantor Set

Given intervals J and I there are points $x \in J$ and $y \in I$ such that



Pedro Duarte

On the Gap Lemma

Distortion of a Dynamically Defined Cantor Set

Given $\varepsilon > 0$ the ε -scale distortion of (K, ψ) is defined by

$$\operatorname{Dist}_{\varepsilon}(\mathbf{K},\psi) = \sup_{\mathbf{n}\geq 1} \operatorname{Dist}_{\mathbf{n},\varepsilon}(\mathbf{K},\psi) ,$$

where

$$\mathrm{Dist}_{\mathrm{n},\varepsilon}(\mathrm{K},\psi) = \sup_{\mathrm{x},\mathrm{y}} \left| \log \frac{|(\psi^{\mathrm{n}})'(\mathrm{x})|}{|(\psi^{\mathrm{n}})'(\mathrm{y})|} \right|$$

.

< □ > < @ > < 注 > < 注 > ... 注

The sup is taken over all pairs of points (x, y) such that $[\psi^i(x), \psi^i(y)] \subseteq I_1 \cup \ldots \cup I_m$, for $i = 0, 1, \ldots, n-1$ and $|\psi^n(x) - \psi^n(y)| \leq \varepsilon$.

Distortion and Thickness

Lemma Given $\varepsilon > 0$ and $p \ge 1$ such that every gap and bridge of order p has length $\le \varepsilon$, then for every $n \ge 0$,

$$e^{-\mathrm{Dist}_{\mathrm{n},\varepsilon}(\mathrm{K},\psi)} \leq \frac{\tau_{L,R}^{(p)}(K,\psi)}{\tau_{L,R}^{(n+p)}(K,\psi)} \leq e^{\mathrm{Dist}_{\mathrm{n},\varepsilon}(\mathrm{K},\psi)}$$

Proof U is gap of order $n + p \Rightarrow \psi^n(U)$ is a gap of order p $\Rightarrow L_{\psi^n(U)} = \psi^n(L_U)$

By the Mean Value Theorem, there are $x \in L_U$ and $y \in U$,

$$\left|\log \frac{\frac{|L_{\psi^n(U)}|}{|\psi^n(U)|}}{\frac{|L_U|}{|U|}}\right| = \left|\log \frac{\frac{|\psi^n(L_U)|}{|L_U|}}{\frac{|\psi^n(U)|}{|U|}}\right| = \left|\log \frac{|(\psi^n)'(x)|}{|(\psi^n)'(y)|}\right| \le \operatorname{Dist}_{n,\varepsilon}(K,\psi) \ .$$

•

(ロ) (同) (目) (日) (日) (の)

Thickness can be estimated at gaps of order 0 when the distortion is bounded.

Corollary

$$e^{-\mathrm{Dist}(\mathrm{K},\psi)} \leq rac{ au_{L,R}^{(0)}(K,\psi)}{ au_{L,R}(K,\psi)} \leq e^{\mathrm{Dist}(\mathrm{K},\psi)} ,$$

where

$$\operatorname{Dist}(\mathrm{K},\psi) = \operatorname{Dist}_{\varepsilon}(\mathrm{K},\psi) \quad \text{with} \quad \varepsilon = |\mathrm{I}| \; .$$

▲□→ ▲ □→ ▲ □→

æ

Because ψ is expanding of class $C^{1+\alpha}$ with $0 < \alpha \le 1$, there are constants $\lambda > 1$ and $\gamma > 0$ such that

(a)
$$|\psi'(x)| \ge \lambda$$

(b) $|\log |\psi'(x)| - \log |\psi'(y)|| \le \gamma |x - y|^{\alpha}$.

Lemma
$$\operatorname{Dist}_{\mathrm{n},\varepsilon}(\mathrm{K},\psi) \leq \frac{\gamma \, \varepsilon^{\alpha}}{\lambda^{\alpha} - 1} \quad (\to 0 \text{ as } \varepsilon \to 0)$$

~

Corollary
$$\text{Dist}(K, \psi) \leq \frac{\gamma |I|^{\alpha}}{\lambda^{\alpha} - 1}$$

Bounds on Distortion

Assume $[\psi^i(x), \psi^i(y)] \subseteq I_1 \cup \ldots \cup I_m$, for $i = 0, 1, \ldots, n-1$, and $|\psi^n(x) - \psi^n(y)| \leq \varepsilon$.

$$\begin{split} \left| \log \frac{|(\psi^n)'(x)|}{|(\psi^n)'(y)|} \right| &\leq \sum_{i=0}^{n-1} \left| \log |\psi'(\psi^i(x))| - \log |\psi'(\psi^i(y))| \\ &\leq \gamma \sum_{i=0}^{n-1} |\psi^i(x) - \psi^i(y)|^{\alpha} \\ &\leq \gamma \sum_{i=0}^{n-1} \frac{1}{\lambda^{\alpha(n-i)}} |\psi^n(x) - \psi^n(y)|^{\alpha} \\ &\leq \frac{\gamma \varepsilon^{\alpha}}{\lambda^{\alpha} - 1} . \end{split}$$

Pedro Duarte

On the Gap Lemma

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Continuity of the Thickness

Theorem The left, right and bilateral thicknesses are continuous functions of a dynamically defined Cantor set (K, ψ) with respect to the $C^{1+\alpha}$ -topology.

Proof For each $n \ge 1$, the gaps and bridges of order n of K depend continuously on (K, ψ) . Hence $(K, \psi) \mapsto \tau_{L,R}^{(n)}(K, \psi)$ is continuous.

$$\begin{array}{c} \varepsilon \text{-scale distortion is small,} \quad \text{as } \varepsilon \to 0 \\ \downarrow \\ \tau_{L,R}(K,\psi) \sim \min_{0 \le i \le n} \tau_{L,R}^{(i)}(K,\psi), \quad \text{as } n \to +\infty \\ \downarrow \\ (K,\psi) \mapsto \tau_{L,R}(K,\psi) \text{ is continuous.} \end{array}$$

(本間) (本語) (本語) (語)

The bound on distortion
$$\operatorname{Dist}(K, \psi) \leq \frac{\gamma |I|^{\alpha}}{\lambda^{\alpha} - 1}$$

tends to $+\infty$ as $\lambda \to 1$.

Weakly expanding dynamically defined Cantor sets may, or not, have large distortion.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Let $\psi : \bigcup_i I_i \to I$ be an expanding of class $C^{1+\alpha}$ with $0 < \alpha \leq 1$. Assume there are constants $\lambda_i > 1$ and $\gamma > 0$ such that $\forall x \in I_i$ (a) $|\psi'(x)| \geq \lambda_i$ (b) $|\log |\psi'(x)| - \log |\psi'(y)|| \leq \gamma \left(1 - \frac{1}{\lambda_i^{\alpha}}\right) |\psi(x) - \psi(y)|^{\alpha}$.

Lemma $\operatorname{Dist}_{n,\varepsilon}(\mathrm{K},\psi) \leq \gamma \, \varepsilon^{\alpha} \quad (\to 0 \text{ as } \varepsilon \to 0)$

Corollary Dist(K, ψ) $\leq \gamma |I|^{\alpha}$

(ロ) (同) (目) (日) (日) (の)

Bounds on Distortion

Assume $[\psi^i(x), \psi^i(y)] \subseteq I_{\beta_i}$, for i = 0, 1, ..., n-1, and $|\psi^n(x) - \psi^n(y)| \le \varepsilon$.

$$\begin{split} \left| \log \frac{|(\psi^n)'(x)|}{|(\psi^n)'(y)|} \right| &\leq \sum_{i=0}^{n-1} \left| \log \left| \psi'(\psi^i(x)) \right| - \log \left| \psi'(\psi^i(y)) \right| \right| \\ &\leq \sum_{i=0}^{n-1} \gamma \left(1 - \frac{1}{\lambda_{\beta_i}^{\alpha}} \right) \left| \psi^{i+1}(x) - \psi^{i+1}(y) \right|^{\alpha} \\ &\leq \gamma \sum_{i=0}^{n-1} \left(1 - \frac{1}{\lambda_{\beta_i}^{\alpha}} \right) \frac{1}{\lambda_{\beta_{i+1}}^{\alpha}} \dots \frac{1}{\lambda_{\beta_{n-1}}^{\alpha}} \left| \psi^n(x) - \psi^n(y) \right|^{\alpha} \\ &\leq \gamma \varepsilon^{\alpha} . \qquad \Box \end{split}$$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ