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Background and notation

@ We will study the question of existence and uniqueness of solutions to a
non-linear stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t), ¢t € [to, T]

with initial value x(tp) = xp, where 0 < tp < T < 0.
@ Some of the main (mathematical) questions regarding such equations:
Is there a solution?
If there is a solution, is it unique?
What kind of properties do solutions have?
How can solutions be obtained in practice?
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Background and notation

@ Let
» (Q,F, P) be a probability space.
» B(t) = (Bi(t),...,Bn(t))" be an m-dimensional Brownian motion.

> xo be an Fy,-measurable (where 0 < to < T < oo) R%valued random variable
such that E|xo|* < oo.

» R % [to, T] = R? and g : RY x [to, T] — R**™ be Borel measurable.
@ Consider the d-dimensional stochastic differential equation of It6 type

dx(t) = f(x(t), t)dt + g(x(t),t)dB(t), to<t<T,

with initial value x(tp) = xo.

@ The initial value problem above is equivalent to the following stochastic
integral equation

x(t) = xo0 + /tt f(x(s),s)ds + /tg(x(s),s)dB(s), th<t<T.

to
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Background and notation

Definition (SDE solution)

We say that the stochastic process {x(t)}<¢<T is a solution of the stochastic
differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t)

with initial condition x(ty) = xo if the following conditions hold:

(i) {x(¢t)} is continuous and F;-adapted;

(i) {F(x(£), )} € L} ([to, TLR?) and {g(x(t), &)} € £2([to, T]: RV,
(iii) the integral equation

x(t) = xo +/ f(x(s),s)d5+/ g(x(s),s)dB(s)

to to

holds for every t € [ty, T| with probability 1.
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Background and notation

Definition (Solution uniqueness)

A solution {x(t)} is said to be unique if any other solution {X(t)} is
indistinguishable from {x(t)}, that is, almost all their sample paths agree

P{x(t)=x(t) forall tp <t< T} =1.
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Background and notation

Example

9 Let us consider the the stochastic differential equation given by
dNt = rNtdt + OéNtdBt o
@ Equivalently, we have that

dN
Ttt = rdt + adB; .

@ Hence

t
/ dns =rt+aB: (Bo=0).
0 N

s
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Background and notation

Example

@ To evaluate the integral on the left hand side, we use the [t formula for the

function
gt,x)=Inx, x>0

to obtain
1 1, 1 )

d(ln N;) = ﬁt~dNt+§(—E2)(dNt)
aNe 1, o dN, 1,
= S N3t =St ZaRde.

N, on2 N, 2°

@ Hence
an,

1
=d(In N;) + =a?dt .
N, d(In t)+2adt
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Background and notation

Example

@ Therefore, from fot d/\,/Vs = rt + aB; we conclude that

N, 1
|n ﬂ; = (r = Eaz)t—i- Oth

or
1
N; = Noexp((r — §a2)t + aBy).

@ The solution N; is a process of the form

X: = Xoexp(ut + aBy), p,« constants

We call such processes geometric Brownian motion.
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Remark

@ It seems reasonable that if B; is independent of Ny we should have
E[N;] = E[Np]e™ .
@ To see that this is indeed the case, we let
Y, = e*Bt .
@ Apply It6’s formula to obtain
dY; = ae*?dB; + %a2eandt

or
t 1 t
Y=Y, +a/ e*B:dB; + -a2/ e*Bds .
0 2 0
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Remark

@ Since E[f; e*B:dBs] = 0, we get

E[Y,] = E[Yo] + %az /ot E[Y:]ds

d 1
T EVd = §a2E[Yt], E[Yo]=1.

@ Therefore, we get that
E[Y,] = e3>t .

@ We conclude that
E[N;] = E[Np]e™ .
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Background and notation
If we take g(x,t) =0, then the SDE above reduces to

x(t) = f(x(t),t), te]t,T].
Note that the initial condition x(ty) = xp may still be a random variable.

Example

Consider the following classical example
x=3x%3, telt, T]

with initial condition x(ty) = 1a, where A € Fy,. It is possible to check that for
each 0 < a < T — ty, the stochastic process

(t—to+1)3 paratg <t<T,weA
x(t) = x(t,w) = { 0 paraty <t<to+a,wd¢A
(t—to—a)d paratp+ta<t<T,w¢gA

is a solution of the equation above.
This initial value problem has an infinite number of solutions.
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Background and notation

Example

Consider yet another simple equation
x=x% t€(t,T]

with initial condition given by x(ty) = xp, a random variable which takes values
larger than 1/(T — tp).

It is possible to check that the initial value problem above has a unique solution

1 =il
t)=(——(t— ¢
x(1) = (o~ (- )
fortg<t<to+1/x<T.
However, there is no solution for this initial value problem which is defined for all
t € [to, T].
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Existence and uniqueness of solutions

Theorem (Existence and uniqueness of solution)

Assume that there exist two positive constants K and K such that the following two
conditions hold:

(i) Lipschitz condition: for all x,y € RY and t € [to, T]
max{|f(x, t) = f(y, )", lg(x,t) — gy, )’} < Klx = y|*;
(i) Linear growth condition: for all (x,t) € R? x [to, T]
max{|f(x, )%, lg(x, )"} < K(L+[x[) .
Let xo be a random variable which is independent of the o-algebra ]-'é'.f ) generated by
Bs(+), s > 0 and such that E|x|* < co.

Then there exists a unique t-continuous solution X¢(w) of the initial value problem

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) , tt <t < T, x(t) = x0

with the property that X.(w) is adapted to the filtration F;° generated by xo and Bs(-),

s < t. Furthermore, such solution belongs to M?([to, T]; RY).

v
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Existence and uniqueness of solutions

@ We start by proving some auxiliary lemmas to prepare for the proof of the
theorem above.

Theorem
Let p>2 and let g € M>([0, T]; R9*™) be such that

E UO |g(s)|pds] .

Then

E‘/OTg(s)dB(s))p < (@)gT@E l/OT|g(s)|pds] .

In particular, the equality holds for p = 2.
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Existence and uniqueness of solutions

Proof.
@ For0<t< T, set

t
x(t) = / g(s)dB(s) .
0
@ Using Itd’s formula (and Itd’s integral properties), one can obtain
po[* -
E(e)l = ZE / (Ix(s)P21g ()2 + (p = 2) x(s)|P~*|x (s)e (s) 2 ) ds

< Pk [P 2leo)ras

@ Recall the Holder's inequality, for 1 < p, g < oo such that %J + Cl’ =1,
X e LP, Y € L9 we have

EIXY| < (E|X|P)?(E|Y|%)7
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Existence and uniqueness of solutions
Proof.

@ Using the previous inequality one then sees that

M E/t x(s)lPds) 2 E/t|g(s)|pds g
= P(p > 1)(/ E|x(s |"ds - /|g s)|pds

@ Noting that E|x(t)|P is nondecreasing in t, we obtain

Efx(t)[?

IA

e < P Do) (e [ lgtoyras)’

@ This last inequality yields

i < (22 ) e [ igtoas

concluding the proof.

—
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Existence and uniqueness of solutions

Theorem

Under the assumptions of the previous theorem,

3

[ s8] < (5525) T [ lstolra
su S < 2 S So
0<t£T 2(p—1) 0 &

Proof.

@ Recall that the stochastic integral fot g(s)dB(s) is a martingale.
@ By the Doob martingale inequality we have that

Ozl:ET] / (s)a8(s)|"] < (—1>pE /0 " 4(9)dB(s)

@ Using the previous theorem, we then obtain the desired inequality.

p

O

V.
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Existence and uniqueness of solutions
Theorem (Gronwall's inequality)

Let T >0 and ¢ > 0. Let u(-) be a Borel measurable bounded nonnegative
function on [0, T], and let v(-) be a nonnegative integrable function on [0, T]. If

t
u(t) <c +/ v(s)u(s)ds, forall 0<t<T,
0

then .
u(t) < cexp(/ v(s)ds), forall 0<t<T.
0
Proof.
@ Without loss of generality we may assume that ¢ > 0.
@ Set

t
2(t) = c+ / ek, o GEie T
0

o Then u(t) < z(t).
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Existence and uniqueness of solutions

Proof.

@ Clearly, we have that
t t
log(z(t)) = log(c) +/ Mds < log(c) +/ v(s)ds .
o Z(s) 0
@ This imples
t
2(t) < cexp(/ v(s)ds), for 0<t<T.
0

@ The required inequality follows since u(t) < z(t).
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Existence and uniqueness of solutions

Lemma
Assume that the linear growth condition holds. If x(t) is a solution of equation
dx(t) = f(x(t), t)dt + g(x(t), t)dB(t),
then
E( sup |x(t)\2) < (14 3E|xp)?)e3K(T—t)(T—tot4)
th<t<T

In particular, x(t) belongs to M?([ty, T; RY]).

Proof.

@ For every integer n > 1, define the stopping time
7o = min{T,inf{t € [to, T] : |x(t)| > n}}.

@ Set x,(t) = x(min{t,7,}) for t € [to, T].
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Existence and uniqueness of solutions
Proof.

@ Then x,(t) satisfies the equation

t t
xo(t) = %0+ / F(n(5), ) lgmp () + / £(a(5), )l (5)ds.
to to
@ Using the elementary inequality
|a+ b+ cf? < 3(|af* + b + |cf),

the Holder inequality and the linear growth condition, one can show that

t t
D < 343K (e—t0) [ (Ltxals)ds 3] [ glxn(s):)loma(s)ds:
to

to
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Existence and uniqueness of solutions

Proof.
@ Hence, using again the linear growth condition and the previous theorem, we
obtain that
t
E( sup Pa(9)) < 3Ebof+3K(T— 1) [ (1+ Elm(s))ds
th<s<t to
t
+ 125/ |£(xa(5), s o, mall(5)ds
to
t
< 3E|xo* +3K(T —to + 4)/ (14 E|xa(s)|?)ds.
to

@ Consequently
1+E( sup |xn(s)|2>

to<s<t

<14 3]+ 3K(T— 1 +4) [ [L+ECsup_ ()]s

to to<r<s
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Existence and uniqueness of solutions

Proof.
@ Now, Gronwall inequality implies that

1+ E( sup |x,,(t)|2> <(1 _|_3E|X0|2)e3K(T—t0)(T—t0+4)'

Hr<t<T

@ Thus
E( sup |X,,(t)|2) < (14 3E|xg|?)e3K(T—t)(T—tot+4)

t<t<Tj

@ The required inequality follows by letting n — co.
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Existence and uniqueness of solutions

Proof of theorem of existence and uniqueness of solutions.
Uniqueness
o Let x(t) and Xx(t) be two solutions.
@ By the previous lemma, both of them belong to M?([ty, T]; RY).
@ Note that

t

x(t) — x(t) = / " F(x(s),5) - F(R(s), s)ds+ / 2(x(s),5) — g(x(s). s)dB(s).

to to

@ Using the Holder inequality, the previous theorem and Lipschitz condition,
one can show (in the same way as in the proof of the previous lemma) that

E( sup |X(s)—7(s)|2) gz?(r+4)/t5( sup |x(r)—7(r)|2)ds.

tr<s<t to to<r<s
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Existence and uniqueness of solutions

Proof.
@ The Gronwall inequality then yields that

E( sup |x(t)—>_<(t)|2>:0.

H<t<T

o Hence, x(t) = X(t) for all t < t < T almost surely, concluding the proof of
uniqueness of solutions.
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Existence and uniqueness of solutions
Proof.

Existence
@ Set xp(t) = xp and, for n =1,2,..., define the Picard iterations

xn(t) = 30+ / F(xn1(s), s)ds + / £(xn1(5), 5)dB(s)

to to
for t € [to, T].
Note that x(-) € M?([to, T]; RY).

@ It is easy to see by induction that x,(-) € M?([to, T];R?), because we have
that

t
E|xn(t)]? < a1 +3K(T + 1)/ E|x,_1(s)|*ds
to

where ¢; = 3E|xo|2 + 3KT(T +1).
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Existence and uniqueness of solutions

Proof.
9 Forany k >1

t
2 < 2
12,?%(kE|X"(t)| < C1+3K(T+1)/t01r<n’?é<kE|Xn_1(5)| ds
t
< c1+3K(T—|—1)/ (E|x0|2—|— max E|xn(s)|2>ds
% 1<n<k
<

i@
2
cz—l—ESK(T—i—l)/t0 e E|xa(5)|7,

where ¢ = ¢ + 3KT(T + 1)E|xo|?.
@ Gronwall inequality implies that

max E|x,(t)]> < ce3¥T(T+Y),

1<n<k
@ Since k is arbitrary, we must have

Elxa(t)]? < 3T+ forall tg <t < T,n>1.
T




Existence and uniqueness of solutions

Proof.
@ Note that

()= o(0) = ba(6) =P < 2] [ o s)ds| +2] / " £(x0.5)dB(s)

@ Taking the expectation and using the linear growth condition we get

E|x1(t) — xo(t)]> < 2K(t — t0)*(1 + E|xo|?) 4+ 2K (t — to)(1 + E|xo|*) < C,

where C = 2K(T — to+ 1)(T — to)(1 + E|xo|?).
@ We now claim that for n > 0,
C[M(t — to)]"
Elsmsa(£) — ()P < w for ty <t < T,

where M = 2K(T — to + 1).
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Existence and uniqueness of solutions

Proof.
@ By indution, we shall show that E|x,;1(t) — x,(t)|? < QM still holds
for n+ 1.
@ Note that

pia(®) =5 (OF < 2| [ (Flcnia(s).) = Flon(s), lds|

+ 2| [ tnia(s).9) - g0(s) 18(6)] .

@ Taking the expectation and using the Lipschitz condition we derive that

t
Elxpia(t) — xpi1(t)? < 2K(T —to + l)E/ IX011(5) — xn(5)|?ds
to

IN

t
M / Elsms1() — xa(s)[2ds
to

t M _ n M(t — n+1

< o [ M-l M- o)
to n! (n+1)|
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Existence and uniqueness of solutions
Proof.

@ Furthermore, replacing n with n — 1 we see that

-
sup _[xa1(t) — xn(t)|* < 2K(T — to)/ [%n(5) — xa-1(s)[*ds
t<t<T )

+2 sup ‘/ [g(xn(5),5) — g(xn—1(5), s)|dB(s)

‘2
to<t<T

@ Taking the expectation and using the previous theorem, we find that

E( sup |xn+1(t)—x,,(t)\2) < 27(T—t0+4)/ E|xn(s) — xp_1(5)[2ds

to<t<T
C[M(s
4M/ —[ (n= 1)?] ds

4C[IM(T — 1o)]"
n! ’

IN
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Existence and uniqueness of solutions
Proof.

@ Hence

AC[AM(T — t)]"
n! ’

P{ sup_lxaa(t) = xa(t)] > 5} <

(H<t<T

Since "7, w < 00, the Borel-Cantelli lemma yields that for almost
all w € Q there eX|sts a positive integer ng = no(w) such that

1
sup |Xn+1(t) - Xn(t)| <

on n> ng.
<

@ It follows that, with probability 1, the partial sums

)+ S berea(t) — x(0)] = xa(t)
i=0

are convergent uniformly in t € [0, T].
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Existence and uniqueness of solutions

Proof.

@ Denote the limit by x(t).

Clearly, x(t) is continuous and F;-adapted.
For every t, {x,(t),>1} is a Cauchy sequence in L?.
Hence x,(t) — x(t) in £2.
9 Letting n — oo in
E|X,,(t')|2 < C263KT(T+1)

gives
Elx(t))? < e TT+D) " forall o <t < T.

@ Therefore x(-) € M?([to, T|;RY).
@ It remains to show that x(t) satisfies equation

x(t) = / A{), Sz - / (e )

to to
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Existence and uniqueness of solutions

Proof.
@ Note that

E | /t F(s). $)ds — /t t F(x(s), 5)ds|
+ / glols) a8 (s) - [ ' g(x(s). )B(s)|
< K(T—to+ 1)/T E|x,(s) — x(s)|?ds — 0

to

@ Hence we can let n — oo in

o) = 5 2 / A (@) S5 / oen(@ Sl

to to
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Existence and uniqueness of solutions

Proof.
@ We obtain that

x(t) = x0+ / F(x(s). s)ds + / Cg(x(s).5)dB(s), omty<t<T

to to

as desired.

OJ

v

@ In the proof above we show that the Picard iterations x,(t) converge to the
unique solution x(t) of the equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t)
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