Existence and uniqueness of SDE solutions

Nuno Azevedo

CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt

October 7, 2010

Background and notation

- We will study the question of existence and uniqueness of solutions to a non-linear stochastic differential equation

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B(t), \quad t \in\left[t_{0}, T\right]
$$

with initial value $x\left(t_{0}\right)=x_{0}$, where $0 \leq t_{0}<T<\infty$.

- Some of the main (mathematical) questions regarding such equations:
- Is there a solution?
- If there is a solution, is it unique?
- What kind of properties do solutions have?
- How can solutions be obtained in practice?

Background and notation

- Let
- (Ω, \mathcal{F}, P) be a probability space.
- $B(t)=\left(B_{1}(t), \ldots, B_{m}(t)\right)^{T}$ be an m-dimensional Brownian motion.
- x_{0} be an $\mathcal{F}_{t_{0}}$-measurable (where $0 \leq t_{0}<T<\infty$) \mathbb{R}^{d}-valued random variable such that $E\left|x_{0}\right|^{2}<\infty$.
- $f: R^{d} \times\left[t_{0}, T\right] \rightarrow R^{d}$ and $g: R^{d} \times\left[t_{0}, T\right] \rightarrow R^{d \times m}$ be Borel measurable.
- Consider the d-dimensional stochastic differential equation of Itô type

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B(t), \quad t_{0} \leq t \leq T,
$$

with initial value $x\left(t_{0}\right)=x_{0}$.

- The initial value problem above is equivalent to the following stochastic integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(x(s), s) \mathrm{d} s+\int_{t_{0}}^{t} g(x(s), s) \mathrm{d} B(s), \quad t_{0} \leq t \leq T .
$$

Background and notation

Definition (SDE solution)

We say that the stochastic process $\{x(t)\}_{t_{0} \leq t \leq T}$ is a solution of the stochastic differential equation

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B(t)
$$

with initial condition $x\left(t_{0}\right)=x_{0}$ if the following conditions hold:
(i) $\{x(t)\}$ is continuous and \mathcal{F}_{t}-adapted;
(ii) $\{f(x(t), t)\} \in \mathcal{L}^{1}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d}\right)$ and $\{g(x(t), t)\} \in \mathcal{L}^{2}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d \times m}\right)$;
(iii) the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(x(s), s) \mathrm{d} s+\int_{t_{0}}^{t} g(x(s), s) \mathrm{d} B(s)
$$

holds for every $t \in\left[t_{0}, T\right]$ with probability 1 .

Background and notation

Definition (Solution uniqueness)

A solution $\{x(t)\}$ is said to be unique if any other solution $\{\bar{x}(t)\}$ is indistinguishable from $\{x(t)\}$, that is, almost all their sample paths agree

$$
P\left\{x(t)=\bar{x}(t) \text { for all } t_{0} \leq t \leq T\right\}=1 .
$$

Background and notation

Example

- Let us consider the the stochastic differential equation given by

$$
\mathrm{d} N_{t}=r N_{t} \mathrm{~d} t+\alpha N_{t} \mathrm{~d} B_{t} .
$$

- Equivalently, we have that

$$
\frac{\mathrm{d} N_{t}}{N_{t}}=r \mathrm{~d} t+\alpha \mathrm{d} B_{t}
$$

- Hence

$$
\int_{0}^{t} \frac{\mathrm{~d} N_{s}}{N_{s}}=r t+\alpha B_{t} \quad\left(B_{0}=0\right) .
$$

Background and notation

Example

- To evaluate the integral on the left hand side, we use the Itô formula for the function

$$
g(t, x)=\ln x, \quad x>0
$$

to obtain

$$
\begin{aligned}
\mathrm{d}\left(\ln N_{t}\right) & =\frac{1}{N_{t}} \cdot \mathrm{~d} N_{t}+\frac{1}{2}\left(-\frac{1}{N_{t}^{2}}\right)\left(\mathrm{d} N_{t}\right)^{2} \\
& =\frac{\mathrm{d} N_{t}}{N_{t}}-\frac{1}{2 N_{t}^{2}} \cdot \alpha^{2} N_{t}^{2} \mathrm{~d} t=\frac{\mathrm{d} N_{t}}{N_{t}}-\frac{1}{2} \alpha^{2} \mathrm{~d} t
\end{aligned}
$$

- Hence

$$
\frac{\mathrm{d} N_{t}}{N_{t}}=\mathrm{d}\left(\ln N_{t}\right)+\frac{1}{2} \alpha^{2} \mathrm{~d} t
$$

Background and notation

Example

- Therefore, from $\int_{0}^{t} \frac{\mathrm{~d} N_{s}}{N_{s}}=r t+\alpha B_{t}$ we conclude that

$$
\ln \frac{N_{t}}{N_{0}}=\left(r-\frac{1}{2} \alpha^{2}\right) t+\alpha B_{t}
$$

or

$$
N_{t}=N_{0} \exp \left(\left(r-\frac{1}{2} \alpha^{2}\right) t+\alpha B_{t}\right)
$$

- The solution N_{t} is a process of the form

$$
X_{t}=X_{0} \exp \left(\mu t+\alpha B_{t}\right), \quad \mu, \alpha \text { constants }
$$

We call such processes geometric Brownian motion.

Remark

- It seems reasonable that if B_{t} is independent of N_{0} we should have

$$
E\left[N_{t}\right]=E\left[N_{0}\right] e^{r t}
$$

- To see that this is indeed the case, we let

$$
Y_{t}=e^{\alpha B_{t}}
$$

- Apply Itô's formula to obtain

$$
\mathrm{d} Y_{t}=\alpha e^{\alpha B_{t}} \mathrm{~d} B_{t}+\frac{1}{2} \alpha^{2} e^{\alpha B_{t}} \mathrm{~d} t
$$

or

$$
Y_{t}=Y_{0}+\alpha \int_{0}^{t} e^{\alpha B_{s}} \mathrm{~d} B_{s}+\frac{1}{2} \alpha^{2} \int_{0}^{t} e^{\alpha B_{s}} \mathrm{~d} s
$$

Remark

- Since $E\left[\int_{0}^{t} e^{\alpha B_{s}} \mathrm{~d} B_{s}\right]=0$, we get

$$
E\left[Y_{t}\right]=E\left[Y_{0}\right]+\frac{1}{2} \alpha^{2} \int_{0}^{t} E\left[Y_{s}\right] \mathrm{d} s
$$

i.e.

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E\left[Y_{t}\right]=\frac{1}{2} \alpha^{2} E\left[Y_{t}\right], \quad E\left[Y_{0}\right]=1
$$

- Therefore, we get that

$$
E\left[Y_{t}\right]=e^{\frac{1}{2} \alpha^{2} t} .
$$

- We conclude that

$$
E\left[N_{t}\right]=E\left[N_{0}\right] e^{r t} .
$$

Background and notation

If we take $g(x, t) \equiv 0$, then the SDE above reduces to

$$
\dot{x}(t)=f(x(t), t), \quad t \in\left[t_{0}, T\right] .
$$

Note that the initial condition $x\left(t_{0}\right)=x_{0}$ may still be a random variable.

Example

Consider the following classical example

$$
\dot{x}=3 x^{2 / 3}, \quad t \in\left[t_{0}, T\right]
$$

with initial condition $x\left(t_{0}\right)=1_{A}$, where $A \in \mathcal{F}_{t_{0}}$. It is possible to check that for each $0<\alpha<T-t_{0}$, the stochastic process

$$
x(t)=x(t, \omega)= \begin{cases}\left(t-t_{0}+1\right)^{3} & \text { para } t_{0} \leq t \leq T, \omega \in A \\ 0 & \text { para } t_{0} \leq t \leq t_{0}+\alpha, \omega \notin A \\ \left(t-t_{0}-\alpha\right)^{3} & \text { para } t_{0}+\alpha<t \leq T, \omega \notin A\end{cases}
$$

is a solution of the equation above.
This initial value problem has an infinite number of solutions.

Background and notation

Example

Consider yet another simple equation

$$
\dot{x}=x^{2}, \quad t \in\left[t_{0}, T\right]
$$

with initial condition given by $x\left(t_{0}\right)=x_{0}$, a random variable which takes values larger than $1 /\left(T-t_{0}\right)$.
It is possible to check that the initial value problem above has a unique solution

$$
x(t)=\left(\frac{1}{x_{0}}-\left(t-t_{0}\right)\right)^{-1}
$$

for $t_{0} \leq t<t_{0}+1 / x_{0}<T$.
However, there is no solution for this initial value problem which is defined for all $t \in\left[t_{0}, T\right]$.

Existence and uniqueness of solutions

Theorem (Existence and uniqueness of solution)

Assume that there exist two positive constants \bar{K} and K such that the following two conditions hold:
(i) Lipschitz condition: for all $x, y \in \mathbb{R}^{d}$ and $t \in\left[t_{0}, T\right]$

$$
\max \left\{|f(x, t)-f(y, t)|^{2},|g(x, t)-g(y, t)|^{2}\right\} \leq \bar{K}|x-y|^{2}
$$

(ii) Linear growth condition: for all $(x, t) \in \mathbb{R}^{d} \times\left[t_{0}, T\right]$

$$
\max \left\{|f(x, t)|^{2},|g(x, t)|^{2}\right\} \leq K\left(1+|x|^{2}\right) .
$$

Let x_{0} be a random variable which is independent of the σ-algebra $\mathcal{F}_{\infty}^{(m)}$ generated by $B_{s}(\cdot), s \geq 0$ and such that $E\left|x_{0}\right|^{2}<\infty$.
Then there exists a unique t-continuous solution $X_{t}(\omega)$ of the initial value problem

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B(t), t_{0} \leq t \leq T, x\left(t_{0}\right)=x_{0}
$$

with the property that $X_{t}(\omega)$ is adapted to the filtration $\mathcal{F}_{t}^{x_{0}}$ generated by x_{0} and $B_{s}(\cdot)$, $s \leq t$. Furthermore, such solution belongs to $\mathcal{M}^{2}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d}\right)$.

Existence and uniqueness of solutions

- We start by proving some auxiliary lemmas to prepare for the proof of the theorem above.

Theorem

Let $p \geq 2$ and let $g \in \mathcal{M}^{2}\left([0, T] ; R^{d \times m}\right)$ be such that

$$
E\left[\int_{0}^{T}|g(s)|^{p} \mathrm{~d} s\right]<\infty
$$

Then

$$
E\left|\int_{0}^{T} g(s) \mathrm{d} B(s)\right|^{p} \leq\left(\frac{p(p-1)}{2}\right)^{\frac{p}{2}} T^{\frac{(p-2)}{2}} E\left[\int_{0}^{T}|g(s)|^{p} \mathrm{~d} s\right] .
$$

In particular, the equality holds for $p=2$.

Existence and uniqueness of solutions

Proof.

- For $0 \leq t \leq T$, set

$$
x(t)=\int_{0}^{t} g(s) \mathrm{d} B(s)
$$

- Using Itô's formula (and Itô's integral properties), one can obtain

$$
\begin{aligned}
E|x(t)|^{p} & =\frac{p}{2} E \int_{0}^{t}\left(|x(s)|^{p-2}|g(s)|^{2}+(p-2)|x(s)|^{p-4}\left|x^{T}(s) g(s)\right|^{2}\right) \mathrm{d} s \\
& \leq \frac{p(p-1)}{2} E \int_{0}^{t}|x(s)|^{p-2}|g(s)|^{2} \mathrm{~d} s .
\end{aligned}
$$

- Recall the Hölder's inequality, for $1 \leq p, q \leq \infty$ such that $\frac{1}{p}+\frac{1}{q}=1$, $X \in L^{p}, Y \in L^{q}$ we have

$$
E|X Y| \leq\left(E|X|^{p}\right)^{\frac{1}{p}}\left(E|Y|^{q}\right)^{\frac{1}{q}}
$$

Existence and uniqueness of solutions

Proof.

- Using the previous inequality one then sees that

$$
\begin{aligned}
E|x(t)|^{p} & \leq \frac{p(p-1)}{2}\left(E \int_{0}^{t}|x(s)|^{p} \mathrm{~d} s\right)^{\frac{p-2}{p}}\left(E \int_{0}^{t}|g(s)|^{p} \mathrm{~d} s\right)^{\frac{2}{p}} \\
& =\frac{p(p-1)}{2}\left(\int_{0}^{t} E|x(s)|^{p} \mathrm{~d} s\right)^{\frac{p-2}{p}}\left(E \int_{0}^{t}|g(s)|^{p} \mathrm{~d} s\right)^{\frac{2}{p}} .
\end{aligned}
$$

- Noting that $E|x(t)|^{p}$ is nondecreasing in t, we obtain

$$
E|x(t)|^{p} \leq \frac{p(p-1)}{2}\left[t E|x(t)|^{p}\right]^{\frac{p-2}{p}}\left(E \int_{0}^{t}|g(s)|^{p} \mathrm{~d} s\right)^{\frac{2}{p}} .
$$

- This last inequality yields

$$
E|x(t)|^{p} \leq\left(\frac{p(p-1)}{2}\right)^{\frac{p}{2}} t^{\frac{p-2}{2}} E \int_{0}^{t}|g(s)|^{p} \mathrm{~d} s
$$

concluding the proof.

Existence and uniqueness of solutions

Theorem

Under the assumptions of the previous theorem,

$$
E\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} g(s) \mathrm{d} B(s)\right|^{p}\right] \leq\left(\frac{p^{3}}{2(p-1)}\right)^{\frac{p}{2}} T^{\frac{p-2}{2}} E \int_{0}^{T}|g(s)|^{p} \mathrm{~d} s .
$$

Proof.

- Recall that the stochastic integral $\int_{0}^{t} g(s) \mathrm{d} B(s)$ is a martingale.
- By the Doob martingale inequality we have that

$$
E\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} g(s) \mathrm{d} B(s)\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} E\left|\int_{0}^{T} g(s) \mathrm{d} B(s)\right|^{p} .
$$

- Using the previous theorem, we then obtain the desired inequality.

Existence and uniqueness of solutions

Theorem (Gronwall's inequality)

Let $T>0$ and $c \geq 0$. Let $u(\cdot)$ be a Borel measurable bounded nonnegative function on $[0, T]$, and let $v(\cdot)$ be a nonnegative integrable function on $[0, T]$. If

$$
u(t) \leq c+\int_{0}^{t} v(s) u(s) \mathrm{d} s, \quad \text { for all } \quad 0 \leq t \leq T
$$

then

$$
u(t) \leq c \exp \left(\int_{0}^{t} v(s) \mathrm{d} s\right), \quad \text { for all } \quad 0 \leq t \leq T
$$

Proof.

- Without loss of generality we may assume that $c>0$.
- Set

$$
z(t)=c+\int_{0}^{t} v(s) u(s) \mathrm{d} s, \quad \text { for } \quad 0 \leq t \leq T .
$$

- Then $u(t) \leq z(t)$.

Existence and uniqueness of solutions

Proof.

- Clearly, we have that

$$
\log (z(t))=\log (c)+\int_{0}^{t} \frac{v(s) u(s)}{z(s)} \mathrm{d} s \leq \log (c)+\int_{0}^{t} v(s) \mathrm{d} s .
$$

- This imples

$$
z(t) \leq c \exp \left(\int_{0}^{t} v(s) \mathrm{d} s\right), \quad \text { for } \quad 0 \leq t \leq T .
$$

- The required inequality follows since $u(t) \leq z(t)$.

Existence and uniqueness of solutions

Lemma

Assume that the linear growth condition holds. If $x(t)$ is a solution of equation

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B(t),
$$

then

$$
E\left(\sup _{t_{0} \leq t \leq T}|x(t)|^{2}\right) \leq\left(1+3 E\left|x_{0}\right|^{2}\right) e^{3 K\left(T-t_{0}\right)\left(T-t_{0}+4\right)}
$$

In particular, $x(t)$ belongs to $\mathcal{M}^{2}\left(\left[t_{0}, T ; \mathbb{R}^{d}\right]\right)$.

Proof.

- For every integer $n \geq 1$, define the stopping time

$$
\tau_{n}=\min \left\{T, \inf \left\{t \in\left[t_{0}, T\right]:|x(t)| \geq n\right\}\right\} .
$$

- Set $x_{n}(t)=x\left(\min \left\{t, \tau_{n}\right\}\right)$ for $t \in\left[t_{0}, T\right]$.

Existence and uniqueness of solutions

Proof.

- Then $x_{n}(t)$ satisfies the equation

$$
x_{n}(t)=x_{0}+\int_{t_{0}}^{t} f\left(x_{n}(s), s\right) l_{\left[\left[t_{0}, \tau_{n}\right]\right]}(s) \mathrm{d} s+\int_{t_{0}}^{t} g\left(x_{n}(s), s\right) l_{\left[\left[t_{0}, \tau_{n}\right]\right]}(s) \mathrm{d} s .
$$

- Using the elementary inequality

$$
|a+b+c|^{2} \leq 3\left(|a|^{2}+|b|^{2}+|c|^{2}\right),
$$

the Hölder inequality and the linear growth condition, one can show that

$$
\left|x_{n}(t)\right|^{2} \leq 3\left|x_{0}\right|^{2}+3 K\left(t-t_{0}\right) \int_{t_{0}}^{t}\left(1+\left|x_{n}(s)\right|^{2}\right) \mathrm{d} s+3\left|\int_{t_{0}}^{t} g\left(x_{n}(s), s\right) r_{\left[\left[t_{0}, \tau_{n}\right]\right]}(s) \mathrm{d} s .\right|
$$

Existence and uniqueness of solutions

Proof.

- Hence, using again the linear growth condition and the previous theorem, we obtain that

$$
\begin{aligned}
E\left(\sup _{t_{0} \leq s \leq t}\left|x_{n}(s)\right|^{2}\right) & \leq 3 E\left|x_{0}\right|^{2}+3 K\left(T-t_{0}\right) \int_{t_{0}}^{t}\left(1+E\left|x_{n}(s)\right|^{2}\right) \mathrm{d} s \\
& +12 E \int_{t_{0}}^{t} \mid g\left(x_{n}(s),\left.s\right|^{2} I_{[}\left[t_{0}, \tau_{n}\right]\right](s) \mathrm{d} s \\
& \leq 3 E\left|x_{0}\right|^{2}+3 K\left(T-t_{0}+4\right) \int_{t_{0}}^{t}\left(1+E\left|x_{n}(s)\right|^{2}\right) \mathrm{d} s .
\end{aligned}
$$

- Consequently

$$
\begin{gathered}
1+E\left(\sup _{t_{0} \leq s \leq t}\left|x_{n}(s)\right|^{2}\right) \\
\left.\leq 1+3 E\left|x_{0}\right|^{2}+3 K\left(T-t_{0}+4\right) \int_{t_{0}}^{t}\left[1+E\left(\sup _{t_{0} \leq r \leq s}\left|x_{n}(r)\right|\right)^{2}\right)\right] \mathrm{d} s .
\end{gathered}
$$

Existence and uniqueness of solutions

Proof.

- Now, Gronwall inequality implies that

$$
1+E\left(\sup _{t_{0} \leq t \leq T}\left|x_{n}(t)\right|^{2}\right) \leq\left(1+3 E\left|x_{0}\right|^{2}\right) e^{3 K\left(T-t_{0}\right)\left(T-t_{0}+4\right)} .
$$

- Thus

$$
E\left(\sup _{t_{0} \leq t \leq \tau_{n}}\left|x_{n}(t)\right|^{2}\right) \leq\left(1+3 E\left|x_{0}\right|^{2}\right) e^{3 K\left(T-t_{0}\right)\left(T-t_{0}+4\right)}
$$

- The required inequality follows by letting $n \rightarrow \infty$.

Existence and uniqueness of solutions

Proof of theorem of existence and uniqueness of solutions.

Uniqueness

- Let $x(t)$ and $\bar{x}(t)$ be two solutions.
- By the previous lemma, both of them belong to $\mathcal{M}^{2}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d}\right)$.
- Note that

$$
x(t)-\bar{x}(t)=\int_{t_{0}}^{t} f(x(s), s)-f(\bar{x}(s), s) \mathrm{d} s+\int_{t_{0}}^{t} g(x(s), s)-g(\bar{x}(s), s) \mathrm{d} B(s) .
$$

- Using the Hölder inequality, the previous theorem and Lipschitz condition, one can show (in the same way as in the proof of the previous lemma) that

$$
E\left(\sup _{t_{0} \leq s \leq t}|x(s)-\bar{x}(s)|^{2}\right) \leq 2 \bar{K}(T+4) \int_{t_{0}}^{t} E\left(\sup _{t_{0} \leq r \leq s}|x(r)-\bar{x}(r)|^{2}\right) \mathrm{d} s
$$

Existence and uniqueness of solutions

Proof.

- The Gronwall inequality then yields that

$$
E\left(\sup _{t_{0} \leq t \leq T}|x(t)-\bar{x}(t)|^{2}\right)=0 .
$$

- Hence, $x(t)=\bar{x}(t)$ for all $t_{0} \leq t \leq T$ almost surely, concluding the proof of uniqueness of solutions.

Existence and uniqueness of solutions

Proof.

Existence

- Set $x_{0}(t) \equiv x_{0}$ and, for $n=1,2, \ldots$, define the Picard iterations

$$
x_{n}(t)=x_{0}+\int_{t_{0}}^{t} f\left(x_{n-1}(s), s\right) \mathrm{d} s+\int_{t_{0}}^{t} g\left(x_{n-1}(s), s\right) \mathrm{d} B(s)
$$

for $t \in\left[t_{0}, T\right]$.

$$
\text { Note that } x(\cdot) \in \mathcal{M}^{2}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d}\right) \text {. }
$$

- It is easy to see by induction that $x_{n}(\cdot) \in \mathcal{M}^{2}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d}\right)$, because we have that

$$
E\left|x_{n}(t)\right|^{2} \leq c_{1}+3 K(T+1) \int_{t_{0}}^{t} E\left|x_{n-1}(s)\right|^{2} \mathrm{~d} s
$$

where $c_{1}=3 E\left|x_{0}\right|^{2}+3 K T(T+1)$.

Existence and uniqueness of solutions

Proof.

- For any $k \geq 1$

$$
\begin{aligned}
\max _{1 \leq n \leq k} E\left|x_{n}(t)\right|^{2} & \leq c_{1}+3 K(T+1) \int_{t_{0}}^{t} \max _{1 \leq n \leq k} E\left|x_{n-1}(s)\right|^{2} \mathrm{~d} s \\
& \leq c_{1}+3 K(T+1) \int_{t_{0}}^{t}\left(E\left|x_{0}\right|^{2}+\max _{1 \leq n \leq k} E\left|x_{n}(s)\right|^{2}\right) \mathrm{d} s \\
& \leq c_{2}+3 K(T+1) \int_{t_{0}}^{t} \max _{1 \leq n \leq k} E\left|x_{n}(s)\right|^{2}
\end{aligned}
$$

where $c_{2}=c_{1}+3 K T(T+1) E\left|x_{0}\right|^{2}$.

- Gronwall inequality implies that

$$
\max _{1 \leq n \leq k} E\left|x_{n}(t)\right|^{2} \leq c_{2} e^{3 K T(T+1)}
$$

- Since k is arbitrary, we must have

$$
E\left|x_{n}(t)\right|^{2} \leq c_{2} e^{3 K T(T+1)} \quad \text { for all } t_{0} \leq t \leq T, n \geq 1
$$

Existence and uniqueness of solutions

Proof.

- Note that

$$
\left|x_{1}(t)-x_{0}(t)\right|^{2}=\left|x_{1}(t)-x_{0}\right|^{2} \leq 2\left|\int_{t_{0}}^{t} f\left(x_{0}, s\right) \mathrm{d} s\right|^{2}+2\left|\int_{t_{0}}^{t} g\left(x_{0}, s\right) \mathrm{d} B(s)\right|^{2} .
$$

- Taking the expectation and using the linear growth condition we get

$$
\begin{aligned}
& E\left|x_{1}(t)-x_{0}(t)\right|^{2} \leq 2 K\left(t-t_{0}\right)^{2}\left(1+E\left|x_{0}\right|^{2}\right)+2 K\left(t-t_{0}\right)\left(1+E\left|x_{0}\right|^{2}\right) \leq C, \\
& \text { where } C=2 K\left(T-t_{0}+1\right)\left(T-t_{0}\right)\left(1+E\left|x_{0}\right|^{2}\right)
\end{aligned}
$$

- We now claim that for $n \geq 0$,

$$
E\left|x_{n+1}(t)-x_{n}(t)\right|^{2} \leq \frac{C\left[M\left(t-t_{0}\right)\right]^{n}}{n!}, \quad \text { for } t_{0} \leq t \leq T
$$

where $M=2 \bar{K}\left(T-t_{0}+1\right)$.

Existence and uniqueness of solutions

Proof.

- By indution, we shall show that $E\left|x_{n+1}(t)-x_{n}(t)\right|^{2} \leq \frac{C\left[M\left(t-t_{0}\right)\right]^{n}}{n!}$ still holds for $n+1$.
- Note that

$$
\begin{aligned}
\left|x_{n+2}(t)-x_{n+1}(t)\right|^{2} & \leq 2\left|\int_{t_{0}}^{t}\left[f\left(x_{n+1}(s), s\right)-f\left(x_{n}(s), s\right)\right] \mathrm{d} s\right|^{2} \\
& +2\left|\int_{t_{0}}^{t}\left[g\left(x_{n+1}(s), s\right)-g\left(x_{n}(s), s\right)\right] \mathrm{d} B(s)\right|^{2} .
\end{aligned}
$$

- Taking the expectation and using the Lipschitz condition we derive that

$$
\begin{aligned}
E\left|x_{n+2}(t)-x_{n+1}(t)\right|^{2} & \leq 2 \bar{K}\left(T-t_{0}+1\right) E \int_{t_{0}}^{t}\left|x_{n+1}(s)-x_{n}(s)\right|^{2} \mathrm{~d} s \\
& \leq M \int_{t_{0}}^{t} E\left|x_{n+1}(s)-x_{n}(s)\right|^{2} \mathrm{~d} s \\
& \leq M \int_{t_{0}}^{t} \frac{C\left[M\left(s-t_{0}\right)\right]^{n}}{n!} \mathrm{d} s=\frac{C\left[M\left(t-t_{0}\right)\right]^{n+1}}{(n+1)!} .
\end{aligned}
$$

Existence and uniqueness of solutions

Proof.

- Furthermore, replacing n with $n-1$ we see that

$$
\begin{aligned}
& \sup _{t_{0} \leq t \leq T}\left|x_{n+1}(t)-x_{n}(t)\right|^{2} \leq 2 \bar{K}\left(T-t_{0}\right) \int_{t_{0}}^{T}\left|x_{n}(s)-x_{n-1}(s)\right|^{2} \mathrm{~d} s \\
& \quad+2 \sup _{t_{0} \leq t \leq T}\left|\int_{t_{0}}^{T}\left[g\left(x_{n}(s), s\right)-g\left(x_{n-1}(s), s\right)\right] \mathrm{d} B(s)\right|^{2}
\end{aligned}
$$

- Taking the expectation and using the previous theorem, we find that

$$
\begin{aligned}
E\left(\sup _{t_{0} \leq t \leq T}\left|x_{n+1}(t)-x_{n}(t)\right|^{2}\right) & \leq 2 \bar{K}\left(T-t_{0}+4\right) \int_{t_{0}}^{T} E\left|x_{n}(s)-x_{n-1}(s)\right|^{2} \mathrm{~d} s \\
& \leq 4 M \int_{t_{0}}^{T} \frac{C\left[M\left(s-t_{0}\right)\right]^{n-1}}{(n-1)!} \mathrm{d} s \\
& =\frac{4 C\left[M\left(T-t_{0}\right)\right]^{n}}{n!} .
\end{aligned}
$$

Existence and uniqueness of solutions

Proof.

- Hence

$$
P\left\{\sup _{t_{0} \leq t \leq T}\left|x_{n+1}(t)-x_{n}(t)\right|>\frac{1}{2^{n}}\right\} \leq \frac{4 C\left[4 M\left(T-t_{0}\right)\right]^{n}}{n!}
$$

Since $\sum_{n=0}^{\infty} \frac{4 C\left[4 M\left(T-t_{0}\right)\right]^{n}}{n!}<\infty$, the Borel-Cantelli lemma yields that for almost all $\omega \in \Omega$ there exists a positive integer $n_{0}=n_{0}(\omega)$ such that

$$
\sup _{t_{0} \leq t \leq T}\left|x_{n+1}(t)-x_{n}(t)\right| \leq \frac{1}{2^{n}}, \quad n \geq n_{0} .
$$

- It follows that, with probability 1 , the partial sums

$$
x_{0}(t)+\sum_{i=0}^{n-1}\left[x_{i+1}(t)-x_{i}(t)\right]=x_{n}(t)
$$

are convergent uniformly in $t \in[0, T]$.

Existence and uniqueness of solutions

Proof.

- Denote the limit by $x(t)$.

Clearly, $x(t)$ is continuous and \mathcal{F}_{t}-adapted.
For every $t,\left\{x_{n}(t)_{n \geq 1}\right\}$ is a Cauchy sequence in L^{2}.
Hence $x_{n}(t) \rightarrow x(t)$ in t^{2}.

- Letting $n \rightarrow \infty$ in

$$
E\left|x_{n}(t)\right|^{2} \leq c_{2} e^{3 K T(T+1)}
$$

gives

$$
E|x(t)|^{2} \leq c_{2} e^{3 K T(T+1)}, \quad \text { for all } t_{0} \leq t \leq T
$$

- Therefore $x(\cdot) \in \mathcal{M}^{2}\left(\left[t_{0}, T\right] ; \mathbb{R}^{d}\right)$.
- It remains to show that $x(t)$ satisfies equation

$$
x(t)=\int_{t_{0}}^{t} f(x(s), s) \mathrm{d} s+\int_{t_{0}}^{t} g(x(s), s) \mathrm{d} B(s)
$$

Existence and uniqueness of solutions

Proof.

- Note that

$$
\begin{aligned}
& E\left|\int_{t_{0}}^{t} f\left(x_{n}(s), s\right) \mathrm{d} s-\int_{t_{0}}^{t} f(x(s), s) \mathrm{d} s\right| \\
& +E\left|\int_{t_{0}}^{t} g\left(x_{n}(s), s\right) \mathrm{d} B(s)-\int_{t_{0}}^{t} g(x(s), s) \mathrm{d} B(s)\right|^{2} \\
& \leq \bar{K}\left(T-t_{0}+1\right) \int_{t_{0}}^{T} E\left|x_{n}(s)-x(s)\right|^{2} \mathrm{~d} s \rightarrow 0
\end{aligned}
$$

- Hence we can let $n \rightarrow \infty$ in

$$
x_{n}(t)=x_{0}+\int_{t_{0}}^{t} f\left(x_{n-1}(s), s\right) \mathrm{d} s+\int_{t_{0}}^{t} g\left(x_{n-1}(s), s\right) \mathrm{d} B(s)
$$

Existence and uniqueness of solutions

Proof.

- We obtain that

$$
x(t)=x_{0}+\int_{t_{0}}^{t} f(x(s), s) \mathrm{d} s+\int_{t_{0}}^{t} g(x(s), s) \mathrm{d} B(s), \quad \text { on } t_{0} \leq t \leq T
$$

as desired.

- In the proof above we show that the Picard iterations $x_{n}(t)$ converge to the unique solution $x(t)$ of the equation

$$
\mathrm{d} x(t)=f(x(t), t) \mathrm{d} t+g(x(t), t) \mathrm{d} B(t)
$$

