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Background and notation

We will study the question of existence and uniqueness of solutions to a
non-linear stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), t ∈ [t0,T ]

with initial value x(t0) = x0, where 0 ≤ t0 < T < ∞.

Some of the main (mathematical) questions regarding such equations:
◮ Is there a solution?
◮ If there is a solution, is it unique?
◮ What kind of properties do solutions have?
◮ How can solutions be obtained in practice?
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Background and notation

Let
◮ (Ω,F ,P) be a probability space.
◮ B(t) = (B1(t), . . . ,Bm(t))T be an m-dimensional Brownian motion.
◮ x0 be an Ft0 -measurable (where 0 ≤ t0 < T < ∞) R

d -valued random variable
such that E |x0|

2
< ∞.

◮ f : Rd × [t0,T ] → Rd and g : Rd × [t0,T ] → Rd×m be Borel measurable.

Consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), t0 ≤ t ≤ T ,

with initial value x(t0) = x0.

The initial value problem above is equivalent to the following stochastic
integral equation

x(t) = x0 +

∫ t

t0

f (x(s), s)ds +

∫ t

t0

g(x(s), s)dB(s), t0 ≤ t ≤ T .
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Background and notation

Definition (SDE solution)

We say that the stochastic process {x(t)}t0≤t≤T is a solution of the stochastic
differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t)

with initial condition x(t0) = x0 if the following conditions hold:

(i) {x(t)} is continuous and Ft-adapted;

(ii) {f (x(t), t)} ∈ L1([t0,T ];Rd ) and {g(x(t), t)} ∈ L2([t0,T ];Rd×m);

(iii) the integral equation

x(t) = x0 +

∫ t

t0

f (x(s), s)ds +

∫ t

t0

g(x(s), s)dB(s)

holds for every t ∈ [t0,T ] with probability 1.
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Background and notation

Definition (Solution uniqueness)

A solution {x(t)} is said to be unique if any other solution {x(t)} is
indistinguishable from {x(t)}, that is, almost all their sample paths agree

P{x(t) = x(t) for all t0 ≤ t ≤ T} = 1 .
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Background and notation

Example

Let us consider the the stochastic differential equation given by

dNt = rNtdt + αNtdBt .

Equivalently, we have that

dNt

Nt

= rdt + αdBt .

Hence
∫ t

0

dNs

Ns

= rt + αBt (B0 = 0) .
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Background and notation

Example

To evaluate the integral on the left hand side, we use the Itô formula for the
function

g(t, x) = ln x , x > 0

to obtain

d(lnNt) =
1

Nt

· dNt +
1

2

(

−
1

N2
t

)

(dNt)
2

=
dNt

Nt

−
1

2N2
t

· α2N2
t dt =

dNt

Nt

−
1

2
α2

dt .

Hence
dNt

Nt

= d(lnNt) +
1

2
α2

dt .
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Background and notation

Example

Therefore, from
∫ t

0
dNs

Ns
= rt + αBt we conclude that

ln
Nt

N0
= (r −

1

2
α2)t + αBt

or

Nt = N0 exp((r −
1

2
α2)t + αBt).

The solution Nt is a process of the form

Xt = X0 exp(µt + αBt), µ, α constants

◮ We call such processes geometric Brownian motion.
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Remark

It seems reasonable that if Bt is independent of N0 we should have

E [Nt ] = E [N0]e
rt .

To see that this is indeed the case, we let

Yt = eαBt .

Apply Itô’s formula to obtain

dYt = αeαBtdBt +
1

2
α2eαBtdt

or

Yt = Y0 + α

∫ t

0

eαBsdBs +
1

2
α2

∫ t

0

eαBsds .

Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar October 7, 2010 9 / 34



Remark

Since E [
∫ t

0
eαBsdBs ] = 0, we get

E [Yt ] = E [Y0] +
1

2
α2

∫ t

0

E [Ys ]ds

i.e.
d

dt
E [Yt ] =

1

2
α2E [Yt ], E [Y0] = 1 .

Therefore, we get that

E [Yt ] = e
1
2α

2t .

We conclude that
E [Nt ] = E [N0]e

rt .

Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar October 7, 2010 10 / 34



Background and notation
If we take g(x , t) ≡ 0, then the SDE above reduces to

ẋ(t) = f (x(t), t), t ∈ [t0,T ] .

Note that the initial condition x(t0) = x0 may still be a random variable.

Example

Consider the following classical example

ẋ = 3x2/3, t ∈ [t0,T ]

with initial condition x(t0) = 1A, where A ∈ Ft0 . It is possible to check that for
each 0 < α < T − t0, the stochastic process

x(t) = x(t, ω) =











(t − t0 + 1)3 para t0 ≤ t ≤ T , ω ∈ A

0 para t0 ≤ t ≤ t0 + α, ω /∈ A

(t − t0 − α)3 para t0 + α < t ≤ T , ω /∈ A

is a solution of the equation above.
This initial value problem has an infinite number of solutions.
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Background and notation

Example

Consider yet another simple equation

ẋ = x2, t ∈ [t0,T ]

with initial condition given by x(t0) = x0, a random variable which takes values
larger than 1/(T − t0).
It is possible to check that the initial value problem above has a unique solution

x(t) =
( 1

x0
− (t − t0)

)−1

for t0 ≤ t < t0 + 1/x0 < T .
However, there is no solution for this initial value problem which is defined for all
t ∈ [t0,T ].

Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar October 7, 2010 12 / 34



Existence and uniqueness of solutions

Theorem (Existence and uniqueness of solution)

Assume that there exist two positive constants K and K such that the following two

conditions hold:

(i) Lipschitz condition: for all x , y ∈ R
d and t ∈ [t0,T ]

max{|f (x , t) − f (y , t)|2, |g(x , t) − g(y , t)|2} ≤ K |x − y |2 ;

(ii) Linear growth condition: for all (x , t) ∈ R
d × [t0,T ]

max{|f (x , t)|2, |g(x , t)|2} ≤ K (1 + |x |2) .

Let x0 be a random variable which is independent of the σ-algebra F
(m)
∞ generated by

Bs(·), s ≥ 0 and such that E |x0|
2
< ∞.

Then there exists a unique t-continuous solution Xt(ω) of the initial value problem

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) , t0 ≤ t ≤ T , x(t0) = x0

with the property that Xt(ω) is adapted to the filtration F x0
t generated by x0 and Bs(·),

s ≤ t. Furthermore, such solution belongs to M2([t0,T ];Rd).

Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar October 7, 2010 13 / 34



Existence and uniqueness of solutions

We start by proving some auxiliary lemmas to prepare for the proof of the
theorem above.

Theorem

Let p ≥ 2 and let g ∈ M2([0,T ];Rd×m) be such that

E

[

∫ T

0

|g(s)|pds

]

< ∞ .

Then

E

∣

∣

∣

∫ T

0

g(s)dB(s)
∣

∣

∣

p

≤
(p(p − 1)

2

)

p

2

T
(p−2)

2 E

[

∫ T

0

|g(s)|pds

]

.

In particular, the equality holds for p = 2.
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Existence and uniqueness of solutions

Proof.
For 0 ≤ t ≤ T , set

x(t) =

∫ t

0

g(s)dB(s) .

Using Itô’s formula (and Itô’s integral properties), one can obtain

E |x(t)|p =
p

2
E

∫ t

0

(

|x(s)|p−2|g(s)|2 + (p − 2)|x(s)|p−4|xT (s)g(s)|2
)

ds

≤
p(p − 1)

2
E

∫ t

0

|x(s)|p−2|g(s)|2ds.

Recall the Hölder’s inequality, for 1 ≤ p, q ≤ ∞ such that 1
p
+ 1

q
= 1,

X ∈ Lp, Y ∈ Lq we have

E |XY | ≤ (E |X |p)
1
p (E |Y |q)

1
q

Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar October 7, 2010 15 / 34



Existence and uniqueness of solutions

Proof.
Using the previous inequality one then sees that

E |x(t)|p ≤
p(p − 1)

2

(

E

∫ t

0

|x(s)|pds
)

p−2
p
(

E

∫ t

0

|g(s)|pds
)

2
p

=
p(p − 1)

2

(

∫ t

0

E |x(s)|pds
)

p−2
p
(

E

∫ t

0

|g(s)|pds
)

2
p

.

Noting that E |x(t)|p is nondecreasing in t, we obtain

E |x(t)|p ≤
p(p − 1)

2

[

tE |x(t)|p
]

p−2
p
(

E

∫ t

0

|g(s)|pds
)

2
p

.

This last inequality yields

E |x(t)|p ≤
(p(p − 1)

2

)

p

2

t
p−2
2 E

∫ t

0

|g(s)|pds ,

concluding the proof.
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Existence and uniqueness of solutions

Theorem
Under the assumptions of the previous theorem,

E
[

sup
0≤t≤T

∣

∣

∣

∫ t

0

g(s)dB(s)
∣

∣

∣

p]

≤
( p3

2(p − 1)

)

p

2

T
p−2
2 E

∫ T

0

|g(s)|pds.

Proof.

Recall that the stochastic integral
∫ t

0
g(s)dB(s) is a martingale.

By the Doob martingale inequality we have that

E
[

sup
0≤t≤T

∣

∣

∣

∫ t

0

g(s)dB(s)
∣

∣

∣

p]

≤

(

p

p − 1

)p

E

∣

∣

∣

∣

∣

∫ T

0

g(s)dB(s)

∣

∣

∣

∣

∣

p

.

Using the previous theorem, we then obtain the desired inequality.
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Existence and uniqueness of solutions

Theorem (Gronwall’s inequality)

Let T > 0 and c ≥ 0. Let u(·) be a Borel measurable bounded nonnegative

function on [0,T ], and let v(·) be a nonnegative integrable function on [0,T ]. If

u(t) ≤ c +

∫ t

0

v(s)u(s)ds, for all 0 ≤ t ≤ T ,

then

u(t) ≤ c exp(

∫ t

0

v(s)ds), for all 0 ≤ t ≤ T .

Proof.
Without loss of generality we may assume that c > 0.

Set

z(t) = c +

∫ t

0

v(s)u(s)ds, for 0 ≤ t ≤ T .

Then u(t) ≤ z(t).
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Existence and uniqueness of solutions

Proof.
Clearly, we have that

log(z(t)) = log(c) +

∫ t

0

v(s)u(s)

z(s)
ds ≤ log(c) +

∫ t

0

v(s)ds .

This imples

z(t) ≤ c exp(

∫ t

0

v(s)ds), for 0 ≤ t ≤ T .

The required inequality follows since u(t) ≤ z(t).
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Existence and uniqueness of solutions

Lemma

Assume that the linear growth condition holds. If x(t) is a solution of equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t),

then

E
(

sup
t0≤t≤T

|x(t)|2
)

≤ (1 + 3E |x0|
2)e3K(T−t0)(T−t0+4).

In particular, x(t) belongs to M2([t0,T ;Rd ]).

Proof.
For every integer n ≥ 1, define the stopping time

τn = min{T , inf{t ∈ [t0,T ] : |x(t)| ≥ n}}.

Set xn(t) = x(min{t, τn}) for t ∈ [t0,T ].
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Existence and uniqueness of solutions

Proof.

Then xn(t) satisfies the equation

xn(t) = x0 +

∫ t

t0

f (xn(s), s)I[[t0,τn]](s)ds +

∫ t

t0

g(xn(s), s)I[[t0,τn]](s)ds.

Using the elementary inequality

|a+ b + c |2 ≤ 3(|a|2 + |b|2 + |c |2),

the Hölder inequality and the linear growth condition, one can show that

|xn(t)|
2 ≤ 3|x0|

2+3K (t−t0)

∫ t

t0

(1+|xn(s)|
2)ds+3

∣

∣

∣

∫ t

t0

g(xn(s), s)I[[t0,τn]](s)ds.
∣

∣

∣

2
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Existence and uniqueness of solutions

Proof.
Hence, using again the linear growth condition and the previous theorem, we
obtain that

E
(

sup
t0≤s≤t

|xn(s)|
2
)

≤ 3E |x0|
2 + 3K (T − t0)

∫ t

t0

(1 + E |xn(s)|
2)ds

+ 12E

∫ t

t0

|g(xn(s), s|
2I [[t0, τn]](s)ds

≤ 3E |x0|
2 + 3K (T − t0 + 4)

∫ t

t0

(1 + E |xn(s)|
2)ds.

Consequently

1 + E
(

sup
t0≤s≤t

|xn(s)|
2
)

≤ 1 + 3E |x0|
2 + 3K (T − t0 + 4)

∫ t

t0

[

1 + E ( sup
t0≤r≤s

|xn(r)|)
2)
]

ds.
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Existence and uniqueness of solutions

Proof.
Now, Gronwall inequality implies that

1 + E
(

sup
t0≤t≤T

|xn(t)|
2
)

≤ (1 + 3E |x0|
2)e3K(T−t0)(T−t0+4).

Thus
E
(

sup
t0≤t≤τn

|xn(t)|
2
)

≤ (1 + 3E |x0|
2)e3K(T−t0)(T−t0+4)

The required inequality follows by letting n → ∞.
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Existence and uniqueness of solutions

Proof of theorem of existence and uniqueness of solutions.

Uniqueness

Let x(t) and x(t) be two solutions.

By the previous lemma, both of them belong to M2([t0,T ];Rd ).

Note that

x(t)− x(t) =

∫ t

t0

f (x(s), s)− f (x(s), s)ds +

∫ t

t0

g(x(s), s)− g(x(s), s)dB(s).

Using the Hölder inequality, the previous theorem and Lipschitz condition,
one can show (in the same way as in the proof of the previous lemma) that

E
(

sup
t0≤s≤t

|x(s)− x(s)|2
)

≤ 2K (T + 4)

∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− x(r)|2
)

ds.
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Existence and uniqueness of solutions

Proof.
The Gronwall inequality then yields that

E
(

sup
t0≤t≤T

|x(t)− x(t)|2
)

= 0.

Hence, x(t) = x(t) for all t0 ≤ t ≤ T almost surely, concluding the proof of
uniqueness of solutions.

.
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Existence and uniqueness of solutions

Proof.
Existence

Set x0(t) ≡ x0 and, for n = 1, 2, . . . , define the Picard iterations

xn(t) = x0 +

∫ t

t0

f (xn−1(s), s)ds +

∫ t

t0

g(xn−1(s), s)dB(s)

for t ∈ [t0,T ].
◮ Note that x(·) ∈ M2([t0,T ];Rd).

It is easy to see by induction that xn(·) ∈ M2([t0,T ];Rd ), because we have
that

E |xn(t)|
2 ≤ c1 + 3K (T + 1)

∫ t

t0

E |xn−1(s)|
2
ds

where c1 = 3E |x0|
2 + 3KT (T + 1).
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Existence and uniqueness of solutions

Proof.
For any k ≥ 1

max
1≤n≤k

E |xn(t)|
2 ≤ c1 + 3K (T + 1)

∫ t

t0

max
1≤n≤k

E |xn−1(s)|
2
ds

≤ c1 + 3K (T + 1)

∫ t

t0

(

E |x0|
2 + max

1≤n≤k
E |xn(s)|

2
)

ds

≤ c2 + 3K (T + 1)

∫ t

t0

max
1≤n≤k

E |xn(s)|
2,

where c2 = c1 + 3KT (T + 1)E |x0|
2.

Gronwall inequality implies that

max
1≤n≤k

E |xn(t)|
2 ≤ c2e

3KT (T+1).

Since k is arbitrary, we must have

E |xn(t)|
2 ≤ c2e

3KT (T+1)
for all t0 ≤ t ≤ T , n ≥ 1.
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Existence and uniqueness of solutions

Proof.
Note that

|x1(t)− x0(t)|
2 = |x1(t)− x0|

2 ≤ 2
∣

∣

∣

∫ t

t0

f (x0, s)ds
∣

∣

∣

2

+ 2
∣

∣

∣

∫ t

t0

g(x0, s)dB(s)
∣

∣

∣

2

.

Taking the expectation and using the linear growth condition we get

E |x1(t)− x0(t)|
2 ≤ 2K (t − t0)

2(1 + E |x0|
2) + 2K (t − t0)(1 + E |x0|

2) ≤ C ,

where C = 2K (T − t0 + 1)(T − t0)(1 + E |x0|
2).

We now claim that for n ≥ 0,

E |xn+1(t)− xn(t)|
2 ≤

C [M(t − t0)]
n

n!
, for t0 ≤ t ≤ T ,

where M = 2K (T − t0 + 1).
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Existence and uniqueness of solutions

Proof.

By indution, we shall show that E |xn+1(t)− xn(t)|
2 ≤ C [M(t−t0)]

n

n! still holds
for n + 1.

Note that

|xn+2(t)− xn+1(t)|
2 ≤ 2

∣

∣

∣

∫ t

t0

[f (xn+1(s), s)− f (xn(s), s)]ds
∣

∣

∣

2

+ 2
∣

∣

∣

∫ t

t0

[g(xn+1(s), s)− g(xn(s), s)]dB(s)
∣

∣

∣

2

.

Taking the expectation and using the Lipschitz condition we derive that

E |xn+2(t)− xn+1(t)|
2 ≤ 2K (T − t0 + 1)E

∫ t

t0

|xn+1(s)− xn(s)|
2
ds

≤ M

∫ t

t0

E |xn+1(s)− xn(s)|
2
ds

≤ M

∫ t

t0

C [M(s − t0)]
n

n!
ds =

C [M(t − t0)]
n+1

(n + 1)!
.
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Existence and uniqueness of solutions

Proof.
Furthermore, replacing n with n − 1 we see that

sup
t0≤t≤T

|xn+1(t)− xn(t)|
2 ≤ 2K (T − t0)

∫ T

t0

|xn(s)− xn−1(s)|
2
ds

+2 sup
t0≤t≤T

∣

∣

∣

∫ T

t0

[g(xn(s), s)− g(xn−1(s), s)]dB(s)
∣

∣

∣

2

.

Taking the expectation and using the previous theorem, we find that

E
(

sup
t0≤t≤T

|xn+1(t)− xn(t)|
2
)

≤ 2K (T − t0 + 4)

∫ T

t0

E |xn(s)− xn−1(s)|
2
ds

≤ 4M

∫ T

t0

C [M(s − t0)]
n−1

(n − 1)!
ds

=
4C [M(T − t0)]

n

n!
.
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Existence and uniqueness of solutions

Proof.
Hence

P
{

sup
t0≤t≤T

|xn+1(t)− xn(t)| >
1

2n

}

≤
4C [4M(T − t0)]

n

n!
.

◮ Since
∑∞

n=0
4C [4M(T−t0)]

n

n!
< ∞, the Borel-Cantelli lemma yields that for almost

all ω ∈ Ω there exists a positive integer n0 = n0(ω) such that

sup
t0≤t≤T

|xn+1(t) − xn(t)| ≤
1

2n
, n ≥ n0.

It follows that, with probability 1, the partial sums

x0(t) +

n−1
∑

i=0

[xi+1(t)− xi (t)] = xn(t)

are convergent uniformly in t ∈ [0,T ].

Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar October 7, 2010 31 / 34



Existence and uniqueness of solutions

Proof.

Denote the limit by x(t).
◮ Clearly, x(t) is continuous and Ft-adapted.
◮ For every t, {xn(t)n≥1} is a Cauchy sequence in L2.
◮ Hence xn(t) → x(t) in  L2.

Letting n → ∞ in
E |xn(t)|

2 ≤ c2e
3KT (T+1)

gives
E |x(t)|2 ≤ c2e

3KT (T+1), for all t0 ≤ t ≤ T .

Therefore x(·) ∈ M2([t0,T ];Rd ).

It remains to show that x(t) satisfies equation

x(t) =

∫ t

t0

f (x(s), s)ds +

∫ t

t0

g(x(s), s)dB(s).
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Existence and uniqueness of solutions

Proof.
Note that

E

∣

∣

∣

∫ t

t0

f (xn(s), s)ds −

∫ t

t0

f (x(s), s)ds
∣

∣

∣

+ E

∣

∣

∣

∫ t

t0

g(xn(s), s)dB(s)−

∫ t

t0

g(x(s), s)dB(s)
∣

∣

∣

2

≤ K (T − t0 + 1)

∫ T

t0

E |xn(s)− x(s)|2ds → 0

Hence we can let n → ∞ in

xn(t) = x0 +

∫ t

t0

f (xn−1(s), s)ds +

∫ t

t0

g(xn−1(s), s)dB(s)
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Existence and uniqueness of solutions

Proof.
We obtain that

x(t) = x0 +

∫ t

t0

f (x(s), s)ds +

∫ t

t0

g(x(s), s)dB(s), on t0 ≤ t ≤ T

as desired.

In the proof above we show that the Picard iterations xn(t) converge to the
unique solution x(t) of the equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t)
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