# An Overview of the Martingale Representation Theorem 

Nuno Azevedo<br>CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt

September 30, 2010

## Background and notation

## Definition

Denote by $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ the filtration generated by the one-dimensional Brownian motion $B_{t}$ and by $\mathcal{B}$ the Borel $\sigma$-algebra on $[0, \infty)$.
Let $\mathcal{V}=\mathcal{V}(S, T)$ be the class of functions $f:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ such that
(i) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$-measurable.
(ii) $f(t, \omega)$ is $\mathcal{F}_{t}$-adapted.
(iii) $E\left[\int_{S}^{T}(f(t, \omega))^{2} \mathrm{~d} t\right]<\infty$.

## Background and notation

## Definition (The Itô integral)

Let $f \in \mathcal{V}(S, T)$. Then the Itô integral of $f$ (from $S$ to $T$ ) is defined by

$$
\begin{equation*}
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)=\lim _{n \rightarrow \infty} \int_{S}^{T} \phi_{n}(t, \omega) \mathrm{d} B_{t}(\omega) \quad \text { limit in } L^{2}(P), \tag{1}
\end{equation*}
$$

where $\left\{\phi_{n}\right\}$ is a sequence of elementary functions such that

$$
\begin{equation*}
E\left[\int_{S}^{T}\left(f(t, \omega)-\phi_{n}(t, \omega)\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

where the limit in (1) exists and does not depend on the choice of $\left\{\phi_{n}\right\}$, as long as (2) holds.

## Background and notation

Properties of the Itô integral:

- Itô isometry:

$$
E\left[\left(\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)\right)^{2}\right]=E\left[\int_{S}^{T}(f(t, \omega))^{2} \mathrm{~d} t\right] \quad \text { for all } f \in \mathcal{V}(S, T)
$$

- Linearity
- $E\left[\int_{S}^{T} f \mathrm{~d} B_{t}\right]=0$
- $\int_{S}^{T} f \mathrm{~d} B_{t}$ is $\mathcal{F}_{T}$-measurable
- Existence of a continuous version
- Martingale property


## Definition (Martingale)

Let $(\Omega, \mathcal{F}, P)$ be a probability space and $X=\left\{X_{t}: t \geq 0\right\}$ a stochastic process on it.
We say that $X_{t}$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ if
(i) $X$ is adapted to $\mathcal{F}_{t}$.
(ii) $E\left[\left|X_{t}\right|\right]<\infty$ for all $t$.
(iii) $E\left[X_{s} \mid \mathcal{F}_{t}\right]=X_{t}$ for all $s \geq t$.

## Background and notation

## Theorem (Itô formula)

Let $X_{t}$ be an Itô process given by

$$
\mathrm{d} X_{t}=u \mathrm{~d} t+v \mathrm{~d} B_{t}
$$

and let $g(t, x) \in C^{2}([0, \infty) \times \mathbb{R})$. Then

$$
Y_{t}=g\left(t, X_{t}\right)
$$

is again an Itô process, and

$$
\mathrm{d} Y_{t}=\frac{\partial g}{\partial t}\left(t, X_{t}\right) \mathrm{d} t+\frac{\partial g}{\partial x}\left(t, X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right)\left(\mathrm{d} X_{t}\right)^{2}
$$

where $\left(\mathrm{d} X_{t}\right)^{2}=\left(\mathrm{d} X_{t}\right) \cdot\left(\mathrm{d} X_{t}\right)$ is computed according to the "multiplication table"

$$
\mathrm{d} t \cdot \mathrm{~d} t=\mathrm{d} t \cdot \mathrm{~d} B_{t}=\mathrm{d} B_{t} \cdot \mathrm{~d} t=0, \quad \mathrm{~d} B_{t} \cdot \mathrm{~d} B_{t}=\mathrm{d} t
$$

## Martingale Representation Theorem

- Let $B(t)=\left(B_{1}(t), \ldots, B_{n}(t)\right)$ be a $n$-dimensional Brownian motion.
- We know that if $v \in \mathcal{V}^{n}$ then the Itô integral

$$
X_{t}=X_{0}+\int_{0}^{t} v(s, w) d B(s) ; \quad t \geq 0
$$

is always a martingale w.r.t. filtration $\mathcal{F}_{t}^{(n)}$.

- In this talk we will prove that the converse is also true:
- any $\mathcal{F}_{t}^{(n)}$-martingale (w.r.t. P) can be represented as an Itô integral.
- this result is know as martingale representation theorem.


## Martingale Representation Theorem

Theorem (The martingale representation theorem)
Let $B(t)=\left(B_{1}(t), \ldots, B_{n}(t)\right)$ be $n$-dimensional. Suposse $M_{t}$ is an $\mathcal{F}_{t}^{(n)}$-martingale (w.r.t. $P$ ) and that $M_{t} \in L^{2}(P)$ for all $t \geq 0$. Then there exists a unique stochastic process $g(s, \omega)$ such that $g \in \mathcal{V}^{(n)}(0, t)$ for all $t \geq 0$ and

$$
M_{t}(\omega)=E\left[M_{0}\right]+\int_{0}^{t} g(s, \omega) \mathrm{d} B(s) \quad \text { a.s., for all } t \geq 0
$$

- The key result for the proof of the martingale representation theorem is the Itô representation theorem


## Martingale Representation Theorem

Theorem (The Itô representation theorem)
Let $F \in L^{2}\left(\mathcal{F}_{T}^{(n)}, P\right)$. Then there exists a unique stochastic process $f(t, \omega) \in \mathcal{V}^{n}(0, T)$ such that

$$
F(\omega)=E[F]+\int_{0}^{T} f(t, \omega) \mathrm{d} B(t) .
$$

- For the proof of the Itô representation theorem we need to prove some auxiliary lemmas.


## Martingale Representation Theorem

## Lemma (Doob-Dinkyn Lemma)

Let $(\Omega, \Sigma)$ and $(S, \mathcal{A})$ be measurable spaces and $f: \Omega \rightarrow S$ be measurable, i.e., $f^{-1}(\mathcal{A}) \subset \Sigma$. Then a function $g: \Omega \rightarrow \mathbb{R}$ is measurable relative to the $\sigma$-algebra $f^{-1}(\mathcal{A})$ [i.e., $\left.g^{-1}(\mathcal{B}) \subset f^{-1}(\mathcal{A})\right]$ if and only if there is a measurable function $h: S \rightarrow \mathbb{R}$ such that $g=h \circ f$.

## Proof.

$(\Leftarrow)$

- Let $g=h \circ f: \Omega \rightarrow \mathbb{R}$ be measurable.
- Then

$$
g^{-1}(\mathcal{B})=(h \circ f)^{-1}(\mathcal{B})=f^{-1}\left(h^{-1}(\mathcal{B})\right) \subset f^{-1}(\mathcal{A})
$$

since $h^{-1}(\mathcal{B}) \subset \mathcal{A}$.

## Martingale Representation Theorem

## Proof.

$(\Rightarrow)$

- Let $g$ be $f^{-1}(\mathcal{A})$-measurable, where $f^{-1}(\mathcal{A})$ is a $\sigma$-algebra contained in $\Sigma$.
- We start by checking that it is enough to prove the result for simple functions

$$
g=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}, A_{i} \in f^{-1}(\mathcal{A})
$$

- Recall that for a measurable function $g$ w.r.t. the $\sigma$-algebra $f^{-1}(\mathcal{A})$, there exists a sequence of simple functions $g_{n}$, measurable w.r.t. $f^{-1}(\mathcal{A})$, such that

$$
g_{n}(\omega) \rightarrow g(\omega)
$$

as $n \rightarrow \infty$ for each $\omega \in \Omega$.

- Assuming the result holds for simple functions, there is an $\mathcal{A}$-measurable $h_{n}: S \rightarrow \mathbb{R}, g_{n}=h_{n} \circ f$, for each $n \geq 1$.
- Define $S_{0}=\left\{s \in S: h_{n}(s) \rightarrow \tilde{h}(s), n \rightarrow \infty\right\}$. Then:

$$
S_{0} \in \mathcal{A} \text { and } f(\Omega) \subset S .
$$

## Martingale Representation Theorem

## Proof.

- Let $h(s)=\tilde{h}(s)$ if $s \in S_{0}$ and $h(s)=0$ if $s \in S-S_{0}$

Then $h$ is $\mathcal{A}$-measurable and $g(\omega)=h(f(\omega)), \quad \omega \in \Omega$, as required

- Assume now that $g=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}, A_{i}=f^{-1}\left(B_{i}\right) \in f^{-1}(\mathcal{A})$ for a $B_{i} \in \mathcal{A}$.
- Define $h=\sum_{i=1}^{n} a_{i} \chi_{B_{i}}$

Then $h: S \rightarrow \mathbb{R}$ is $\mathcal{A}$-measurable and simple.

- Thus

$$
\begin{aligned}
h(f(\omega)) & =\sum_{i=1}^{n} a_{i} \chi_{B_{i}}(f(\omega))=\sum_{i=1}^{n} a_{i} \chi_{f-1}\left(B_{i}\right)(\omega) \\
& =\sum_{i=1}^{n} a_{i} \chi_{A_{i}}(\omega)=g(\omega), \quad \omega \in \Omega,
\end{aligned}
$$

and $h \circ f=g$

## Martingale Representation Theorem

- If $S=\mathbb{R}^{n}$ and $\mathcal{A}$ is the Borel $\sigma$-algebra of $\mathbb{R}^{n}$, then there is an $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, Borel measurable, which satisfies the requirements.


## Corollary

Let $(\Omega, \Sigma)$ and $\left(\mathbb{R}^{n}, \mathcal{A}\right)$ be measurable spaces, and $f: \Omega \rightarrow \mathbb{R}^{n}$ be measurable. Then $g: \Omega \rightarrow \mathbb{R}$ is $f^{-1}(\mathcal{A})$-measurable if and only if there is a Borel measure function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $g=h\left(f_{1}, f_{2}, \ldots, f_{n}\right)=h \circ f$ where $f=\left(f_{1}, \ldots, f_{n}\right)$.

## Lemma

Fix $T>0$. The set of random variables

$$
\left\{\phi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) ; t_{i} \in[0, T], \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), n=1,2, \ldots\right\}
$$

is dense in $L^{2}\left(\mathcal{F}_{T}, P\right)$.

## Martingale Representation Theorem

## Proof.

- Let $\left\{t_{i}\right\}_{i=1}^{\infty}$ be a dense subset of $[0, T]$;
- Let $\mathcal{H}_{n}$ be the $\sigma$-algebra generated by $B_{t_{1}}(\cdot), \ldots, B_{t_{n}}(\cdot)$.

Then clearly $\mathcal{H}_{n} \subset \mathcal{H}_{n+1}$.
$\mathcal{F}_{T}$ is the smallest $\sigma$-algebra containing all the $\mathcal{H}_{n}$.

- Choose $g \in L^{2}\left(\mathcal{F}_{T}, P\right)$.
then by the martingale convergence theorem, we have that

$$
g=E\left[g \mid \mathcal{F}_{T}\right]=\lim _{n \rightarrow \infty} E\left[g \mid \mathcal{H}_{n}\right] .
$$

- The limit is pointwise a.e. $(P)$ and in $L^{2}\left(\mathcal{F}_{T}, P\right)$.

By the Doob-Dynkin Lemma we can write, for each $n$,

$$
E\left[g \mid \mathcal{H}_{n}\right]=g_{n}\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)
$$

for some Borel measurable function $g_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

- Each such $g_{n}\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ can be approximated in $L^{2}\left(\mathcal{F}_{T}, P\right)$ by functions $\phi_{n}\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$, where $\phi_{n} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and the result follows.


## Martingale Representation Theorem

## Lemma

The linear span of random variables of the type

$$
\exp \left\{\int_{0}^{T} h(t) d B_{t}(\omega)-\frac{1}{2} \int_{0}^{T} h^{2}(t) d t\right\} ; \quad h \in L^{2}[0, T] \text { (deterministic) }
$$

is dense in $L^{2}\left(\mathcal{F}_{T}, P\right)$.

## Proof.

- Suppose $g \in L^{2}\left(\mathcal{F}_{T}, P\right)$ is orthogonal (in $L^{2}\left(\mathcal{F}_{T}, P\right)$ ) to all functions of the form $\exp \left\{\int_{0}^{T} h(t) d B_{t}(\omega)-\frac{1}{2} \int_{0}^{T} h^{2}(t) d t\right\}$.

Then in particular

$$
G(\lambda):=\int_{\Omega} \exp \left\{\lambda_{1} B_{t_{1}}(\omega)+\ldots+\lambda_{n} B_{t_{n}}(\omega)\right\} g(\omega) d P(\omega)=0
$$

for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ and all $t_{1}, \ldots, t_{n} \in[0, T]$.

## Martingale Representation Theorem

## Proof.

- The function $G(\lambda)$ is real analytic in $\lambda \in \mathbb{R}^{n}$ and hence $G$ has an analytic extension to the complex space $\mathbb{C}^{n}$ given by

$$
G(z):=\int_{\Omega} \exp \left\{z_{1} B_{t_{1}}(\omega)+\ldots+z_{n} B_{t_{n}}(\omega)\right\} g(\omega) d P(\omega)
$$

for all $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$.

- Since $G=0$ on $\mathbb{R}^{n}$ and $G$ is analytic, $G=0$ on $\mathbb{C}^{n}$.
- In particular, $G\left(i y_{1}, \ldots, i y_{n}\right)=0$ for all $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.


## Martingale Representation Theorem

## Proof.

- But then we get, for $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{gathered}
\int_{\Omega} \phi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) g(\omega) \mathrm{d} P(\omega) \\
=\int_{\Omega}(2 \pi)^{-\frac{n}{2}}\left(\int_{\mathbb{R}^{n}} \widehat{\phi}(y) e^{i\left(y_{1} B_{t_{1}}+\ldots+y_{n} B_{t_{n}}\right)} \mathrm{d} y\right) g(\omega) \mathrm{d} P(\omega) \\
=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \widehat{\phi}(y)\left(\int_{\Omega} e^{i\left(y_{1} B_{t_{1}}+\ldots+y_{n} B_{t_{n}}\right)} g(\omega) \mathrm{d} P(\omega)\right) \mathrm{d} y \\
=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \widehat{\phi}(y) G(i y) \mathrm{d} y=0,
\end{gathered}
$$

where

$$
\widehat{\phi}(y)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \phi(x) e^{-i x \cdot y} \mathrm{~d} x
$$

is the Fourier transform of $\phi$.

## Martingale Representation Theorem

## Proof.

- We have used the inverse Fourier transform theorem

$$
\phi(x)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \widehat{\phi}(y) e^{-i x \cdot y} \mathrm{~d} y .
$$

- Since

$$
\int_{\Omega} \phi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) g(\omega) \mathrm{d} P(\omega)=0
$$

and from the previous lemma $g$ is orthogonal to a dense subset of $L^{2}\left(\mathcal{F}_{T}, P\right)$, we conclude that $g=0$.

- Therefore the linear span of the functions

$$
\exp \left\{\int_{0}^{T} h(t) d B_{t}(\omega)-\frac{1}{2} \int_{0}^{T} h^{2}(t) d t\right\},
$$

must be dense in $L^{2}\left(\mathcal{F}_{T}, P\right)$.

## Martingale Representation Theorem

## Proof (Itô representation theorem).

- We consider only the case $\mathrm{n}=1$ (the proof in the general case is similar).
- First assume that $F$ is of the form

$$
F(\omega)=\exp \left\{\int_{0}^{T} h(t) \mathrm{d} B_{t}(\omega)-\frac{1}{2} \int_{0}^{T} h^{2}(t) \mathrm{d} t\right\}
$$

for some $h(t) \in L^{2}[0, T]$.

- Define

$$
Y_{t}(\omega)=\exp \left\{\int_{0}^{t} h(s) \mathrm{d} B_{s}(\omega)-\frac{1}{2} \int_{0}^{t} h^{2}(s) \mathrm{d} s\right\} ; \quad 0 \leq t \leq T .
$$

- Then by Itô's formula

$$
\mathrm{d} Y_{t}=Y_{t}\left(h(t) \mathrm{d} B_{t}-\frac{1}{2} h^{2}(t) \mathrm{d} t\right)+\frac{1}{2} Y_{t}\left(h(t) \mathrm{d} B_{t}\right)^{2}=Y_{t} h(t) \mathrm{d} B_{t}
$$

## Martingale Representation Theorem

## Proof.

- So that

$$
Y_{t}=1+\int_{0}^{t} Y_{s} h(s) \mathrm{d} B_{s} ; \quad t \in[0, T] .
$$

- Therefore

$$
F=Y_{T}=1+\int_{0}^{T} Y_{s} h(s) \mathrm{d} B_{s}
$$

$$
E[F]=1 .
$$

- $F(\omega)=E[F]+\int_{0}^{T} f(t, \omega) \mathrm{d} B(t)$ holds in this case.
- By linearity $F(\omega)=E[F]+\int_{0}^{T} f(t, \omega) \mathrm{d} B(t)$ also holds for linear combinations of functions of the form

$$
\exp \left\{\int_{0}^{T} h(t) d B_{t}(\omega)-\frac{1}{2} \int_{0}^{T} h^{2}(t) d t\right\} .
$$

## Martingale Representation Theorem

## Proof.

- If $F \in L^{2}\left(\mathcal{F}_{T}, P\right)$ is arbitrary, we approximate $F$ in $L^{2}\left(\mathcal{F}_{T}, P\right)$ by linear combinations $F_{n}$ of functions of the form

$$
\exp \left\{\int_{0}^{T} h(t) d B_{t}(\omega)-\frac{1}{2} \int_{0}^{T} h^{2}(t) d t\right\} .
$$

- Then for each $n$ we have

$$
F_{n}(\omega)=E\left[F_{n}\right]+\int_{0}^{T} f_{n}(s, \omega) \mathrm{d} B_{s}(\omega)
$$

where $f_{n} \in \mathcal{V}(0, T)$.

## Martingale Representation Theorem

## Proof.

- By the Itô isometry

$$
\begin{aligned}
E\left[\left(F_{n}-F_{m}\right)^{2}\right] & =E\left[\left(E\left[F_{n}-F_{m}\right]+\int_{0}^{T}\left(f_{n}-f_{m}\right) \mathrm{d} B\right)^{2}\right] \\
& =E\left(\left[F_{n}-F_{m}\right]\right)^{2}+\int_{0}^{T} E\left[\left(f_{n}-f_{m}\right)^{2}\right] \mathrm{d} t \rightarrow 0 \quad n, m \rightarrow \infty
\end{aligned}
$$

- $\left\{f_{n}\right\}$ is a Cauchy sequence in $L^{2}([0, T] \times \Omega)$.
and hence converges to some $f \in L^{2}([0, T] \times \Omega)$.
s since $f_{n} \in \mathcal{V}(0, T)$ we have $f \in \mathcal{V}(0, T)$.
- Again using the Itô isometry we see that

$$
F=\lim _{n \rightarrow \infty} F_{n}=\lim _{n \rightarrow \infty}\left(E\left[F_{n}\right]+\int_{0}^{T} f_{n} \mathrm{~d} B\right)=E[F]+\int_{0}^{T} f \mathrm{~d} B
$$

Hence the representation $F(\omega)=E[F]+\int_{0}^{T} f(t, \omega) \mathrm{d} B(t)$ holds for all $F \in L^{2}\left(\mathcal{F}_{T}, P\right)$.

## Martingale Representation Theorem

## Proof.

- The uniqueness follows from the Itô isometry.
- Suppose

$$
F(\omega)=E[F]+\int_{0}^{T} f_{1}(t, \omega) \mathrm{d} B_{t}(\omega)=E[F]+\int_{0}^{T} f_{2}(t, \omega) \mathrm{d} B_{t}(\omega)
$$

with $f_{1}, f_{2} \in \mathcal{V}(0, T)$.

- Then

$$
0=E\left[\left(\int_{0}^{T}\left(f_{1}(t, \omega)-f_{2}(t, \omega)\right) \mathrm{d} B_{t}(\omega)\right)^{2}\right]=\int_{0}^{T} E\left[\left(f_{1}(t, \omega)-f_{2}(t, \omega)\right)^{2}\right] \mathrm{d} t
$$

and therefore $f_{1}(t, \omega)=f_{2}(t, \omega)$ for a.a. $(t, \omega) \in[0, T] \times \Omega$.

## Martingale Representation Theorem

## Proof (Martingale Representation Theorem).

- $n=1$.
- By the Itô representation theorem applied to $T=t$ and $F=M_{t}$, we have that
for all $t$ there exists a unique $f^{(t)}(s, \omega) \in L^{2}\left(\mathcal{F}_{T}, P\right)$ such that

$$
M_{t}(\omega)=E\left[M_{t}\right]+\int_{0}^{t} f^{(t)}(s, \omega) \mathrm{d} B_{s}(\omega)=E\left[M_{0}\right]+\int_{0}^{t} f^{(t)}(s, \omega) \mathrm{d} B_{s}(\omega)
$$

- Now assume $0 \leq t_{1} \leq t_{2}$.
- Then

$$
\begin{align*}
M_{t_{1}} & =E\left[M_{t_{2}} \mid \mathcal{F}_{t_{1}}\right]=E\left[M_{0}\right]+E\left[\int_{0}^{t_{2}} f^{\left(t_{2}\right)}(s, \omega) \mathrm{d} B_{s}(\omega) \mid \mathcal{F}_{t_{1}}\right] \\
& =E\left[M_{0}\right]+\int_{0}^{t_{1}} f^{\left(t_{2}\right)}(s, \omega) \mathrm{d} B_{s}(\omega) \tag{3}
\end{align*}
$$

## Martingale Representation Theorem

## Proof.

- But we also have

$$
\begin{equation*}
M_{t_{1}}=E\left[M_{0}\right]+\int_{0}^{t_{1}} f^{\left(t_{1}\right)}(s, \omega) \mathrm{d} B_{s}(\omega) . \tag{4}
\end{equation*}
$$

- Hence, comparing (3) and (4) we get that

$$
0=E\left[\left(\int_{0}^{t_{1}}\left(f^{\left(t_{2}\right)}-f^{\left(t_{1}\right)}\right) \mathrm{d} B\right)^{2}\right]=\int_{0}^{t_{1}} E\left[\left(f^{\left(t_{2}\right)}-f^{\left(t_{1}\right)}\right)\right] \mathrm{d} s
$$

- Therefore

$$
f^{\left(t_{1}\right)}(s, \omega)=f^{\left(t_{2}\right)}(s, \omega)
$$

for a.a. $(s, \omega) \in\left[0, t_{1}\right] \times \Omega$.

## Martingale Representation Theorem

## Proof.

- So we can define $f(s, \omega)$ for a.a. $s \in[0, \infty) \times \Omega$ by setting $f(s, \omega)=f^{(N)}(s, \omega)$, if $s \in[0, N]$.
- Then we get

$$
M_{t}=E\left[M_{0}\right]+\int_{0}^{t} f^{(t)}(s, \omega) \mathrm{d} B_{s}(\omega)=E\left[M_{0}\right]+\int_{0}^{t} f(s, \omega) \mathrm{d} B_{s}(\omega),
$$

for all $t \geq 0$.

