An Overview of the Martingale Representation Theorem

Nuno Azevedo

CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt

September 30, 2010

・ロト ・ 戸 ・ ・ ヨ ・ ・

Definition

Denote by $\{\mathcal{F}_t\}_{t\geq 0}$ the filtration generated by the one-dimensional Brownian motion B_t and by \mathcal{B} the Borel σ -algebra on $[0,\infty)$. Let $\mathcal{V} = \mathcal{V}(S,T)$ be the class of functions $f : [0,\infty) \times \Omega \to \mathbb{R}$ such that (i) $(t,\omega) \to f(t,\omega)$ is $\mathcal{B} \times \mathcal{F}$ -measurable. (ii) $f(t,\omega)$ is \mathcal{F}_t -adapted. (iii) $E\left[\int_S^T (f(t,\omega))^2 dt\right] < \infty$.

Definition (The Itô integral)

Let $f \in \mathcal{V}(S, T)$. Then the *ltô integral* of f (from S to T) is defined by

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) dB_{t}(\omega) \quad \text{limit in } L^{2}(P) , \qquad (1)$$

where $\{\phi_n\}$ is a sequence of elementary functions such that

$$\mathsf{E}\left[\int_{\mathcal{S}}^{\mathcal{T}} (f(t,\omega) - \phi_n(t,\omega))^2 \mathrm{d}t\right] \to 0 \quad \text{as } n \to \infty , \qquad (2)$$

where the limit in (1) exists and does not depend on the choice of $\{\phi_n\}$, as long as (2) holds.

Properties of the Itô integral:

• Itô_isometry:

$$E\left[\left(\int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega)\right)^{2}\right] = E\left[\int_{S}^{T} \left(f(t,\omega)\right)^{2} \mathrm{d}t\right] \quad \text{for all } f \in \mathcal{V}(S,T)$$

- Linearity
- $E\left[\int_{S}^{T} f \mathrm{d}B_{t}\right] = 0$
- $\int_{S}^{T} f dB_t$ is \mathcal{F}_T -measurable
- Existence of a continuous version
- Martingale property

Definition (Martingale)

Let (Ω, \mathcal{F}, P) be a probability space and $X = \{X_t : t \ge 0\}$ a stochastic process on it.

We say that X_t is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$ if

(i) X is adapted to
$$\mathcal{F}_t$$
.

(ii)
$$E[|X_t|] < \infty$$
 for all t .

(iii)
$$E[X_s|\mathcal{F}_t] = X_t$$
 for all $s \ge t$.

Theorem (Itô formula)

Let X_t be an Itô process given by

 $\mathrm{d}X_t = u\mathrm{d}t + v\mathrm{d}B_t$

and let $g(t,x) \in C^2([0,\infty) \times \mathbb{R})$. Then

 $Y_t = g(t, X_t)$

is again an Itô process, and

$$\mathrm{d}Y_t = \frac{\partial g}{\partial t}(t, X_t)\mathrm{d}t + \frac{\partial g}{\partial x}(t, X_t)\mathrm{d}X_t + \frac{1}{2}\frac{\partial^2 g}{\partial x^2}(t, X_t)(\mathrm{d}X_t)^2 \ ,$$

where $(dX_t)^2 = (dX_t).(dX_t)$ is computed according to the "multiplication table"

$$\mathrm{d}t.\mathrm{d}t = \mathrm{d}t.\mathrm{d}B_t = \mathrm{d}B_t.\mathrm{d}t = 0$$
, $\mathrm{d}B_t.\mathrm{d}B_t = \mathrm{d}t$.

(日)

- Let $B(t) = (B_1(t), \dots, B_n(t))$ be a *n*-dimensional Brownian motion.
- We know that if $v \in \mathcal{V}^n$ then the Itô integral

$$X_t = X_0 + \int_0^t v(s, w) dB(s); \quad t \ge 0$$

is always a martingale w.r.t. filtration $\mathcal{F}_t^{(n)}$.

- In this talk we will prove that the converse is also true:
 - ▶ any $\mathcal{F}_t^{(n)}$ -martingale (w.r.t. P) can be represented as an Itô integral.
 - this result is know as martingale representation theorem.

イロト イポト イラト イラト

Theorem (The martingale representation theorem)

Let $B(t) = (B_1(t), \ldots, B_n(t))$ be n-dimensional. Suppose M_t is an $\mathcal{F}_t^{(n)}$ -martingale (w.r.t. P) and that $M_t \in L^2(P)$ for all $t \ge 0$. Then there exists a unique stochastic process $g(s, \omega)$ such that $g \in \mathcal{V}^{(n)}(0, t)$ for all $t \ge 0$ and

$$M_t(\omega) = E[M_0] + \int_0^t g(s,\omega) \mathrm{d}B(s) \quad a.s., for \ all \ t \geq 0.$$

• The key result for the proof of the martingale representation theorem is the ltô representation theorem

Theorem (The Itô representation theorem)

Let $F \in L^2(\mathcal{F}_T^{(n)}, P)$. Then there exists a unique stochastic process $f(t, \omega) \in \mathcal{V}^n(0, T)$ such that

$$F(\omega) = E[F] + \int_0^T f(t,\omega) \mathrm{d}B(t).$$

• For the proof of the Itô representation theorem we need to prove some auxiliary lemmas.

Lemma (Doob-Dinkyn Lemma)

Let (Ω, Σ) and (S, \mathcal{A}) be measurable spaces and $f : \Omega \to S$ be measurable, i.e., $f^{-1}(\mathcal{A}) \subset \Sigma$. Then a function $g : \Omega \to \mathbb{R}$ is measurable relative to the σ -algebra $f^{-1}(\mathcal{A})$ [i.e., $g^{-1}(\mathcal{B}) \subset f^{-1}(\mathcal{A})$] if and only if there is a measurable function $h : S \to \mathbb{R}$ such that $g = h \circ f$.

Proof.

(⇔)

• Let $g = h \circ f : \Omega \to \mathbb{R}$ be measurable.

• Then

$$g^{-1}(\mathcal{B})=(h\circ f)^{-1}(\mathcal{B})=f^{-1}(h^{-1}(\mathcal{B}))\subset f^{-1}(\mathcal{A})$$

since $h^{-1}(\mathcal{B}) \subset \mathcal{A}$.

Proof.

- (\Rightarrow)
 - Let g be $f^{-1}(\mathcal{A})$ -measurable, where $f^{-1}(\mathcal{A})$ is a σ -algebra contained in Σ .
 - We start by checking that it is enough to prove the result for simple functions

$$g=\sum_{i=1}^n a_i\chi_{A_i}, A_i\in f^{-1}(\mathcal{A})$$
.

• Recall that for a measurable function g w.r.t. the σ -algebra $f^{-1}(\mathcal{A})$, there exists a sequence of simple functions g_n , measurable w.r.t. $f^{-1}(\mathcal{A})$, such that

$$g_n(\omega) o g(\omega)$$

as $n \to \infty$ for each $\omega \in \Omega$.

- Assuming the result holds for simple functions, there is an A-measurable $h_n: S \to \mathbb{R}$, $g_n = h_n \circ f$, for each $n \ge 1$.
- Define $S_0 = \{s \in S : h_n(s) \to \tilde{h}(s), n \to \infty\}$. Then: • $S_0 \in \mathcal{A} \text{ and } f(\Omega) \subset S$.

Proof.

- Let $h(s) = \tilde{h}(s)$ if $s \in S_0$ and h(s) = 0 if $s \in S S_0$
 - Then h is \mathcal{A} -measurable and $g(\omega) = h(f(\omega)), \quad \omega \in \Omega$, as required
- Assume now that $g = \sum_{i=1}^n a_i \chi_{A_i}, A_i = f^{-1}(B_i) \in f^{-1}(\mathcal{A})$ for a $B_i \in \mathcal{A}$.
- Define $h = \sum_{i=1}^{n} a_i \chi_{B_i}$ • Then $h: S \to \mathbb{R}$ is \mathcal{A} -measurable and simple.

Thus

$$\begin{split} h(f(\omega)) &= \sum_{i=1}^n a_i \chi_{B_i}(f(\omega)) = \sum_{i=1}^n a_i \chi_{f^{-1}(B_i)}(\omega) \\ &= \sum_{i=1}^n a_i \chi_{A_i}(\omega) = g(\omega), \quad \omega \in \Omega, \end{split}$$

and $h \circ f = g$

-

(日)

• If $S = \mathbb{R}^n$ and \mathcal{A} is the Borel σ -algebra of \mathbb{R}^n , then there is an $h : \mathbb{R}^n \to \mathbb{R}$, Borel measurable, which satisfies the requirements.

Corollary

Let (Ω, Σ) and $(\mathbb{R}^n, \mathcal{A})$ be measurable spaces, and $f : \Omega \to \mathbb{R}^n$ be measurable. Then $g : \Omega \to \mathbb{R}$ is $f^{-1}(\mathcal{A})$ -measurable if and only if there is a Borel measure function $h : \mathbb{R}^n \to \mathbb{R}$ such that $g = h(f_1, f_2, \ldots, f_n) = h \circ f$ where $f = (f_1, \ldots, f_n)$.

Lemma

Fix T > 0. The set of random variables

$$\{\phi(B_{t_1},\ldots,B_{t_n}); t_i \in [0,T], \phi \in C_0^{\infty}(\mathbb{R}^n), n = 1, 2, \ldots\}$$

is dense in $L^2(\mathcal{F}_T, P)$.

Proof.

- Let $\{t_i\}_{i=1}^{\infty}$ be a dense subset of [0, T];
- Let \mathcal{H}_n be the σ -algebra generated by $B_{t_1}(\cdot), \ldots, B_{t_n}(\cdot)$.
 - Then clearly $\mathcal{H}_n \subset \mathcal{H}_{n+1}$.
 - \mathcal{F}_T is the smallest σ -algebra containing all the \mathcal{H}_n .
- Choose $g \in L^2(\mathcal{F}_T, P)$.

then by the martingale convergence theorem, we have that

$$g = E[g|\mathcal{F}_T] = \lim_{n \to \infty} E[g|\mathcal{H}_n].$$

• The limit is pointwise a.e. (P) and in $L^2(\mathcal{F}_T, P)$.

By the Doob-Dynkin Lemma we can write, for each n,

$$E[g|\mathcal{H}_n] = g_n(B_{t_1},\ldots,B_{t_n})$$

for some Borel measurable function $g_n : \mathbb{R}^n \to \mathbb{R}$.

• Each such $g_n(B_{t_1}, \ldots, B_{t_n})$ can be approximated in $L^2(\mathcal{F}_T, P)$ by functions $\phi_n(B_{t_1}, \ldots, B_{t_n})$, where $\phi_n \in C_0^{\infty}(\mathbb{R}^n)$ and the result follows.

Lemma

The linear span of random variables of the type

$$\exp\Big\{\int_0^T h(t)dB_t(\omega) - \frac{1}{2}\int_0^T h^2(t)dt\Big\}; \quad h \in L^2[0,T](deterministic)$$

is dense in $L^2(\mathcal{F}_T, P)$.

Proof.

• Suppose $g \in L^2(\mathcal{F}_T, P)$ is orthogonal (in $L^2(\mathcal{F}_T, P)$) to all functions of the form $\exp\left\{\int_0^T h(t) dB_t(\omega) - \frac{1}{2}\int_0^T h^2(t) dt\right\}$. Then in particular

$$G(\lambda) := \int_{\Omega} \exp\{\lambda_1 B_{t_1}(\omega) + \ldots + \lambda_n B_{t_n}(\omega)\}g(\omega)dP(\omega) = 0$$

for all $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ and all $t_1, \dots, t_n \in [0, T]$.

Proof.

• The function $G(\lambda)$ is real analytic in $\lambda \in \mathbb{R}^n$ and hence G has an analytic extension to the complex space \mathbb{C}^n given by

$$G(z) := \int_{\Omega} \exp\{z_1 B_{t_1}(\omega) + \ldots + z_n B_{t_n}(\omega)\}g(\omega)dP(\omega)$$
for all $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$.

Since G = 0 on ℝⁿ and G is analytic, G = 0 on ℂⁿ.
In particular, G(iy₁,..., iy_n) = 0 for all y = (y₁,..., y_n) ∈ ℝⁿ.

Proof.

• But then we get, for $\phi \in C_0^\infty(\mathbb{R}^n)$

$$\int_{\Omega} \phi(B_{t_1},\ldots,B_{t_n}) g(\omega) \mathrm{d} P(\omega)$$

$$= \int_{\Omega} (2\pi)^{-\frac{n}{2}} \Big(\int_{\mathbb{R}^n} \widehat{\phi}(y) e^{i(y_1 B_{t_1} + \dots + y_n B_{t_n})} dy \Big) g(\omega) dP(\omega)$$

$$= (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \widehat{\phi}(y) \Big(\int_{\Omega} e^{i(y_1 B_{t_1} + \dots + y_n B_{t_n})} g(\omega) dP(\omega) \Big) dy$$

$$= (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \widehat{\phi}(y) G(iy) dy = 0 ,$$

where

$$\widehat{\phi}(y) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \phi(x) e^{-ix \cdot y} \mathrm{d}x$$

is the Fourier transform of $\phi.$

Proof.

• We have used the inverse Fourier transform theorem

$$\phi(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \widehat{\phi}(y) e^{-ix \cdot y} \mathrm{d}y.$$

Since

$$\int_{\Omega} \phi(B_{t_1},\ldots,B_{t_n})g(\omega) \mathrm{d}P(\omega) = 0$$

and from the previous lemma g is orthogonal to a dense subset of $L^2(\mathcal{F}_T, P)$, we conclude that g = 0.

• Therefore the linear span of the functions

$$\exp\Big\{\int_0^T h(t)dB_t(\omega) - \frac{1}{2}\int_0^T h^2(t)dt\Big\},\$$

must be dense in $L^2(\mathcal{F}_T, P)$.

< = >

Proof (Itô representation theorem).

- We consider only the case n = 1 (the proof in the general case is similar).
- First assume that F is of the form

$$F(\omega) = \exp\left\{\int_0^T h(t) \mathrm{d}B_t(\omega) - \frac{1}{2}\int_0^T h^2(t) \mathrm{d}t\right\}$$

for some $h(t) \in L^2[0, T]$.

Define

$$Y_t(\omega) = \exp\Big\{\int_0^t h(s) \mathrm{d}B_s(\omega) - \frac{1}{2}\int_0^t h^2(s) \mathrm{d}s\Big\}; \quad 0 \le t \le T.$$

• Then by Itô's formula

$$\mathrm{d}Y_t = Y_t(h(t)\mathrm{d}B_t - \frac{1}{2}h^2(t)\mathrm{d}t) + \frac{1}{2}Y_t(h(t)\mathrm{d}B_t)^2 = Y_th(t)\mathrm{d}B_t$$

Proof.

So that

$$Y_t = 1 + \int_0^t Y_s h(s) \mathrm{d}B_s; \quad t \in [0, T].$$

• Therefore

$$F = Y_T = 1 + \int_0^T Y_s h(s) \mathrm{d}B_s$$

 $\blacktriangleright E[F] = 1.$

• $F(\omega) = E[F] + \int_0^T f(t, \omega) dB(t)$ holds in this case.

• By linearity $F(\omega) = E[F] + \int_0^T f(t, \omega) dB(t)$ also holds for linear combinations of functions of the form

$$\exp\Big\{\int_0^T h(t)dB_t(\omega) - \frac{1}{2}\int_0^T h^2(t)dt\Big\}.$$

Proof.

• If $F \in L^2(\mathcal{F}_T, P)$ is arbitrary, we approximate F in $L^2(\mathcal{F}_T, P)$ by linear combinations F_n of functions of the form

$$\exp\Big\{\int_0^T h(t)dB_t(\omega) - \frac{1}{2}\int_0^T h^2(t)dt\Big\}.$$

• Then for each *n* we have

$$F_n(\omega) = E[F_n] + \int_0^T f_n(s,\omega) \mathrm{d}B_s(\omega)$$

where $f_n \in \mathcal{V}(0, T)$.

Proof.

• By the Itô isometry

$$E[(F_n - F_m)^2] = E[(E[F_n - F_m] + \int_0^T (f_n - f_m) dB)^2]$$

= $E([F_n - F_m])^2 + \int_0^T E[(f_n - f_m)^2] dt \to 0 \quad n, m \to \infty$

- ${f_n} is a Cauchy sequence in L²([0, T] × Ω).$ and hence converges to some <math>f ∈ L²([0, T] × Ω).since $f_n ∈ V(0, T)$ we have f ∈ V(0, T).
- Again using the Itô isometry we see that

$$F = \lim_{n \to \infty} F_n = \lim_{n \to \infty} \left(E[F_n] + \int_0^T f_n dB \right) = E[F] + \int_0^T f dB$$

Hence the representation $F(\omega) = E[F] + \int_0^T f(t,\omega) dB(t)$ holds for all $F \in L^2(\mathcal{F}_T, P)$.

Proof.

- The uniqueness follows from the Itô isometry.
- Suppose

$$F(\omega) = E[F] + \int_0^T f_1(t,\omega) dB_t(\omega) = E[F] + \int_0^T f_2(t,\omega) dB_t(\omega)$$

with $f_1, f_2 \in \mathcal{V}(0, T)$.

• Then

$$0 = E[(\int_0^T (f_1(t,\omega) - f_2(t,\omega)) \mathrm{d}B_t(\omega))^2] = \int_0^T E[(f_1(t,\omega) - f_2(t,\omega))^2] \mathrm{d}t.$$

and therefore $f_1(t,\omega) = f_2(t,\omega)$ for a.a. $(t,\omega) \in [0,T] \times \Omega$.

(日)

Proof (Martingale Representation Theorem).

- *n* = 1.
- By the Itô representation theorem applied to T = t and $F = M_t$, we have that

For all t there exists a unique $f^{(t)}(s,\omega)\in L^2({\mathcal F}_{{\mathcal T}},P)$ such that

$$M_t(\omega) = E[M_t] + \int_0^t f^{(t)}(s,\omega) \mathrm{d}B_s(\omega) = E[M_0] + \int_0^t f^{(t)}(s,\omega) \mathrm{d}B_s(\omega).$$

• Now assume $0 \le t_1 \le t_2$.

• Then

$$M_{t_1} = E[M_{t_2}|\mathcal{F}_{t_1}] = E[M_0] + E\left[\int_0^{t_2} f^{(t_2)}(s,\omega) dB_s(\omega)|\mathcal{F}_{t_1}\right]$$

= $E[M_0] + \int_0^{t_1} f^{(t_2)}(s,\omega) dB_s(\omega).$ (3)

Proof.

• But we also have

$$M_{t_1} = E[M_0] + \int_0^{t_1} f^{(t_1)}(s,\omega) \mathrm{d}B_s(\omega).$$

 \bullet Hence, comparing (3) and (4) we get that

$$0 = E\left[\left(\int_0^{t_1} (f^{(t_2)} - f^{(t_1)}) dB\right)^2\right] = \int_0^{t_1} E[(f^{(t_2)} - f^{(t_1)})] ds$$

• Therefore

$$f^{(t_1)}(s,\omega) = f^{(t_2)}(s,\omega)$$

for a.a. $(s, \omega) \in [0, t_1] \times \Omega$.

(4)

Proof.

- So we can define $f(s, \omega)$ for a.a. $s \in [0, \infty) \times \Omega$ by setting $f(s, \omega) = f^{(N)}(s, \omega)$, if $s \in [0, N]$.
- Then we get

$$M_t = E[M_0] + \int_0^t f^{(t)}(s,\omega) \mathrm{d}B_s(\omega) = E[M_0] + \int_0^t f(s,\omega) \mathrm{d}B_s(\omega),$$

for all $t \ge 0$.

(日)