An overview of the Itô formula

Diogo Pinheiro

CEMAPRE - ISEG - UTL dpinheiro@iseg.utl.pt

December 2, 2009

The Itô Integral definition and properties

Definition

Denote by $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ the filtration generated by the one-dimensional Brownian motion B_{t} and by \mathcal{B} the Borel σ-algebra on $[0, \infty)$.
Let $\mathcal{V}=\mathcal{V}(S, T)$ be the class of functions $f:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ such that
(i) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$-measurable.
(ii) $f(t, \omega)$ is \mathcal{F}_{t}-adapted.
(iii) $E\left[\int_{S}^{T}(f(t, \omega))^{2} \mathrm{~d} t\right]<\infty$.

- We have already defined the Itô integral for functions $f \in \mathcal{V}$ (as well as for larger classes of functions) and studied some of its properties.

The Itô Integral definition and properties

Definition (Elementary function)

A function $\phi \in \mathcal{V}(S, T)$ is called elementary if it has the form

$$
\phi(t, \omega)=\sum_{j} e_{j}(\omega) l_{\left[t_{j}, t_{j+1}\right)}(t),
$$

where the points t_{j} define a partition of the interval $[S, T]$.
We have been using a partition defined by the points

$$
t_{j}=t_{j}^{(n)}=\left\{\begin{array}{ll}
j 2^{-n} & \text { if } S \leq j 2^{-n} \leq T \\
S & \text { if } j 2^{-n}<S \\
T & \text { if } j 2^{-n}>T
\end{array} .\right.
$$

- Note that since $\phi \in \mathcal{V}$ then $e_{j}(\omega)$ must be $\mathcal{F}_{t_{j}}$-measurable.
- For elementary functions $\phi(t, \omega)$ we define the stochastic integral as

$$
\int_{S}^{T} \phi(t, \omega) \mathrm{d} B_{t}(\omega)=\sum_{j \geq 0} e_{j}(\omega)\left[B_{t_{j+1}}-B_{t_{j}}\right](\omega)
$$

The Itô Integral definition and properties

Definition (The Itô integral)

Let $f \in \mathcal{V}(S, T)$. Then the Itô integral of f (from S to T) is defined by

$$
\begin{equation*}
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)=\lim _{n \rightarrow \infty} \int_{S}^{T} \phi_{n}(t, \omega) \mathrm{d} B_{t}(\omega) \quad \text { limit in } L^{2}(P) \tag{1}
\end{equation*}
$$

where $\left\{\phi_{n}\right\}$ is a sequence of elementary functions such that

$$
\begin{equation*}
E\left[\int_{S}^{T}\left(f(t, \omega)-\phi_{n}(t, \omega)\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

where the limit in (1) exists and does not depend on the choice of $\left\{\phi_{n}\right\}$, as long as (2) holds.

The Itô Integral definition and properties

- Properties of the Itô integral:
- Itô isometry:
$E\left[\left(\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)\right)^{2}\right]=E\left[\int_{S}^{T}(f(t, \omega))^{2} \mathrm{~d} t\right] \quad$ for all $f \in \mathcal{V}(S, T)$
- Linearity
- $E\left[\int_{S}^{T} f \mathrm{~d} B_{t}\right]=0$
- $\int_{S}^{T} f \mathrm{~d} B_{t}$ is \mathcal{F}_{T}-measurable
- Existence of a continuous version
- The martingale property

Motivation for the Itô formula

Let us recall the computation of the Itô integral $\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t$.

Example

Assume $B_{0}=0$. We consider the sequence of elementary functions

$$
\phi_{n}(t, \omega)=\sum_{j} B_{j}(\omega) \mu_{\left[t, t_{j+1}\right)}(t),
$$

where $B_{j}=B_{t_{j}}$. Then

$$
\begin{aligned}
E\left[\int_{0}^{t}\left(\phi_{n}-B_{s}\right)^{2} \mathrm{~d} s\right] & =E\left[\sum_{j} \int_{t_{j}}^{t_{j+1}}\left(B_{j}-B_{s}\right)^{2} \mathrm{~d} s\right] \\
& =\sum_{j} \int_{t_{j}}^{t_{j+1}}\left(s-t_{j}\right) \mathrm{d} s \\
& =\sum_{j} \frac{1}{2}\left(t_{j+1}-t_{j}\right)^{2} \rightarrow 0 \quad \text { as } \Delta t_{j} \rightarrow 0 .
\end{aligned}
$$

Motivation for the Itô formula

Example

Thus,

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\lim _{\Delta t_{j} \rightarrow 0} \int_{0}^{t} \phi_{n} \mathrm{~d} B_{s}=\lim _{\Delta t_{j} \rightarrow 0} \sum_{j} B_{j} \Delta B_{j}
$$

We now note that

$$
\Delta\left(B_{j}^{2}\right)=B_{j+1}^{2}-B_{j}^{2}=\left(B_{j+1}-B_{j}\right)^{2}+2 B_{j}\left(B_{j+1}-B_{j}\right)=\left(\Delta B_{j}\right)^{2}+2 B_{j} \Delta B_{j}
$$

and therefore

$$
B_{t}^{2}=\sum_{j} \Delta\left(B_{j}^{2}\right)=\sum_{j}\left(\Delta B_{j}\right)^{2}+2 \sum_{j} B_{j} \Delta B_{j},
$$

that is

$$
\sum_{j} B_{j} \Delta B_{j}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} \sum_{j}\left(\Delta B_{j}\right)^{2}
$$

Noting that $\sum_{j}\left(\Delta B_{j}\right)^{2} \rightarrow t$ in $L^{2}(P)$ as $\Delta t_{j} \rightarrow 0$, we obtain the result.

Motivation for the Itô formula

Example

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t
$$

- This example illustrates that the definition of Itô integral is not very useful when we try to evaluate a given integral.
- We face the same kind of problems posed by the computation of ordinary Riemann integrals using its definition.
» But to compute Riemann integrals we do not usually use its definition, but rather a combination of the fundamental theorem of calculus and the chain rule.
- However, in the context of stochastic calculus, we have no differentiation theory, only integration theory.
- Nevertheless, it is possible to establish an Itô integral version of the chain rule, called the Itô formula.
- The Itô formula turns out to be extremely useful for evaluating Itô integrals.

Itô processes

- From the identity

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t
$$

we get

$$
\frac{1}{2} B_{t}^{2}=\frac{1}{2} t+\int_{0}^{t} B_{s} \mathrm{~d} B_{s}
$$

- Note that the image of the Itô integral $B_{t}=\int_{0}^{t} \mathrm{~d} B_{s}$ by the map $g(x)=\frac{1}{2} x^{2}$ is not again an Itô integral of the form

$$
\int_{0}^{t} f(s, \omega) \mathrm{d} B_{s}(\omega)
$$

but rather a combination of two integrals.

$$
\frac{1}{2} B_{t}^{2}=\int_{0}^{t} \frac{1}{2} \mathrm{~d} s+\int_{0}^{t} B_{s} \mathrm{~d} B_{s}
$$

- If we introduce Itô processes (also called stochastic integrals) as sums of a Itô integral and a Riemann integral then this family of integrals is stable under smooth maps.

Itô processes

- Before giving a precise definition of Itô processes, let us recall the definition of the class of functions $\mathcal{W}_{\mathcal{H}}$.

Definition (Class of functions $\mathcal{W}_{\mathcal{H}}(S, T)$)

We denote by $\mathcal{W}_{\mathcal{H}}(S, T)$ the class of functions $f:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ satisfying the following three conditions
(i) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$-measurable.
(ii)' There exists an increasing family of σ-algebras $\mathcal{H}_{t}, t \geq 0$ such that:
a) B_{t} is a martingale with respect to \mathcal{H}_{t}
b) $f(t, \omega)$ is \mathcal{H}_{t}-adapted.
(iii) $P\left[\int_{S}^{T} f(s, \omega)^{2} \mathrm{~d} s<\infty\right]=1$.

We denote by $\mathcal{W}_{\mathcal{H}}$ the set defined by $\mathcal{W}_{\mathcal{H}}=\cap_{T>0} \mathcal{W}_{\mathcal{H}}(0, T)$.
We denote by $\mathcal{W}_{\mathcal{H}}^{m \times n}(S, T)$ the set of $m \times n$ matrices with entries on $\mathcal{W}_{\mathcal{H}}(S, T)$.

Itô processes

Definition (1-dimensional Itô process)

Let B_{t} be 1-dimensional Brownian motion on a probability space (Ω, \mathcal{F}, P). A (1-dimensional) Itô process is a stochastic process X_{t} on (Ω, \mathcal{F}, P) of the form

$$
X_{t}=X_{0}+\int_{0}^{t} u(s, \omega) \mathrm{d} s+\int_{0}^{t} v(s, \omega) \mathrm{d} B_{s}
$$

where $v \in \mathcal{W}_{\mathcal{H}}$ so that

$$
P\left[\int_{0}^{t} v(s, \omega)^{2} \mathrm{~d} s<\infty \text { for all } t \geq 0\right]=1
$$

and u is \mathcal{H}_{t}-adapted and such that

$$
P\left[\int_{0}^{t}|u(s, \omega)| \mathrm{d} s<\infty \text { for all } t \geq 0\right]=1
$$

Itô processes

- An Itô process X_{t} of the form

$$
X_{t}=X_{0}+\int_{0}^{t} u(s, \omega) \mathrm{d} s+\int_{0}^{t} v(s, \omega) \mathrm{d} B_{s}
$$

can be written in the shorter differential form

$$
\mathrm{d} X_{t}=u \mathrm{~d} t+v \mathrm{~d} B_{t}
$$

- Recalling the example above, we note that the Itô process

$$
\frac{1}{2} B_{t}^{2}=\int_{0}^{t} \frac{1}{2} \mathrm{~d} s+\int_{0}^{t} B_{s} \mathrm{~d} B_{s}
$$

can be rewritten as

$$
\mathrm{d}\left(\frac{1}{2} B_{t}^{2}\right)=\frac{1}{2} \mathrm{~d} t+B_{t} \mathrm{~d} B_{t} .
$$

The 1-dimensional Itô formula

Theorem (The 1-dimensional Itô formula)

Let X_{t} be an Itô process given by

$$
\mathrm{d} X_{t}=u \mathrm{~d} t+v \mathrm{~d} B_{t}
$$

and let $g(t, x) \in C^{2}([0, \infty) \times \mathbb{R})$. Then

$$
Y_{t}=g\left(t, X_{t}\right)
$$

is again an Itô process, and

$$
\mathrm{d} Y_{t}=\frac{\partial g}{\partial t}\left(t, X_{t}\right) \mathrm{d} t+\frac{\partial g}{\partial x}\left(t, X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right)\left(\mathrm{d} X_{t}\right)^{2}
$$

where $\left(\mathrm{d} X_{t}\right)^{2}=\left(\mathrm{d} X_{t}\right) \cdot\left(\mathrm{d} X_{t}\right)$ is computed according to the "multiplication table"

$$
\mathrm{d} t \cdot \mathrm{~d} t=\mathrm{d} t \cdot \mathrm{~d} B_{t}=\mathrm{d} B_{t} \cdot \mathrm{~d} t=0, \quad \mathrm{~d} B_{t} \cdot \mathrm{~d} B_{t}=\mathrm{d} t
$$

The 1-dimensional Itô formula

Proof.

Observe that if we substitute

$$
\mathrm{d} X_{t}=u \mathrm{~d} t+v \mathrm{~d} B_{t}
$$

in

$$
\mathrm{d} Y_{t}=\frac{\partial g}{\partial t}\left(t, X_{t}\right) \mathrm{d} t+\frac{\partial g}{\partial x}\left(t, X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right)\left(\mathrm{d} X_{t}\right)^{2},
$$

and use the "multiplication table"

$$
\mathrm{d} t \cdot \mathrm{~d} t=\mathrm{d} t \cdot \mathrm{~d} B_{t}=\mathrm{d} B_{t} \cdot \mathrm{~d} t=0, \quad \mathrm{~d} B_{t} \cdot \mathrm{~d} B_{t}=\mathrm{d} t .
$$

we get the equivalent expression

$$
\begin{aligned}
g\left(t, X_{t}\right)= & g\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial g}{\partial t}\left(s, X_{s}\right)+u \frac{\partial g}{\partial x}\left(s, X_{s}\right)+\frac{1}{2} v^{2} \frac{\partial^{2} g}{\partial x^{2}}\left(s, X_{s}\right) \mathrm{d} s \\
& +\int_{0}^{t} v \frac{\partial g}{\partial x}\left(s, X_{s}\right) \mathrm{d} B_{s}
\end{aligned}
$$

which is still an Itô process.

The 1-dimensional Itô formula

Proof.

We can assume that:

1) the functions $g, \frac{\partial g}{\partial t}, \frac{\partial g}{\partial x}$ and $\frac{\partial^{2} g}{\partial x^{2}}$ are bounded.

If this is the case, we obtain the general case by approximating by C^{2} functions g_{n} such that $g_{n}, \frac{\partial g_{n}}{\partial t}, \frac{\partial g_{n}}{\partial x}$ and $\frac{\partial^{2} g_{n}}{\partial x^{2}}$ are bounded for each n and converge uniformly on compact subsets of $[0,+\infty) \times \mathbb{R}$ to $g, \frac{\partial g}{\partial t}, \frac{\partial g}{\partial x}$ and $\frac{\partial^{2} g}{\partial x^{2}}$, respectively.
2) $u(t, \omega)$ and $v(t, \omega)$ are elementary functions.

Because if $f \in \mathcal{W}_{\mathcal{H}}$ then for all t there exist step functions $f_{n} \in \mathcal{W}_{\mathcal{H}}$ such that

$$
\int_{0}^{t}\left|f-f_{n}\right| \mathrm{d} s \rightarrow 0 \quad \text { (in probability) }
$$

and, therefore,

$$
\int_{0}^{t} f(s, \omega) \mathrm{d} B_{s}(\omega)=\lim _{n \rightarrow \infty} \int_{0}^{t} f_{n}(s, \omega) \mathrm{d} B_{s}(\omega) \quad \text { (in probability) }
$$

The 1-dimensional Itô formula

Proof.

Using Taylor's theorem we get

$$
\begin{aligned}
g\left(t, X_{t}\right)= & g\left(0, X_{0}\right)+\sum_{j} \Delta g\left(t_{j}, X_{j}\right) \\
= & g\left(0, X_{0}\right)+\sum_{j} \frac{\partial g}{\partial t} \Delta t_{j}+\sum_{j} \frac{\partial g}{\partial x} \Delta X_{j} \\
& +\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial t^{2}}\left(\Delta t_{j}\right)^{2}+\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial t \partial x} \Delta t_{j} \Delta X_{j}+\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(\Delta X_{j}\right)^{2} \\
& +\sum_{j} R_{j},
\end{aligned}
$$

where

- the functions $g, \frac{\partial g}{\partial t}, \frac{\partial g}{\partial x}, \frac{\partial^{2} g}{\partial t^{2}}, \frac{\partial^{2} g}{\partial t \partial x}$ and $\frac{\partial^{2} g}{\partial x^{2}}$ are all evaluated at $\left(t_{j}, X_{t_{j}}\right)$.
- $\Delta t_{j}=t_{j+1}-t_{j}, \Delta X_{j}=X_{j+1}-X_{j}, \Delta g\left(t_{j}, X_{j}\right)=g\left(t_{j+1}, X_{j+1}\right)-g\left(t_{j}, X_{j}\right)$.
- $R_{j}=o\left(\left|\Delta t_{j}\right|^{2}+\left|\Delta X_{j}\right|^{2}\right)$ for all j.

The 1-dimensional Itô formula

Proof.

If $\Delta t_{j} \rightarrow 0$ then

$$
\sum_{j} \frac{\partial g}{\partial t} \Delta t_{j}=\sum_{j} \frac{\partial g}{\partial t}\left(t_{j}, X_{t_{j}}\right) \Delta t_{j} \rightarrow \int_{0}^{t} \frac{\partial g}{\partial s}\left(s, X_{s}\right) \mathrm{d} s
$$

and

$$
\sum_{j} \frac{\partial g}{\partial x} \Delta X_{j}=\sum_{j} \frac{\partial g}{\partial x}\left(t_{j}, X_{t_{j}}\right) \Delta X_{j} \rightarrow \int_{0}^{t} \frac{\partial g}{\partial x}\left(s, X_{s}\right) \mathrm{d} X_{s}
$$

Since u and v are elementary, we get

$$
\begin{aligned}
\sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(\Delta X_{j}\right)^{2}= & \sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(t_{j}, X_{t_{j}}\right) u_{j}^{2}\left(\Delta t_{j}\right)^{2}+\sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(t_{j}, X_{t_{j}}\right) u_{j} v_{j} \Delta t_{j} \Delta B_{j} \\
& +\sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(t_{j}, X_{t_{j}}\right) v_{j}^{2}\left(\Delta B_{j}\right)^{2}
\end{aligned}
$$

where $u_{j}=u_{j}\left(t_{j}, \omega\right)$ and $v_{j}=v_{j}\left(t_{j}, \omega\right)$.

The 1-dimensional Itô formula

Proof.

The first two terms in the previous equality tend to zero as $\Delta t_{j} \rightarrow 0$. To see this, note that, for instance
$E\left[\left(\sum_{j} \frac{\partial^{2} g}{\partial x^{2}} u_{j} v_{j} \Delta t_{j} \Delta B_{j}\right)^{2}\right]=\sum_{j} E\left[\left(\frac{\partial^{2} g}{\partial x^{2}} u_{j} v_{j}\right)^{2}\right]\left(\Delta t_{j}\right)^{3} \rightarrow 0$ as $\Delta t_{j} \rightarrow 0$.
In a similar fashion the terms

$$
\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial t^{2}}\left(\Delta t_{j}\right)^{2}
$$

and

$$
\frac{1}{2} \sum_{j} \frac{\partial^{2} g}{\partial t \partial x} \Delta t_{j} \Delta X_{j}
$$

also tend to zero as $\Delta t_{j} \rightarrow 0$.

The 1-dimensional Itô formula

Proof.

It remains to be proved that

$$
\sum_{j} \frac{\partial^{2} g}{\partial x^{2}}\left(t_{j}, X_{t_{j}}\right) v_{j}^{2}\left(\Delta B_{j}\right)^{2} \rightarrow \int_{0}^{t} v^{2} \frac{\partial^{2} g}{\partial x^{2}} \mathrm{~d} s \quad \text { in } L^{2}(P) \text { as } \Delta t_{j} \rightarrow 0 .
$$

To prove it, we introduce the notation $a(t)=v^{2}(t, \omega) \frac{\partial^{2} g}{\partial x^{2}}\left(t, X_{t}\right), a_{j}=a\left(t_{j}\right)$ and consider
$E\left[\left(\sum_{j} a_{j}\left(\Delta B_{j}\right)^{2}-\sum_{j} a_{j} \Delta t_{j}\right)^{2}\right]=\sum_{i, j} E\left[a_{i} a_{j}\left(\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right)\left(\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right)\right]$
If $i<j$ then the terms $a_{i} a_{j}\left(\left(\Delta B_{i}\right)^{2}-\Delta t_{i}\right)$ and $\left(\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right)$ are independent and so the corresponding terms in the sum vanish in this case and similarly for $i>j$.

The 1-dimensional Itô formula

Proof.

Therefore, we are left with

$$
\begin{aligned}
\sum_{j} E\left[a_{j}^{2}\left(\left(\Delta B_{j}\right)^{2}-\Delta t_{j}\right)^{2}\right] & =\sum_{j} E\left[a_{j}^{2}\right] E\left[\left(\Delta B_{j}\right)^{4}-2\left(\Delta B_{j}\right)^{2}\left(\Delta t_{j}\right)+\left(\Delta t_{j}\right)^{2}\right] \\
& =\sum_{j} E\left[a_{j}^{2}\right] E\left[3\left(\Delta t_{j}\right)^{2}-2\left(\Delta t_{j}\right)^{2}+\left(\Delta t_{j}\right)^{2}\right] \\
& =2 \sum_{j} E\left[a_{j}^{2}\right]\left(\Delta t_{j}\right)^{2} \quad \text { as } \Delta t_{j} \rightarrow 0 .
\end{aligned}
$$

Therefore, we have established that

$$
\sum_{j} a_{j}\left(\Delta B_{j}\right)^{2} \rightarrow \int_{0}^{t} a(s) \mathrm{d} s \quad \text { in } L^{2}(P) \text { as } \Delta t_{j} \rightarrow 0
$$

which is also often expressed as $\left(\mathrm{d} B_{t}\right)^{2}=\mathrm{d} t$
The arguments above also prove that $\sum_{j} R_{j} \rightarrow 0$ as $\Delta t_{j} \rightarrow 0$, which completes the proof of the Itô formula.

The 1-dimensional Itô formula

- Note that:
- it is enough that $g(t, x)$ is C^{2} on $[0, \infty) \times U$, if $U \subset \mathbb{R}$ is an open set such that $X_{t}(\omega) \in U$ for all $t \geq 0$ and $\omega \in \Omega$.
- it is enough to assume that $g(t, x)$ is C^{1} in t and C^{2} in x.

The 1-dimensional Itô formula

Example

To compute the integral

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}
$$

one can choose $X_{t}=B_{t}$ and $g(t, x)=\frac{1}{2} x^{2}$ and apply Itô formula to

$$
Y_{t}=g\left(t, B_{t}\right)=\frac{1}{2} B_{t}^{2}
$$

to get

$$
\begin{aligned}
\mathrm{d} Y_{t}=g\left(t, B_{t}\right) & =\frac{\partial g}{\partial t}\left(t, B_{t}\right) \mathrm{d} t+\frac{\partial g}{\partial x}\left(t, B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, B_{t}\right)\left(\mathrm{d} B_{t}\right)^{2} \\
& =B_{t} \mathrm{~d} B_{t}+\frac{1}{2} \mathrm{~d} t \\
& =\frac{1}{2} \mathrm{~d} t+B_{t} \mathrm{~d} B_{t} .
\end{aligned}
$$

The 1-dimensional Itô formula

Example
Therefore,

$$
\mathrm{d}\left(\frac{1}{2} B_{t}^{2}\right)=\frac{1}{2} \mathrm{~d} t+B_{t} \mathrm{~d} B_{t}
$$

and thus

$$
\frac{1}{2} B_{t}^{2}=\frac{t}{2}+\int_{0}^{t} B_{s} \mathrm{~d} B_{s}
$$

or

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2} B_{t}^{2}-\frac{t}{2}
$$

The 1-dimensional Itô formula

Example

Let us assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1}. To compute the integral

$$
\int_{0}^{t} f(s) \mathrm{d} B_{s}
$$

we can use some real variable calculus intuition, i.e. it seem reasonable that a term of the form $f(t) B_{t}$ should appear when computing the integral above. Therefore, we choose $X_{t}=B_{t}$ and $g(t, x)=f(t) x$ and apply Itô formula to

$$
Y_{t}=g\left(t, B_{t}\right)=f(t) B_{t}
$$

to get

$$
\begin{aligned}
\mathrm{d} Y_{t}=g\left(t, B_{t}\right) & =\frac{\partial g}{\partial t}\left(t, B_{t}\right) \mathrm{d} t+\frac{\partial g}{\partial x}\left(t, B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}\left(t, B_{t}\right)\left(\mathrm{d} B_{t}\right)^{2} \\
& =f^{\prime}(t) B_{t} \mathrm{~d} t+f(t) \mathrm{d} B_{t}
\end{aligned}
$$

The 1-dimensional Itô formula

Example

Therefore,

$$
\mathrm{d}\left(f(t) B_{t}\right)=f^{\prime}(t) B_{t} \mathrm{~d} t+f(t) \mathrm{d} B_{t}
$$

and thus

$$
f(t) B_{t}=\int_{0}^{t} f^{\prime}(s) B_{s} \mathrm{~d} s+\int_{0}^{t} f(s) \mathrm{d} B_{s}
$$

or

$$
\int_{0}^{t} f(s) \mathrm{d} B_{s}=f(t) B_{t}-\int_{0}^{t} f^{\prime}(s) B_{s} \mathrm{~d} s
$$

The 1-dimensional Itô formula

- We can extend the previous reasoning to obtain the following analogue of the integration by parts formula.

Theorem (Integration by parts)

Suppose the $f(s, \omega)=f(s)$ only depends on s and that f is continuous and of bounded variation in $[0, t]$. Then

$$
\int_{0}^{t} f(s) \mathrm{d} B_{s}=f(t) B_{t}-\int_{0}^{t} B_{s} \mathrm{~d} f(s) .
$$

The Multi-dimensional Itô formula

Definition (Multi-dimensional Itô process)

Let $B(t, \omega)=\left(B_{1}(t, \omega), \ldots, B_{m}(t, \omega)\right)$ denote m-dimensional Brownian motion. Assume that for each $i \in\{1, \ldots, n\}$ and each $j \in\{1, \ldots, m\}$ we have that the processes $u_{i}=u_{i}(t, \omega)$ and $v_{i j}=v_{i j}(t, \omega)$ are such that $v_{i j} \in \mathcal{W}_{\mathcal{H}}$ and

$$
P\left[\int_{0}^{t} v_{i j}(s, \omega)^{2} \mathrm{~d} s<\infty \text { for all } t \geq 0\right]=1
$$

and u_{i} is \mathcal{H}_{t}-adapted and such that

$$
P\left[\int_{0}^{t}\left|u_{i}(s, \omega)\right| \mathrm{d} s<\infty \text { for all } t \geq 0\right]=1 .
$$

A (Multi-dimensional) Itô process is a stochastic process of the form

$$
\left\{\begin{array}{cccccc}
\mathrm{d} X_{1} & =u_{1} \mathrm{~d} t+v_{11} \mathrm{~d} B_{1}+\cdots & +\cdots & +v_{1 m} \mathrm{~d} B_{m} \\
\vdots & \vdots \\
\mathrm{~d} X_{n} & =u_{n} \mathrm{~d} t+v_{n 1} \mathrm{~d} B_{1}+\ldots & & + & +v_{n m} \mathrm{~d} B_{m}
\end{array}\right.
$$

The Multi-dimensional Itô formula

- Note that one could also represent a Multi-dimensional Itô process on matrix form

$$
\mathrm{d} X=u \mathrm{~d} t+v \mathrm{~d} B
$$

where

$$
\begin{array}{rlrl}
X(t) & =\left(\begin{array}{c}
X_{1}(t) \\
\vdots \\
X_{n}(t)
\end{array}\right) & , \quad u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \\
v & =\left(\begin{array}{ccc}
v_{11} & \cdots & v_{1 m} \\
\vdots & & \vdots \\
v_{n 1} & \cdots & v_{n m}
\end{array}\right), \quad \mathrm{d} B(t)=\left(\begin{array}{c}
\mathrm{d} B_{1}(t) \\
\vdots \\
\mathrm{d} B_{m}(t)
\end{array}\right) .
\end{array}
$$

The Multi-dimensional Itô formula

Theorem (The Multi-dimensional Itô formula)

Let

$$
\mathrm{d} X(t)=u \mathrm{~d} t+v \mathrm{~d} B(t)
$$

be an n-dimensional ltô process and let $g(t, x)=\left(g_{1}(t, x), \ldots, g_{p}(t, x)\right)$ be a C^{2} map from $[0, \infty) \times \mathbb{R}^{n}$ into \mathbb{R}^{p}.
Then the process

$$
Y(t)=g(t, X(t))
$$

is again an Itô process and its kth component Y_{k} is given by

$$
\mathrm{d} Y_{k}=\frac{\partial g_{k}}{\partial t}(t, X) \mathrm{d} t+\sum_{i=1}^{n} \frac{\partial g_{k}}{\partial x_{i}}(t, X) \mathrm{d} X_{i}+\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial^{2} g_{k}}{\partial x_{i} \partial x_{j}}(t, X) \mathrm{d} X_{i} \mathrm{~d} X_{j},
$$

where the following "multiplication table" holds

$$
\mathrm{d} t . \mathrm{d} t=\mathrm{d} t \cdot \mathrm{~d} B_{i}=\mathrm{d} B_{i} \cdot \mathrm{~d} t=0, \quad \mathrm{~d} B_{i} . \mathrm{d} B_{j}=\delta_{i j} \mathrm{~d} t .
$$

- The proof is analogous to the 1 -dimensional version.

The Multi-dimensional Itô formula

Example

Let $B=\left(B_{1}, \ldots, B_{n}\right)$ be a Brownian motion in \mathbb{R}^{n} and $n \geq 2$. Consider the stochastic process given by

$$
R(t, \omega)=|B(t, \omega)|=\left(B_{1}^{2}(t, \omega)+\cdots+B_{n}^{2}(t, \omega)\right)^{1 / 2},
$$

i.e. the distance to the origin to the Brownian motion B.

Although $g(t, x)=|x|$ is not a C^{2} function at the origin, Itô's formula still holds since B never hits the origin a.s. when $n \geq 2$. We get

$$
\mathrm{d} R=\sum_{i=1}^{n} \frac{B_{i}}{R} \mathrm{~d} B_{i}+\frac{n-1}{2 R} \mathrm{~d} t .
$$

The process R above is called the n-dimensional Bessel process.

