Some properties and extensions of the Itô integral

Diogo Pinheiro

CEMAPRE - ISEG - UTL dpinheiro@iseg.utl.pt

October 21, 2009

・ロト ・ 戸 ・ ・ ヨ ・ ・

A stochastic integral for smooth functions

- Let $g:[0,1] \to \mathbb{R}$ be a continuously differentiable (deterministic) function with g(0) = g(1) = 0.
- Define (integration by parts analogue):

$$\int_0^1 g(t) \mathrm{d} B_t(\omega) = \int_0^1 g'(t) B_t(\omega) \mathrm{d} t \; .$$

• The resulting integral has the following nice properties:

(i)
$$E\left[\int_0^1 g dB\right] = 0.$$

(ii) $E\left[\left(\int_0^1 g dB\right)^2\right] = \int_0^1 g^2 dt.$

< ロ > < 同 > < 回 > < 回 >

A stochastic integral for smooth functions

• Suppose now that $g \in L^2(0,1)$.

• Then, we can take a sequence of C^1 function $\{g_n\}$, as above, such that

$$\int_0^1 (g-g_n)^2 \mathrm{d}t o 0 \qquad ext{as } n o \infty.$$

By property (ii) above, we get that

$$\mathsf{E}\left[\left(\int_0^1 g_n \mathrm{d}B - \int_0^1 g_m \mathrm{d}B\right)^2\right] = \int_0^1 (g_n - g_m)^2 \mathrm{d}t \;,$$

and therefore, $\{\int_0^1 g_n \mathrm{d}B\}$ is a Cauchy sequence in $L^2(\Omega)$ and we can define

$$\int_0^1 g \mathrm{d} B = \lim_{n \to \infty} \int_0^1 g_n \mathrm{d} B \qquad \text{limit in } L^2(\Omega).$$

- ▶ The extended definition still satisfies properties (i) and (ii) above.
- ► This is a reasonable definition for ∫₀¹ gdB, except that this only makes sense for functions g ∈ L²(0,1), and not for stochastic processes.

・ロト ・部 ト ・ ヨ ト ・ ヨ ト

Definition

Denote by $\{\mathcal{F}_t\}_t$ the filtration generated by the one-dimensional Brownian motion B_t and by \mathcal{B} the Borel σ -algebra on $[0, \infty)$. Let $\mathcal{V} = \mathcal{V}(S, T)$ be the class of functions $f : [0, \infty) \times \Omega \to \mathbb{R}$ such that (i) $(t, \omega) \to f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ measurable. (ii) $f(t, \omega)$ is \mathcal{F}_t adapted. (iii) $E\left[\int_S^T (f(t, \omega))^2 \mathrm{d}t\right] < \infty$.

• For functions $f \in \mathcal{V}$ we have defined the Itô integral

$$\mathcal{I}[f](\omega) = \int_{S}^{T} f(t,\omega) \mathrm{d}B_t(\omega) \;,$$

where B_t is a one-dimensional Brownian motion, as the limit of the integrals of a sequence of elementary functions converging to f.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Elementary function)

A function $\phi \in \mathcal{V}$ is called elementary if it has the form

$$\phi(t,\omega) = \sum_j e_j(\omega) I_{[t_j,t_{j+1})}(t) \; .$$

ullet For elementary functions $\phi(t,\omega)$ we define the stochastic integral as

$$\int_{S}^{T} \phi(t,\omega) \mathrm{d}B_t(\omega) = \sum_{j\geq 0} e_j(\omega) [B_{t_{j+1}} - B_{t_j}](\omega) \; ,$$

・ロト ・回 ・ ・ ヨト ・

Definition (The Itô integral)

Let $f \in \mathcal{V}(S, T)$. Then the *ltô integral* of f (from S to T) is defined by

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) dB_{t}(\omega) \quad \text{limit in } L^{2}(P) , \qquad (1)$$

where $\{\phi_n\}$ is a sequence of elementary functions such that

$$E\left[\int_{S}^{T} (f(t,\omega) - \phi_n(t,\omega))^2 \mathrm{d}t\right] \to 0 \quad \text{as } n \to \infty .$$
(2)

The limit in (1) exists and does not depend on the choice of {φ_n}, as long as (2) holds.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Corollary (The Itô isometry)

$$E\left[\left(\int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega)\right)^{2}\right] = E\left[\int_{S}^{T} \left(f(t,\omega)\right)^{2} \mathrm{d}t\right] \quad \text{for all } f \in \mathcal{V}(S,T).$$

Corollary

If
$$f(t,\omega) \in \mathcal{V}(S,T)$$
, $f_n(t,\omega) \in \mathcal{V}(t,\omega)$ for $n = 1, 2, ...$ and

$$E\left[\int_{S}^{T}(f_{n}(t,\omega)-f(t,\omega))^{2}\mathrm{d}t
ight]
ightarrow0$$
 as $n
ightarrow\infty$,

then

$$\int_{\mathcal{S}}^{T} f_n(t,\omega) \mathrm{d}B_t(\omega) \to \int_{\mathcal{S}}^{T} f(t,\omega) \mathrm{d}B_t(\omega) \quad \text{in } L^2(P) \text{ as } n \to \infty.$$

Theorem Let $f, g \in \mathcal{V}(0, T)$ and let $0 \leq S < U < T$. Then: (i) $\int_{S}^{T} f dB_{t} = \int_{S}^{U} f dB_{t} + \int_{U}^{T} f dB_{t}$ for a.e. $\omega \in \Omega$. (ii) $\int_{S}^{T} af + bg dB_{t} = c \int_{S}^{T} f dB_{t} + b \int_{S}^{T} g dB_{t}$ for a.e. $\omega \in \Omega$ and all $a, b \in \mathbb{R}$. (iii) $E\left[\int_{S}^{T} f dB_{t}\right] = 0$. (iv) $\int_{S}^{T} f dB_{t}$ is \mathcal{F}_{T} -measurable.

Proof.

The statements above clearly hold for all elementary functions. The results then follow trivially by taking limits.

< ロ > < 同 > < 回 > < 回 >

Definition (Martingale)

Let (Ω, \mathcal{F}, P) be a probability space and $X = \{X_t : t \ge 0\}$ a stochastic process on it.

We say that X_t is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$ if

- (i) X is adapted to \mathcal{F}_t .
- (ii) $E[|X_t|] < \infty$ for all t.
- (iii) $E[X_s|\mathcal{F}_t] = X_t$ for all $s \ge t$.

We say that X_t is a submartingale with respect to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$ if (i) and (ii) above hold and condition (iii) is replaced by

(iii)' $E[X_s | \mathcal{F}_t] \ge X_t$ for all $s \ge t$.

We define a supermartingale in an analogous way.

< ロ > < 同 > < 回 > < 回 >

Lemma

Let (Ω, \mathcal{F}, P) be a probability space and $X = \{X_t : t \ge 0\}$ a real-valued martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\ge 0}$. Suppose that $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function, i.e

 $f(tx+(1-t)y) \leq tf(x)+(1-t)f(y)$ for all $x,y\in\mathbb{R}$ and all $t\in[0,1].$

Then if $E[\phi(X_t)] < \infty$ for all $t \ge 0$, $\phi(X_t)$ is a submartingale.

Proof.

The result follows from Jensen's inequality: If $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function and $E[|\phi(X)|] < \infty$ then

$$\phi\left(E[X|\mathcal{F}]\right) \leq E\left[\phi\left(X\right)|\mathcal{F}
ight]$$
.

・ロト ・ 同ト ・ ヨト ・ ヨ

Example

Brownian motion B_t in \mathbb{R}^n is a martingale with respect to the filtration \mathcal{F}_t generated by $\{B_t : t \ge 0\}$:

- (i) B_t is clearly adapted to \mathcal{F}_t .
- (ii) We note that for all t

$$(E[|B_t|])^2 \leq E[|B_t|^2] = E[|B_t - B_0|^2] + 2E[B_t \cdot B_0] - E[|B_0|^2] = nt + E[|B_0|^2]$$

(iii) Assume $s \ge t$. Using Brownian motion properties, we get

$$E[B_s|\mathcal{F}_t] = E[B_s - B_t + B_t|\mathcal{F}_t]$$

= $E[B_s - B_t + B_t|\mathcal{F}_t] + E[B_t|\mathcal{F}_t]$
= B_t .

Example

The stochastic process $B_t^2 - t$ in \mathbb{R} is a martingale with respect to the filtration \mathcal{F}_t generated by $\{B_t : t \ge 0\}$:

- (i) B_t is clearly adapted to \mathcal{F}_t .
- (ii) We note that for all $\ensuremath{\mathsf{t}}$

$$E[B_t^2 - t] = E[B_t^2] - t$$

= $t + E[B_0^2] - t = E[B_0^2]$

(iii) Assume $s \ge t$. Using Brownian motion properties, we get

$$E[B_{s}^{2} - s|\mathcal{F}_{t}] = E[(B_{s} - B_{t})^{2} + 2B_{s}B_{t} - B_{t}^{2}|\mathcal{F}_{t}] - s$$

= $E[(B_{s} - B_{t})^{2}|\mathcal{F}_{t}] + 2E[B_{s}B_{t}|\mathcal{F}_{t}] - E[B_{t}^{2}|\mathcal{F}_{t}] - s$
= $s - t + 2B_{t}E[B_{s}|\mathcal{F}_{t}] - B_{t}^{2} - s$
= $B_{t}^{2} - t$.

(日)

• For the proof of the next result we will need two auxiliary results: Doob's martingale inequality and the Borel–Cantelli lemma.

Theorem (Doob's martingale inequality)

If X_t is a martingale such that $t \to X_t(\omega)$ is continuous a.s., then for all $p \ge 1$, $T \ge 0$ and all $\lambda > 0$

$$P\left[\sup_{0\leq t\leq T}|X_t|\geq \lambda
ight]\leq rac{1}{\lambda^p}E\left[|X_T|^p
ight]\;.$$

 This is a generalization of the Chebychev's inequality: Let X : Ω → ℝⁿ be a random variable such that E[|X|^p] < ∞ for some p, 0

$$P\{|X| \ge \lambda\} \le rac{1}{\lambda^p} E[|X|^p] \quad ext{for all } \lambda > 0.$$

<ロ> (日) (日) (日) (日) (日)

• We will start by proving a discrete version of Doob's martingale inequality.

Theorem (Discrete martingale inequality) If $\{X_n\}_{n \in \mathbb{N}}$ is a submartingale then

$$P\left[\max_{1\leq k\leq N}X_k\geq\lambda
ight]\leqrac{1}{\lambda}E\left[X_N^+
ight]\;,$$

where $X^+ = \max\{0, X\}$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Proof.

Let us define the sets

$$A_k = \bigcap_{j=1}^{k-1} \{ \omega \in \Omega : X_j \le \lambda \} \cap \{ \omega \in \Omega : X_k > \lambda \} , \quad k = 1, 2, ..., N .$$

Then the set

$$A = \left\{ \omega \in \Omega : \max_{1 \le k \le N} \{X_k > \lambda\} \right\}$$

can be written as the disjoint union of the sets $A_1, A_2, ..., A_N$, i.e.

$$A = \bigcup_{k=1}^{N} A_k$$

Proof.

Noting that

$$\int_{A_k} X_k \mathrm{d}P \geq \lambda P(A_k)$$

we have

$$\lambda P(A) = \lambda \sum_{k=1}^{N} P(A_k) \leq \sum_{k=1}^{N} E\left[I_{A_k} X_k\right] \;.$$

Then

$$\begin{split} E[X_N^+] &\geq \sum_{k=1}^N E\left[I_{A_k}X_N^+\right] = \sum_{k=1}^N E[E[I_{A_k}X_N^+|X_1,...X_k]] \\ &= \sum_{k=1}^N E[I_{A_k}E[X_N^+|X_1,...X_k]] \geq \sum_{k=1}^N E[I_{A_k}E[X_N|X_1,...X_k]] \\ &\geq \sum_{k=1}^N E[I_{A_k}X_k] \geq \lambda P(A) \;. \end{split}$$

Proof.

Thus, we have proved that

$$\lambda P\left[\max_{1\leq k\leq N} X_k \geq \lambda\right] \leq \int_{\{\omega\in\Omega:\max_{1\leq k\leq N} X_k > \lambda\}} X_n^+ \mathrm{d}P$$

Corollary

If $\{X_n\}_{n\in\mathbb{N}}$ is a martingale and $E\left[|X_n|^p
ight]<\infty$ for some $p\geq 1$ and all $n\in\mathbb{N}$ then

$$P\left[\max_{1\leq k\leq N}|X_k|\geq\lambda
ight]\leqrac{1}{\lambda^p}E\left[|X_N|^p
ight] ext{ for any }\lambda>0 ext{ and }N\in\mathbb{N}.$$

Proof.

Follows from the previous discrete martingale inequality and the fact that $\{|X_n|^p\}_{n\in\mathbb{N}}$ is a submartingale.

Diogo Pinheiro (CEMAPRE)

Proof of the Doob's martingale inequality.

Let X_t be a martingale such that $t \to X_t(\omega)$ is continuous a.s.. Choose $\lambda > 0$ and t > 0 and select a partition of [0, t] such that $0 = t_0 < t_1 < ... < t_n = t$. Note that $X(t_i)_{i=0}^n$ is a discrete martingale and therefore the discrete martingale inequality applies.

The proof is completed by choosing smaller partitions and passing to the limit.

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

Theorem (Borel–Cantelli lemma)

Let $(E_n)_{n\in\mathbb{N}}$ be a sequence of events in some probability space (Ω, \mathcal{F}, P) such that

$$\sum_n P(E_n) < \infty \ .$$

Then

$$P\left(\limsup_{n\to\infty} E_n\right) = P\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}E_k\right) = 0 ,$$

i.e., the probability that infinitely many events E_n 's occur is zero.

Proof.

Note that

$$P\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}E_{k}\right)=\lim_{n\to\infty}P\left(\bigcup_{k=n}^{\infty}E_{k}\right)\leq\limsup_{n\to\infty}\sum_{k=n}^{\infty}P(E_{k})=0$$

since
$$\sum_{k=n}^{\infty} P(E_k) < \infty$$
.

Diogo Pinheiro (CEMAPRE)

Theorem (Itô integral has a continuous version)

Let $f \in \mathcal{V}(0, T)$. Then there exists a t-continuous version of

$$\int_0^t f(s,\omega) \mathrm{d} B_s(\omega) \;, \qquad 0 \leq t \leq \mathcal{T} \;,$$

that is, there exists a t-continuous stochastic process J_t on (Ω, \mathcal{F}, P) such that

$$P\left[J_t = \int_0^t f dB\right] =$$
 for all $t, 0 \le t \le T$.

(日)

Proof.

Define a sequence $\phi_n = \phi_n(t, \omega)$ of elementary functions

$$\phi_n(t,\omega) = \sum_j e_j^{(n)}(\omega) I_{[t_j^{(n)},t_{j+1}^{(n)})}(t)$$

such that

$$E\left[\int_0^T (f-\phi_n)^2 \mathrm{d}t\right] \to 0 \qquad \text{when } n \to \infty.$$

Put

$$I_n = I_n(t,\omega) = \int_0^t \phi_n(s,\omega) \mathrm{d}B_s(\omega)$$

and

$$I_t = I_t(t,\omega) = \int_0^t f(s,\omega) \mathrm{d}B_s(\omega) \;, \qquad 0 \leq t \leq T \;.$$

Then I_n is clearly continuous for all $n \in \mathbb{N}$. Furthermore, I_n is also a martingale with respect to the filtration \mathcal{F}_t for all n.

Proof.

Ε

Let us prove that I_n is a martingale. Let s > t:

$$\begin{split} \left[I_n(s,\omega) | \mathcal{F}_t \right] &= E\left[\int_0^s \phi_n \mathrm{d}B | \mathcal{F}_t \right] \\ &= E\left[\int_0^t \phi_n \mathrm{d}B + \int_t^s \phi_n \mathrm{d}B | \mathcal{F}_t \right] \\ &= \int_0^t \phi_n \mathrm{d}B + E\left[\int_t^s \phi_n \mathrm{d}B | \mathcal{F}_t \right] \\ &= \int_0^t \phi_n \mathrm{d}B + E\left[\sum_{t \leq t_j^{(n)} \leq t_{j+1}^{(n)} \leq s} e_j^{(n)} \Delta B_j | \mathcal{F}_t \right] \\ &= \int_0^t \phi_n \mathrm{d}B + \sum_{t \leq t_j^{(n)} \leq t_{j+1}^{(n)} \leq s} E\left[e_j^{(n)} \Delta B_j | \mathcal{F}_t \right] \;. \end{split}$$

We need to prove that the expected value on the right hand side is equal to zero.

Proof.

We use the following property of conditional expectations: "if \mathcal{G} and \mathcal{H} are σ -algebras such that $\mathcal{G} \subset \mathcal{H}$ then $E[X|\mathcal{G}] = E[E[X|\mathcal{H}]|\mathcal{G}]$ " to obtain

$$\begin{split} E\left[I_n(s,\omega)|\mathcal{F}_t\right] &= \int_0^t \phi_n \mathrm{d}B + \sum_{\substack{t \le t_j^{(n)} \le t_{j+1}^{(n)} \le s}} E\left[e_j^{(n)} \Delta B_j|\mathcal{F}_t\right] \\ &= \int_0^t \phi_n \mathrm{d}B + \sum_{\substack{t \le t_j^{(n)} \le t_{j+1}^{(n)} \le s}} E\left[E\left[e_j^{(n)} \Delta B_j|\mathcal{F}_{t_j^{(n)}}\right]|\mathcal{F}_t\right] \\ &= \int_0^t \phi_n \mathrm{d}B + \sum_{\substack{t \le t_j^{(n)} \le t_{j+1}^{(n)} \le s}} E\left[e_j^{(n)} E\left[\Delta B_j|\mathcal{F}_{t_j^{(n)}}\right]|\mathcal{F}_t\right] \\ &= \int_0^t \phi_n \mathrm{d}B = I_n(t,\omega) \;. \end{split}$$

Proof.

Hence $I_n - I_m$ is also an \mathcal{F}_t -martingale, so by the martingale inequality and the ltô isometry it follows that

$$P\left[\sup_{0 \le t \le T} |I_n(t,\omega) - I_m(t,\omega)| > \epsilon\right] \le \frac{1}{\epsilon^2} E\left[|I_n(T,\omega) - I_m(T,\omega)|^2\right]$$
$$= \frac{1}{\epsilon^2} E\left[\left|\int_0^T (\phi_n - \phi_m)^2 \mathrm{d}s\right|\right] \to 0$$

as $n, m \to \infty$.

Hence, we can choose a subsequence $n_k o \infty$ such that

$$P\left[\sup_{0\leq t\leq T}\left|I_{n_{k+1}}(t,\omega)-I_{n_k}(t,\omega)\right|>2^{-k}\right]<2^{-k}$$

By the Borel-Cantelli lemma

$$P\left[\sup_{0\leq t\leq T} |I_{n_{k+1}}(t,\omega) - I_{n_k}(t,\omega)| > 2^{-k} \text{ for infinitely many } k\right] = 0 \ .$$

Diogo Pinheiro (CEMAPRE)

Proof.

So for almost all $\omega \in \Omega$ there exists $k_1(\omega)$ such that

$$\sup_{0\leq t\leq \mathcal{T}} |I_{n_{k+1}}(t,\omega) - I_{n_k}(t,\omega)| \leq 2^{-k} \text{ for } k\geq k_1(\omega) \ .$$

Therefore $I_{n_k}(t,\omega)$ is uniformly convergent for $t \in [0, T]$ for a.a. $\omega \in \Omega$. Thus, the limit denoted by $J_t(\omega)$ is *t*-continuous for for $t \in [0, T]$ a.s.. Since $I_{n_k}(t, \cdot) \to I(t, \cdot)$ in $L^2(P)$ for all *t*, we must have

$$I_t = J_t$$
 a.s., for all $t \in [0, T]$.

• From now on, we will always assume that $\int_0^t f(s, \omega) dB_s(\omega)$ means a *t*-continuous version of the integral.

・ロト ・回ト ・ヨト ・ヨ

Corollary (Itô integral is a martingale) Let $f \in \mathcal{V}(0, T)$ for all T. Then

$$M_t(\omega) = \int_0^t f(s,\omega) \mathrm{d}B_s(\omega)$$

is a martingale with respect to \mathcal{F}_t and for all $\lambda,\,T>0$ we have

$$P\left[\sup_{0\leq t\leq T}|M_t|\geq \lambda\right]\leq \frac{1}{\lambda^2}E\left[\int_0^T f(s,\omega)^2 \mathrm{d}s\right]$$

- The result above follows from:
 - the proof that I_n is a martingale for all $n \in \mathbb{N}$.
 - the a.s. continuity of M_t.
 - the Doob's martingale inequality.
 - the Itô isometry.

・ロト ・ 同ト ・ ヨト ・ ヨ

- Recall that we have defined the ltô integral for a class V of functions f: [0,∞) × Ω → ℝ satisfying the following conditions:
 (i) (t,ω) → f(t,ω) is B × F measurable.
 (ii) f(t,ω) is F_t adapted.
 (iii) E [∫_S^T(f(t,ω))²dt] < ∞.
- We will now discuss possible relaxations to conditions (ii) and (iii).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Condition (ii) in the definition of V can be relaxed to the following condition
 (ii)' There exists an increasing family of σ-algebras H_t, t ≥ 0 such that:
 - a) B_t is a martingale with respect to \mathcal{H}_t
 - b) $f(t, \omega)$ is \mathcal{H}_t adapted.
- Note that:
 - condition a) implies that $\mathcal{F}_t \subset \mathcal{H}_t$.
 - ► this extension allows f to depend on more than F_t as long as B_t remains a martingale with respect to the "history" of f_s, s ≤ t.
 - ▶ if condition (ii)' holds, then E[B_s B_t|H_t] = 0 for all s > t and this condition is sufficient to carry out the construction of the Itô integral that we have seen previously.

< ロ > < 同 > < 回 > < 回 >

Example (One example where condition (ii)' applies but (ii) does not) Denote by $B_k(t, \omega)$ the k-th coordinate of n-dimensional Brownian motion. Let $\mathcal{F}_t^{(n)}$ be the σ -algebra generated by

$$B_1(s_1,\cdot),...,B_n(s_n,\cdot)\;,\;s_k\leq t\; ext{for}\;k=1,...,n\;.$$

Then $B_k(t, \omega)$ is a martingale with respect to $\mathcal{F}_t^{(n)}$. If we take $\mathcal{H}_t = \mathcal{F}_t^{(n)}$ we are now able to define

$$\int_0^t f(s,\omega) \mathrm{d}B_k(s,\omega)$$

for \mathcal{H}_t adapted integrands $f(t, \omega)$. This includes integrals like

$$\int B_2 \mathrm{d} B_1 \qquad ext{and} \ \int \sin(B_1^2 + B_2^2) \mathrm{d} B_2 \ .$$

involving several components of n-dimensional Brownian motion.

• • • • • • • • • • • • •

Definition (Multi-dimensional Itô integral)

Let $B = (B_1, ..., B_n)$ be the *n*-dimensional Brownian motion. Denote by $\mathcal{V}_{\mathcal{H}}^{m \times n}(S, T)$ the set of $m \times n$ matrices $v = [v_{ij}(t, \omega)]$ where each entry $v_{ij}(t, \omega)$ satisfies conditions (i) and (iii) and (ii)' with respect to some filtration $\mathcal{H} = \{\mathcal{H}_t\}_{t \ge 0}$. If $v \in \mathcal{V}_{\mathcal{H}}^{m \times n}(S, T)$ we define

$$\int_{S}^{T} v dB = \int_{S}^{T} \begin{pmatrix} v_{11} & \cdots & v_{1n} \\ \vdots & & \vdots \\ v_{m1} & \cdots & v_{mn} \end{pmatrix} \begin{pmatrix} dB_{1} \\ \vdots \\ dB_{n} \end{pmatrix}$$

to be the $m \times 1$ matrix whose *i*-th component is the following sum of 1-dimensional Itô integrals:

$$\sum_{j=1}^n \int_S^T v_{ij}(s,\omega) \mathrm{d}B_j(s,\omega) \ .$$

・ロト ・ 同ト ・ ヨト ・ ヨ

• A second extension of the Itô integral consists of weakening condition (iii) to the following:

(iii)'
$$P\left[\int_{S}^{T} f(s,\omega)^{2} \mathrm{d}s < \infty\right] = 1.$$

Definition

We denote by $\mathcal{W}_{\mathcal{H}}(S, T)$ the class of stochastic processes $f(t, \omega) \in \mathbb{R}$ satisfying conditions (i), (ii)' and (iii)' with respect to some filtration \mathcal{H} . Similarly to the notation for \mathcal{V} , we write $\mathcal{W}_{\mathcal{H}}^{m \times n}(S, T)$ in the matrix case.

< ロ > < 同 > < 回 > < 回 >

- Let B_t denote 1-dimensional Brownian motion:
 - If $f \in W_H$ we can show that there exist a sequence of step functions $\{f_n\} \in W_H$ such that

$$\int_0^t |f_n - f|^2 \mathrm{d} s \to 0 \quad \text{ as } n \to \infty \text{ in probability.}$$

- ▶ For such a sequence we get that $\int_0^t f_n(s, \omega) dB_s$ converges in probability to some random variable and the limit depends only on f, not on $\{f_n\}$.
- Thus, we can define

$$\int_0^t f(s,\omega) \mathrm{d} B_s(\omega) = \lim_{n o \infty} \int_0^t f_n(s,\omega) \mathrm{d} B_s(\omega)$$
 in probability

for all $f \in \mathcal{W}_{\mathcal{H}}$.

- There exists a t-continuous version of this integral.
- This integral is not in general a martingale, but rather a local martingale.

< ロ > < 同 > < 回 > < 回 >

Let (Ω, \mathcal{F}) be a measurable space equipped with a filtration $\{\mathcal{F}_t\}$.

Definition (Random time)

A random time T is an \mathcal{F} measurable random variable with values in $[0,\infty]$.

Definition (Stopping time)

A random time T is a stopping time of the filtration \mathcal{F}_t if the event $\{\omega : T(\omega) < t\}$ is in \mathcal{F}_t for every $t \ge 0$.

Definition (Local martingale)

Let $X = \{X_t, t \ge 0\}$ be an adapted stochastic process with respect to the filtration \mathcal{F}_t .

We say that X is a *local martingale* with respect to the filtration \mathcal{F}_t if there exists a non-decreasing sequence of \mathcal{F}_t -stopping times $\{T_n\}$ such that

$$T_n \to \infty$$
 a.s. as $n \to \infty$

and $X_{t \wedge T_n}$ is an \mathcal{F}_t -martingale for all *n*, where $x \wedge y = \min\{x, y\}$.

• Let us consider again the stochastic differential equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$
(3)

or, equivalently

$$X_t = X_0 + \int_0^t b(s, X_s) \mathrm{d}s + \int_0^t \sigma(s, X_s) \mathrm{d}B_s \ . \tag{4}$$

We have seen that the ltô integral is one of several reasonable choices to define the ∫₀^t σ(s, X_s)dB_s.

 One can raise the following question:
 "which interpretation of the stochastic integral makes (4) the right mathematical model for equation (3)?"

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

- The Stratonovich interpretation may be the most appropriate in some situations:
 - Choose *t*-continuously differentiable processes $B_t^{(n)}$ such that for a.a. $\omega \in \Omega$

$$B^{(n)}(t,\omega) o B(t,\omega)$$
 as $n o \infty$

uniformly in t in bounded intervals.

For each ω let $X_t^{(n)}(\omega)$ be the solution of the corresponding deterministic differential equation

$$\frac{\mathrm{d}X_t}{\mathrm{d}t} = b(t, X_t) + \sigma(t, X_t) \frac{\mathrm{d}B_t^{(n)}}{\mathrm{d}t} \ .$$

- Then X⁽ⁿ⁾_t converges to some function X_t(ω) uniformly in t in bounded intervals for a.a. ω.
- It turns out that X_t coincides with the solutions of the stochastic differential equation obtained using the Stratonovich integral.

・ロト ・部 ト ・ ヨ ト ・ ヨ ト

- However, the specific feature of the Itô formulation of "not looking into the future" seems to be a reason for its choice in many cases such as applications to biology, finances and economics.
- In any case, there is an explicit connection between the two formulations:

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$$
 (Stratonovich)

is equivalent to

$$X_t = X_0 + \int_0^t b(s, X_s) \mathrm{d}s + \frac{1}{2} \int_0^t \sigma'(s, X_s) \sigma(s, X_s) \mathrm{d}s + \int_0^t \sigma(s, X_s) \mathrm{d}B_s \ ,$$

where σ' denotes the derivative of $\sigma(t, x)$ with respect to x.

• Therefore, for many purposes it is enough to do the general mathematical treatment for one of the two types of integrals.

< ロ > < 同 > < 回 > < 回 >

- Chain rule:
 - Stratonovich integral leads to ordinary chain rules formulas under transformations.
 - Itô transformation formula has second order correction terms.
- Martingale property:
 - Stratonovich integrals are not martingales.
 - We have seen that Itô integrals are martingales this property is an important computational advantage.

・ロト ・ 同ト ・ ヨト ・ ヨ