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A stochastic integral for smooth functions

Let g : [0, 1] → R be a continuously differentiable (deterministic) function
with g(0) = g(1) = 0.

Define (integration by parts analogue):

∫ 1

0

g(t)dBt(ω) =

∫ 1

0

g ′(t)Bt(ω)dt .

The resulting integral has the following nice properties:

(i) E
[

∫ 1

0
gdB

]

= 0.

(ii) E

[

(

∫ 1

0
gdB

)2
]

=
∫ 1

0
g 2

dt.
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A stochastic integral for smooth functions

Suppose now that g ∈ L2(0, 1).
◮ Then, we can take a sequence of C 1 function {gn}, as above, such that

∫ 1

0

(g − gn)
2
dt → 0 as n → ∞.

◮ By property (ii) above, we get that

E

[

(∫ 1

0

gndB −

∫ 1

0

gmdB

)2
]

=

∫ 1

0

(gn − gm)2
dt ,

and therefore, {
∫ 1

0
gndB} is a Cauchy sequence in L2(Ω) and we can define

∫ 1

0

gdB = lim
n→∞

∫ 1

0

gndB limit in L
2(Ω).

◮ The extended definition still satisfies properties (i) and (ii) above.
◮ This is a reasonable definition for

∫ 1

0
gdB, except that this only makes sense

for functions g ∈ L2(0, 1), and not for stochastic processes.
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The Itô Integral

Definition

Denote by {Ft}t the filtration generated by the one-dimensional Brownian motion
Bt and by B the Borel σ-algebra on [0,∞).
Let V = V(S ,T ) be the class of functions f : [0,∞) × Ω → R such that

(i) (t, ω) → f (t, ω) is B × F measurable.

(ii) f (t, ω) is Ft adapted.

(iii) E
[

∫ T

S
(f (t, ω))2dt

]

< ∞.

For functions f ∈ V we have defined the Itô integral

I[f ](ω) =

∫ T

S

f (t, ω)dBt(ω) ,

where Bt is a one-dimensional Brownian motion, as the limit of the integrals
of a sequence of elementary functions converging to f .
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The Itô Integral

Definition (Elementary function)

A function φ ∈ V is called elementary if it has the form

φ(t, ω) =
∑

j

ej(ω)I[tj ,tj+1)(t) .

For elementary functions φ(t, ω) we define the stochastic integral as

∫ T

S

φ(t, ω)dBt(ω) =
∑

j≥0

ej(ω)[Btj+1
− Btj ](ω) ,
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The Itô Integral

Definition (The Itô integral)

Let f ∈ V(S ,T ). Then the Itô integral of f (from S to T ) is defined by

∫ T

S

f (t, ω)dBt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dBt(ω) limit in L2(P) , (1)

where {φn} is a sequence of elementary functions such that

E

[

∫ T

S

(f (t, ω) − φn(t, ω))2dt

]

→ 0 as n → ∞ . (2)

The limit in (1) exists and does not depend on the choice of {φn}, as long as
(2) holds.
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The Itô Integral

Corollary (The Itô isometry)

E





(

∫ T

S

f (t, ω)dBt(ω)

)2


 = E

[

∫ T

S

(f (t, ω))
2
dt

]

for all f ∈ V(S ,T ).

Corollary

If f (t, ω) ∈ V(S ,T ), fn(t, ω) ∈ V(t, ω) for n = 1, 2, ... and

E

[

∫ T

S

(fn(t, ω) − f (t, ω))2dt

]

→ 0 as n → ∞ ,

then
∫ T

S

fn(t, ω)dBt(ω) →

∫ T

S

f (t, ω)dBt(ω) in L2(P) as n → ∞.
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Properties of the Itô Integral

Theorem

Let f , g ∈ V(0,T ) and let 0 ≤ S < U < T. Then:

(i)
∫ T

S
f dBt =

∫ U

S
f dBt +

∫ T

U
f dBt for a.e. ω ∈ Ω.

(ii)
∫ T

S
af + bgdBt = c

∫ T

S
f dBt + b

∫ T

S
gdBt for a.e. ω ∈ Ω and all a, b ∈ R.

(iii) E
[

∫ T

S
f dBt

]

= 0.

(iv)
∫ T

S
f dBt is FT -measurable.

Proof.
The statements above clearly hold for all elementary functions.
The results then follow trivially by taking limits.
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Properties of the Itô Integral

Definition (Martingale)

Let (Ω,F ,P) be a probability space and X = {Xt : t ≥ 0} a stochastic process on
it.
We say that Xt is a martingale with respect to the filtration {Ft}t≥0 if

(i) X is adapted to Ft .

(ii) E [|Xt |] < ∞ for all t.

(iii) E [Xs |Ft ] = Xt for all s ≥ t.

We say that Xt is a submartingale with respect to the filtration {Ft}t≥0 if (i) and
(ii) above hold and condition (iii) is replaced by

(iii)’ E [Xs |Ft ] ≥ Xt for all s ≥ t.

We define a supermartingale in an analogous way.
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Properties of the Itô Integral

Lemma

Let (Ω,F ,P) be a probability space and X = {Xt : t ≥ 0} a real-valued

martingale with respect to the filtration {Ft}t≥0. Suppose that φ : R → R is a

convex function, i.e

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) for all x , y ∈ R and all t ∈ [0, 1].

Then if E [φ(Xt)] < ∞ for all t ≥ 0, φ(Xt) is a submartingale.

Proof.
The result follows from Jensen’s inequality:
If φ : R → R is a convex function and E [|φ(X )|] < ∞ then

φ (E [X |F ]) ≤ E [φ (X ) |F ] .
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Properties of the Itô Integral

Example

Brownian motion Bt in R
n is a martingale with respect to the filtration Ft

generated by {Bt : t ≥ 0}:

(i) Bt is clearly adapted to Ft .

(ii) We note that for all t

(E [|Bt |])
2 ≤ E

[

|Bt |
2
]

= E
[

|Bt − B0|
2
]

+ 2E [Bt .B0] − E
[

|B0|
2
]

= nt + E
[

|B0|
2
]

(iii) Assume s ≥ t. Using Brownian motion properties, we get

E [Bs |Ft ] = E [Bs − Bt + Bt |Ft ]

= E [Bs − Bt + Bt |Ft ] + E [Bt |Ft ]

= Bt .
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Properties of the Itô Integral

Example

The stochastic process B2
t − t in R is a martingale with respect to the filtration

Ft generated by {Bt : t ≥ 0}:

(i) Bt is clearly adapted to Ft .

(ii) We note that for all t

E
[

B2
t − t

]

= E
[

B2
t

]

− t

= t + E
[

B2
0

]

− t = E
[

B2
0

]

.

(iii) Assume s ≥ t. Using Brownian motion properties, we get

E
[

B2
s − s|Ft

]

= E
[

(Bs − Bt)
2 + 2BsBt − B2

t |Ft

]

− s

= E
[

(Bs − Bt)
2|Ft

]

+ 2E [BsBt |Ft ] − E
[

B2
t |Ft

]

− s

= s − t + 2BtE [Bs |Ft ] − B2
t − s

= B2
t − t .
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Properties of the Itô Integral

For the proof of the next result we will need two auxiliary results: Doob’s
martingale inequality and the Borel–Cantelli lemma.

Theorem (Doob’s martingale inequality)

If Xt is a martingale such that t → Xt(ω) is continuous a.s., then for all p ≥ 1,

T ≥ 0 and all λ > 0

P

[

sup
0≤t≤T

|Xt | ≥ λ

]

≤
1

λp
E [|XT |

p] .

This is a generalization of the Chebychev’s inequality:
Let X : Ω → R

n be a random variable such that E [|X |p] < ∞ for some p,
0 < p < ∞. Then

P{|X | ≥ λ} ≤
1

λp
E [|X |p] for all λ > 0.
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Properties of the Itô Integral

We will start by proving a discrete version of Doob’s martingale inequality.

Theorem (Discrete martingale inequality)

If {Xn}n∈N is a submartingale then

P

[

max
1≤k≤N

Xk ≥ λ

]

≤
1

λ
E
[

X+
N

]

,

where X+ = max{0,X}.
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Properties of the Itô Integral

Proof.
Let us define the sets

Ak =

k−1
⋂

j=1

{ω ∈ Ω : Xj ≤ λ} ∩ {ω ∈ Ω : Xk > λ} , k = 1, 2, ...,N .

Then the set

A =

{

ω ∈ Ω : max
1≤k≤N

{Xk > λ}

}

can be written as the disjoint union of the sets A1,A2, ...,AN , i.e.

A =
˙⋃N

k=1
Ak .
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Properties of the Itô Integral

Proof.
Noting that

∫

Ak

XkdP ≥ λP(Ak)

we have

λP(A) = λ

N
∑

k=1

P(Ak) ≤

N
∑

k=1

E [IAk
Xk ] .

Then

E [X+
N ] ≥

N
∑

k=1

E
[

IAk
X+

N

]

=

N
∑

k=1

E [E [IAk
X+

N |X1, ...Xk ]]

=

N
∑

k=1

E [IAk
E [X+

N |X1, ...Xk ]] ≥

N
∑

k=1

E [IAk
E [XN |X1, ...Xk ]]

≥

N
∑

k=1

E [IAk
Xk ] ≥ λP(A) .
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Properties of the Itô Integral

Proof.
Thus, we have proved that

λP

[

max
1≤k≤N

Xk ≥ λ

]

≤

∫

{ω∈Ω:max1≤k≤N Xk>λ}

X+
n dP .

Corollary

If {Xn}n∈N is a martingale and E [|Xn|
p] < ∞ for some p ≥ 1 and all n ∈ N then

P

[

max
1≤k≤N

|Xk | ≥ λ

]

≤
1

λp
E [|XN |

p] for any λ > 0 and N ∈ N.

Proof.
Follows from the previous discrete martingale inequality and the fact that
{|Xn|

p}n∈N is a submartingale.
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Properties of the Itô Integral

Proof of the Doob’s martingale inequality.

Let Xt be a martingale such that t → Xt(ω) is continuous a.s..
Choose λ > 0 and t > 0 and select a partition of [0, t] such that
0 = t0 < t1 < ... < tn = t.
Note that X (ti )

n
i=0 is a discrete martingale and therefore the discrete martingale

inequality applies.
The proof is completed by choosing smaller partitions and passing to the limit.
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Properties of the Itô Integral

Theorem (Borel–Cantelli lemma)

Let (En)n∈N be a sequence of events in some probability space (Ω,F ,P) such that

∑

n

P(En) < ∞ .

Then

P

(

lim sup
n→∞

En

)

= P

(

∞
⋂

n=1

∞
⋃

k=n

Ek

)

= 0 ,

i.e., the probability that infinitely many events En’s occur is zero.

Proof.
Note that

P

(

∞
⋂

n=1

∞
⋃

k=n

Ek

)

= lim
n→∞

P

(

∞
⋃

k=n

Ek

)

≤ lim sup
n→∞

∞
∑

k=n

P(Ek) = 0

since
∑∞

k=n P(Ek) < ∞.
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Properties of the Itô Integral

Theorem (Itô integral has a continuous version)

Let f ∈ V(0,T ). Then there exists a t-continuous version of

∫ t

0

f (s, ω)dBs(ω) , 0 ≤ t ≤ T ,

that is, there exists a t-continuous stochastic process Jt on (Ω,F ,P) such that

P

[

Jt =

∫ t

0

f dB

]

= for all t, 0 ≤ t ≤ T.

Diogo Pinheiro (CEMAPRE) LXDS Seminar October 21, 2009 20 / 37



Properties of the Itô Integral

Proof.

Define a sequence φn = φn(t, ω) of elementary functions

φn(t, ω) =
∑

j

e
(n)
j (ω)I

[t
(n)
j

,t
(n)
j+1)

(t)

such that

E

[

∫ T

0

(f − φn)
2
dt

]

→ 0 when n → ∞.

Put

In = In(t, ω) =

∫ t

0

φn(s, ω)dBs(ω)

and

It = It(t, ω) =

∫ t

0

f (s, ω)dBs(ω) , 0 ≤ t ≤ T .

Then In is clearly continuous for all n ∈ N.
Furthermore, In is also a martingale with respect to the filtration Ft for all n.
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Properties of the Itô Integral

Proof.
Let us prove that In is a martingale. Let s > t:

E [In(s, ω)|Ft ] = E

[∫ s

0

φndB|Ft

]

= E

[∫ t

0

φndB +

∫ s

t

φndB|Ft

]

=

∫ t

0

φndB + E

[∫ s

t

φndB|Ft

]

=

∫ t

0

φndB + E







∑

t≤t
(n)
j

≤t
(n)
j+1≤s

e
(n)
j ∆Bj |Ft







=

∫ t

0

φndB +
∑

t≤t
(n)
j

≤t
(n)
j+1≤s

E
[

e
(n)
j ∆Bj |Ft

]

.

We need to prove that the expected value on the right hand side is equal to zero.
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Properties of the Itô Integral

Proof.
We use the following property of conditional expectations:
“if G and H are σ-algebras such that G ⊂ H then E [X |G] = E [E [X |H]|G]”
to obtain

E [In(s, ω)|Ft ] =

∫ t

0

φndB +
∑

t≤t
(n)
j

≤t
(n)
j+1≤s

E
[

e
(n)
j ∆Bj |Ft

]

=

∫ t

0

φndB +
∑

t≤t
(n)
j

≤t
(n)
j+1≤s

E
[

E
[

e
(n)
j ∆Bj |Ft

(n)
j

]

|Ft

]

=

∫ t

0

φndB +
∑

t≤t
(n)
j

≤t
(n)
j+1≤s

E
[

e
(n)
j E

[

∆Bj |Ft
(n)
j

]

|Ft

]

=

∫ t

0

φndB = In(t, ω) .
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Properties of the Itô Integral

Proof.
Hence In − Im is also an Ft-martingale, so by the martingale inequality and the Itô
isometry it follows that

P

[

sup
0≤t≤T

|In(t, ω) − Im(t, ω)| > ǫ

]

≤
1

ǫ2
E
[

|In(T , ω) − Im(T , ω)|
2
]

=
1

ǫ2
E

[∣

∣

∣

∣

∣

∫ T

0

(φn − φm)2ds

∣

∣

∣

∣

∣

]

→ 0

as n,m → ∞.
Hence, we can choose a subsequence nk → ∞ such that

P

[

sup
0≤t≤T

|Ink+1
(t, ω) − Ink

(t, ω)| > 2−k

]

< 2−k .

By the Borel-Cantelli lemma

P

[

sup
0≤t≤T

|Ink+1
(t, ω) − Ink

(t, ω)| > 2−k for infinitely many k

]

= 0 .

Diogo Pinheiro (CEMAPRE) LXDS Seminar October 21, 2009 24 / 37



Properties of the Itô Integral

Proof.

So for almost all ω ∈ Ω there exists k1(ω) such that

sup
0≤t≤T

|Ink+1
(t, ω) − Ink

(t, ω)| ≤ 2−k for k ≥ k1(ω) .

Therefore Ink
(t, ω) is uniformly convergent for t ∈ [0,T ] for a.a. ω ∈ Ω.

Thus, the limit denoted by Jt(ω) is t-continuous for for t ∈ [0,T ] a.s..
Since Ink

(t, ·) → I (t, ·) in L2(P) for all t, we must have

It = Jt a.s. , for all t ∈ [0,T ].

From now on, we will always assume that
∫ t

0
f (s, ω)dBs(ω) means a

t-continuous version of the integral.
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Properties of the Itô Integral

Corollary (Itô integral is a martingale)

Let f ∈ V(0,T ) for all T . Then

Mt(ω) =

∫ t

0

f (s, ω)dBs(ω)

is a martingale with respect to Ft and for all λ,T > 0 we have

P

[

sup
0≤t≤T

|Mt | ≥ λ

]

≤
1

λ2
E

[

∫ T

0

f (s, ω)2ds

]

.

The result above follows from:
◮ the proof that In is a martingale for all n ∈ N.
◮ the a.s. continuity of Mt .
◮ the Doob’s martingale inequality.
◮ the Itô isometry.
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Extensions of the Itô Integral

Recall that we have defined the Itô integral for a class V of functions
f : [0,∞) × Ω → R satisfying the following conditions:

(i) (t, ω) → f (t, ω) is B × F measurable.
(ii) f (t, ω) is Ft adapted.

(iii) E
[

∫ T

S
(f (t, ω))2

dt
]

< ∞.

We will now discuss possible relaxations to conditions (ii) and (iii).
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Extensions of the Itô Integral

Condition (ii) in the definition of V can be relaxed to the following condition
(ii)’ There exists an increasing family of σ-algebras Ht , t ≥ 0 such that:

a) Bt is a martingale with respect to Ht

b) f (t, ω) is Ht adapted.

Note that:
◮ condition a) implies that Ft ⊂ Ht .
◮ this extension allows f to depend on more than Ft as long as Bt remains a

martingale with respect to the “history” of fs , s ≤ t.
◮ if condition (ii)’ holds, then E [Bs − Bt |Ht ] = 0 for all s > t and this condition

is sufficient to carry out the construction of the Itô integral that we have seen
previously.
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Extensions of the Itô Integral

Example (One example where condition (ii)’ applies but (ii) does not)

Denote by Bk(t, ω) the k-th coordinate of n-dimensional Brownian motion.

Let F
(n)
t be the σ-algebra generated by

B1(s1, ·), ...,Bn(sn, ·) , sk ≤ t for k = 1, ..., n .

Then Bk(t, ω) is a martingale with respect to F
(n)
t . If we take Ht = F

(n)
t we are

now able to define
∫ t

0

f (s, ω)dBk(s, ω)

for Ht adapted integrands f (t, ω). This includes integrals like

∫

B2dB1 and

∫

sin(B2
1 + B2

2 )dB2 .

involving several components of n-dimensional Brownian motion.
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Extensions of the Itô Integral

Definition (Multi-dimensional Itô integral)

Let B = (B1, ...,Bn) be the n-dimensional Brownian motion.
Denote by Vm×n

H (S ,T ) the set of m × n matrices v = [vij(t, ω)] where each entry
vij(t, ω) satisfies conditions (i) and (iii) and (ii)’ with respect to some filtration
H = {Ht}t≥0.
If v ∈ Vm×n

H (S ,T ) we define

∫ T

S

vdB =

∫ T

S







v11 · · · v1n

...
...

vm1 · · · vmn













dB1

...
dBn







to be the m × 1 matrix whose i-th component is the following sum of
1-dimensional Itô integrals:

n
∑

j=1

∫ T

S

vij(s, ω)dBj(s, ω) .
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Extensions of the Itô Integral

A second extension of the Itô integral consists of weakening condition (iii) to
the following:

(iii)’ P
[

∫ T

S
f (s, ω)2

ds < ∞
]

= 1.

Definition

We denote by WH(S ,T ) the class of stochastic processes f (t, ω) ∈ R satisfying
conditions (i), (ii)’ and (iii)’ with respect to some filtration H.
Similarly to the notation for V, we write Wm×n

H (S ,T ) in the matrix case.
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Extensions of the Itô Integral

Let Bt denote 1-dimensional Brownian motion:
◮ If f ∈ WH we can show that there exist a sequence of step functions

{fn} ∈ WH such that

∫ t

0

|fn − f |2ds → 0 as n → ∞ in probability.

◮ For such a sequence we get that
∫ t

0
fn(s, ω)dBs converges in probability to

some random variable and the limit depends only on f , not on {fn}.
◮ Thus, we can define

∫ t

0

f (s, ω)dBs(ω) = lim
n→∞

∫ t

0

fn(s, ω)dBs(ω) in probability

for all f ∈ WH.
◮ There exists a t-continuous version of this integral.
◮ This integral is not in general a martingale, but rather a local martingale.
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Extensions of the Itô Integral
Let (Ω,F) be a measurable space equipped with a filtration {Ft}.

Definition (Random time)

A random time T is an F measurable random variable with values in [0,∞].

Definition (Stopping time)

A random time T is a stopping time of the filtration Ft if the event
{ω : T (ω) < t} is in Ft for every t ≥ 0.

Definition (Local martingale)

Let X = {Xt , t ≥ 0} be an adapted stochastic process with respect to the
filtration Ft .
We say that X is a local martingale with respect to the filtration Ft if there exists
a non-decreasing sequence of Ft-stopping times {Tn} such that

Tn → ∞ a.s. as n → ∞

and Xt∧Tn
is an Ft-martingale for all n, where x ∧ y = min{x , y}.
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Comparison with the Stratonovich integral

Let us consider again the stochastic differential equation

dXt = b(t,Xt)dt + σ(t,Xt)dBt (3)

or, equivalently

Xt = X0 +

∫ t

0

b(s,Xs)ds +

∫ t

0

σ(s,Xs)dBs . (4)

We have seen that the Itô integral is one of several reasonable choices to
define the

∫ t

0
σ(s,Xs)dBs .

One can raise the following question:
“which interpretation of the stochastic integral makes (4) the right
mathematical model for equation (3)?”
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Comparison with the Stratonovich integral

The Stratonovich interpretation may be the most appropriate in some
situations:

◮ Choose t-continuously differentiable processes B
(n)
t such that for a.a. ω ∈ Ω

B
(n)(t, ω) → B(t, ω) as n → ∞

uniformly in t in bounded intervals.
◮ For each ω let X

(n)
t (ω) be the solution of the corresponding deterministic

differential equation

dXt

dt
= b(t, Xt) + σ(t, Xt)

dB
(n)
t

dt
.

◮ Then X
(n)
t converges to some function Xt(ω) uniformly in t in bounded

intervals for a.a. ω.
◮ It turns out that Xt coincides with the solutions of the stochastic differential

equation obtained using the Stratonovich integral.
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Comparison with the Stratonovich integral

However, the specific feature of the Itô formulation of “not looking into the
future” seems to be a reason for its choice in many cases such as applications
to biology, finances and economics.

In any case, there is an explicit connection between the two formulations:

Xt = X0 +

∫ t

0

b(s,Xs)ds +

∫ t

0

σ(s,Xs)dBs (Stratonovich)

is equivalent to

Xt = X0 +

∫ t

0

b(s,Xs)ds +
1

2

∫ t

0

σ′(s,Xs)σ(s,Xs)ds +

∫ t

0

σ(s,Xs)dBs ,

where σ′ denotes the derivative of σ(t, x) with respect to x .

Therefore, for many purposes it is enough to do the general mathematical
treatment for one of the two types of integrals.
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Comparison with the Stratonovich integral

Chain rule:
◮ Stratonovich integral leads to ordinary chain rules formulas under

transformations.
◮ Itô transformation formula has second order correction terms.

Martingale property:
◮ Stratonovich integrals are not martingales.
◮ We have seen that Itô integrals are martingales – this property is an important

computational advantage.
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