Construction of the Itô Integral

Diogo Pinheiro
CEMAPRE - ISEG - UTL dpinheiro@iseg.utl.pt

October 14, 2009

Some references

A. Friedman.

Stochastic Differential Equations and Applications, Vol. I. Academic Press, 1975.
圊 I. Karatzas and S. Shreve.
Brownian Motion and Stochastic Calculus.
Springer, 2000.
B. Oksendal.

Stochastic Differential Equations: An Introduction with Applications. Springer, 5th edition, 1995.

Background and notation

Definition (Measurable space)

A measurable space is a pair (Ω, \mathcal{F}), where Ω is a set and \mathcal{F} is a collection of subsets of Ω with a σ-algebra structure, i.e.:

- $\emptyset \in \mathcal{F}$
- \mathcal{F} is closed under complementation and countable unions.

Definition (Measure space and probability space)

A measure space is a triple $(\Omega, \mathcal{F}, \mu)$, where (Ω, \mathcal{F}) is a measurable space and μ is a measure on (Ω, \mathcal{F}), i.e.:

- $\mu(\emptyset)=0$;
- $\mu(A) \geq 0$ for all $A \in \mathcal{F}$;
- if $\left\{A_{i}\right\}_{i \in I}$ is a countable collection of pairwise disjoint elements of \mathcal{F} then $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$.
A probability measure is a measure with total measure one, i.e. $\mu(\Omega)=1$.
A probability space is a measure space with a probability measure.

Background and notation

Definition (Stochastic process)

A stochastic process is a collection of random variables $X=\left\{X_{t} ; 0 \leq t<\infty\right\}$ on a measurable space (Ω, \mathcal{F}), which takes values on a second measurable space (Π, \mathcal{G}).

- (Ω, \mathcal{F}) is called the sample space.
- (Π, \mathcal{G}) is called the state space. We take it to be $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$.
- For a fixed sample point $\omega \in \Omega$, the function $t \rightarrow X_{t}(\omega) ; t \geq 0$ is the sample path of the process X associated with ω.

Definition (Measurable stochastic process)

The stochastic process X is called measurable if for every $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ the set $\left\{(t, \omega): X_{t}(\omega) \in A\right\}$ belongs to $\mathcal{B}([0, \infty)) \otimes \mathcal{F}$, i.e.

$$
X_{t}(\omega):([0, \infty] \times \Omega, \mathcal{B}([0, \infty)) \otimes \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)
$$

is measurable.

Background and notation

- We assume that our sample space (Ω, \mathcal{F}) is equipped with a filtration.

Definition (Filtration)

A filtration on a measurable space (Ω, \mathcal{F}) is a nondecreasing family $\left\{\mathcal{F}_{t} ; t \geq 0\right\}$ of sub- σ-algebras of \mathcal{F}, i.e. $\mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$ for $0 \leq s<t<\infty$.

- For a given stochastic process, the simplest choice of a filtration is the one generated by the process itself, $\mathcal{F}_{t}^{X}=\sigma\left(X_{s} ; 0 \leq s \leq t\right)$, the smallest σ-algebra with respect to which X_{s} is measurable for every $s \in[0, t]$.

Definition (Adapted stochastic process)

The stochastic process X is adapted to the filtration $\left\{\mathcal{F}_{t}\right\}$ if, for every $t \geq 0, X_{t}$ is an \mathcal{F}_{t}-measurable random variable.

- Every stochastic process X is adapted to $\left\{\mathcal{F}_{t}^{X}\right\}$.

Background and notation

Definition (standard, one-dimensional Brownian motion)

A standard, one-dimensional Brownian motion is a continuous, adapted process $B=\left\{B_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$, defined on some probability space (Ω, \mathcal{F}, P), with the following properties:

- $B_{0}=0$ a.s.;
- for $0 \leq s<t$, the increment $B_{t}-B_{s}$ is independent of \mathcal{F}_{s};
- for $0 \leq s<t$, the increment $B_{t}-B_{s}$ is normally distributed with mean zero and variance $t-s$.
Analogously, we can define a Brownian motion $B=\left\{B_{t}, \mathcal{F}_{t}, 0 \leq t<T\right\}$ on $[0, T]$, for some $T>0$.
- If B is a Brownian motion and $0=t_{0}<t_{1}<\ldots<t_{n}<\infty$, then the increments $\left\{B_{t_{j}}-B_{t_{j-1}}\right\}_{j=1}^{n}$ are independent and the distribution of $B_{t_{j}}-B_{t_{j-1}}$ depends on t_{j} and t_{j-1} only through the difference $t_{j}-t_{j-1}$: it is normal with mean zero and variance $t_{j}-t_{j-1}$.
- We say that B has stationary, independent increments.

Background and notation

Definition (d-dimensional Brownian motion with initial distribution μ)

Let d be a positive integer and μ a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right.$).
Let $B=\left\{B_{t}, \mathcal{F}_{t}: t \geq 0\right\}$ be a continuous, adapted process with values in \mathbb{R}^{d}, defined on some probability space (Ω, \mathcal{F}, P). This process is called a d-dimensional Brownian motion with initial distribution μ, if

- $P\left[B_{0} \in \Gamma\right]=\mu(\Gamma)$, for all $\Gamma \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,
- for $0 \leq s<t$, the increment $B_{t}-B_{s}$ is independent of \mathcal{F}_{s},
- for $0 \leq s<t$, the increment $B_{t}-B_{s}$ is normally distributed with mean zero and covariance matrix equal to $(t-s) I_{d}$, where I_{d} denotes the $d \times d$ identity matrix.
If μ assigns measure one to some singleton $\{x\}$, we say that B is a d-dimensional Brownian motion starting at x.

Background and notation

- Some useful Brownian motion properties:
- One-dimensional Brownian motion is a zero-mean Gaussian process with covariance function $\rho(s, t)=\min \{s, t\}$.
- For almost every $\omega \in \Omega$, the sample path $W .(\omega)$ is of unbounded variation on every finite interval $[0, t]$.
- For almost every $\omega \in \Omega$, the quadratic variation of the sample path W. (ω) on $[0, t]$ converges to t in L^{2}.
- For almost every $\omega \in \Omega$, the Brownian sample path W.(ω) is nowhere differentiable.

Motivation

- Suppose we are given a differential equation of the form

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t} \\
X(0)=X_{0}
\end{array}\right.
$$

- We would like to give a precise meaning to the expression

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(s, X_{s}\right) \mathrm{d} B_{s}
$$

- Thus, we need to give a proper definition for the stochastic integral

$$
\int_{0}^{t} f(s, \omega) \mathrm{d} B_{s}(\omega)
$$

where B_{t} is a one-dimensional Brownian motion and $f:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ belongs to a wide class of functions.

Motivation

- Assume $0 \leq S<T$ and $f(t, \omega)$ are given. We want to define

$$
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)
$$

- We start with a definition for a simple class of functions f and extend it by an approximation procedure.
- Assume that f has the form

$$
\phi(t, \omega)=\sum_{j \geq 0} e_{j}(\omega) \cdot I_{\left[j 2^{-n},(j+1) 2^{-n}\right)}(t),
$$

where I denotes the characteristic function and n is a natural number.

- For this class of functions we can define

$$
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)=\sum_{j \geq 0} e_{j}(\omega)\left[B_{t_{j+1}}-B_{t_{j}}\right](\omega)
$$

where

$$
t_{k}=t_{k}^{(n)}= \begin{cases}k 2^{-n} & \text { if } S \leq k 2^{-n} \leq T \\ S & \text { if } k 2^{-n}<S \\ T & \text { if } k 2^{-n}>T\end{cases}
$$

Motivation

- However, without further assumptions on the functions $e_{j}(\omega)$ the definition above may lead to difficulties, as the next example shows.

Example

Take the following two approximations to $f(t, \omega)=B_{t}(\omega)$:

$$
\begin{aligned}
& \phi_{1}(t, \omega)=\sum_{j \geq 0} B_{j 2^{-n}}(\omega) \cdot I_{\left[j 2^{-n},(j+1) 2^{-n}\right)}(t) \\
& \phi_{2}(t, \omega)=\sum_{j \geq 0} B_{(j+1) 2^{-n}}(\omega) \cdot I_{\left[j 2-n,(j+1) 2^{-n}\right)}(t) .
\end{aligned}
$$

We would like both choices to provide a reasonable approximation for the stochastic integral

$$
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)
$$

Motivation

Example

However, we have that

$$
E\left[\int_{0}^{T} \phi_{1}(t, \omega) \mathrm{d} B_{t}(\omega)\right]=\sum_{j \geq 0} E\left[B_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right)\right]=0
$$

but

$$
\begin{aligned}
E\left[\int_{0}^{T} \phi_{2}(t, \omega) \mathrm{d} B_{t}(\omega)\right] & =\sum_{j \geq 0} E\left[B_{t_{j+1}}\left(B_{t_{j+1}}-B_{t_{j}}\right)\right] \\
& =\sum_{j \geq 0} E\left[\left(B_{t_{j+1}}-B_{t_{j}}\right)^{2}\right]=T .
\end{aligned}
$$

Motivation

- Despite the fact that both ϕ_{1} and ϕ_{2} seem to be good approximations to $B_{t}(\omega)$, their integrals as defined above are not close, no matter how large n is chosen.
- This example reflects the fact that the variations of the paths of B_{t} are too big to enable us to define the integral in the Riemann-Stieltjes sense.
- In general it is natural to approximate a given function $f(t, \omega)$ by

$$
\sum_{j} f\left(t_{j}^{*}, \omega\right) l_{\left[t, t_{j+1}\right)}(t)
$$

where the points t_{j}^{*} belong to the intervals $\left[t_{j}, t_{j+1}\right)$, and then define $\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)$ as the limit of $\sum_{j} f\left(t_{j}^{*}, \omega\right)\left[B_{t_{j+1}}-B_{t_{j}}\right](\omega)$ as $n \rightarrow \infty$.

- The previous example shows that, unlike the Riemann-Stieltjes integral, in our case it does make a difference what point t_{j}^{*} we choose:
\star The choice $t_{j}^{*}=t_{j}$ (the left end point) leads to the Itô Integral.
\star The choice $t_{j}^{*}=\left(t_{j}+t_{j+1}\right) / 2$ (the mid point) leads to the Stratonovich Integral.

Construction of the Itô Integral

- Therefore, we must restrict ourselves to a special class of functions $f(t, \omega)$ (even in the case where they are as simple as above) to obtain a reasonable definition of the integral.
- The approximation procedure leading to the Itô Integral (left end point) will work out successfully provided f is such that each of the functions $\omega \rightarrow f\left(t_{j}, \omega\right)$ only depends on the behaviour of $B_{s}(\omega)$ up to time t_{j}.

Definition

Denote by $\left\{\mathcal{F}_{t}\right\}_{t}$ the filtration generated by the one-dimensional Brownian motion B_{t} and by \mathcal{B} the Borel σ-algebra on $[0, \infty)$.
Let $\mathcal{V}=\mathcal{V}(S, T)$ be the class of functions $f:[0, \infty) \times \Omega \rightarrow \mathbb{R}$ such that
(i) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ measurable.
(ii) $f(t, \omega)$ is \mathcal{F}_{t} adapted.
(iii) $E\left[\int_{S}^{T}(f(t, \omega))^{2} \mathrm{~d} t\right]<\infty$.

Construction of the Itô Integral

- For functions $f \in \mathcal{V}$ we will define the Itô integral

$$
\mathcal{I}[f](\omega)=\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega),
$$

where B_{t} is a one-dimensional Brownian motion.

- We use the following approach:

1) We define $\mathcal{I}[\phi]$ for a simple class of functions ϕ.
2) We show that each $f \in \mathcal{V}$ can be approximated in an appropriate sense by some function ϕ.
3) We use this approximation to define $\int f \mathrm{~d} B$ as the limit of $\int \phi \mathrm{d} B$ as $\phi \rightarrow f$.

Construction of the Itô Integral

Definition (Elementary function)

A function $\phi \in \mathcal{V}$ is called elementary if it has the form

$$
\phi(t, \omega)=\sum_{j} e_{j}(\omega) I_{\left[t ;, t_{j+1}\right)}(t) .
$$

- Note that since $\phi \in \mathcal{V}$ each function e_{j} must be $\mathcal{F}_{t_{j}}$-measurable
- Remember the example: ϕ_{1} was elementary while ϕ_{2} was not.
- For elementary functions $\phi(t, \omega)$ we define the integral as was done previously:

$$
\int_{S}^{T} \phi(t, \omega) \mathrm{d} B_{t}(\omega)=\sum_{j \geq 0} e_{j}(\omega)\left[B_{t_{j+1}}-B_{t_{j}}\right](\omega),
$$

Construction of the Itô Integral

Lemma (The Itô isometry)
If $\phi(t, \omega)$ is bounded and elementary then

$$
E\left[\left(\int_{S}^{T} \phi(t, \omega) \mathrm{d} B_{t}(\omega)\right)^{2}\right]=E\left[\int_{S}^{T}(\phi(t, \omega))^{2} \mathrm{~d} t\right]
$$

Proof.
Let $\Delta B_{j}=B_{t_{j+1}}-B_{t_{j}}$. Then

$$
E\left[e_{i} e_{j} \Delta B_{i} \Delta B_{j}\right]=\left\{\begin{array}{ll}
0 & \text { if } i \neq j \\
E\left[e_{j}^{2}\right]\left(t_{j+1}-t_{j}\right) & \text { if } i=j
\end{array} .\right.
$$

using independence of $e_{i} e_{j} \Delta B_{i}$ and ΔB_{j} if $i<j$. Thus
$E\left[\left(\int_{S}^{T} \phi \mathrm{~d} B\right)^{2}\right]=\sum_{i, j} E\left[e_{i} e_{j} \Delta B_{i} \Delta B_{j}\right]=\sum_{j} E\left[e_{j}^{2}\right]\left(t_{j+1}-t_{j}\right)=E\left[\int_{S}^{T} \phi^{2} \mathrm{~d} t\right]$.

Construction of the Itô Integral

- We now use the Itô isometry to extend the definition from elementary functions to functions on \mathcal{V}.
- We need the following two results.

Lemma (Dominated convergence theorem)

Suppose $\left\{f_{n}\right\}_{n}$ is a sequence of measurable functions on a measure space $(\Omega, \mathcal{F}, \mu)$ such that

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad \mu \text { a.e. } x \in \Omega
$$

If there is an integrable function g, i.e. $\int_{\Omega} g \mathrm{~d} \mu<\infty$, such that

$$
\left|f_{n}(x)\right| \leq g(x), \quad \text { for } \mu \text { a.e. } x \in \Omega \text { and for all } n \in \mathbb{N}
$$

then f is integrable and

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Construction of the Itô Integral

Lemma (Bounded convergence theorem)

Let $\left\{f_{n}\right\}_{n}$ be a sequence of uniformly bounded and measurable functions on a bounded measure space $(\Omega, \mathcal{F}, \mu)$ such that

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad \mu \text { a.e. } x \in \Omega
$$

Then, f is integrable and

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Construction of the Itô Integral

Lemma (Lemma 1)

Let $g \in \mathcal{V}$ be bounded and $g(\cdot, \omega)$ continuous for each ω. Then there exist elementary functions $\phi_{n} \in \mathcal{V}$ such that

$$
E\left[\int_{S}^{T}\left(g-\phi_{n}\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Proof.

Define $\phi_{n}(t, \omega)=\sum_{j} g\left(t_{j}, \omega\right) I_{\left[t_{j}, t_{j+1}\right)}(t)$.
Then ϕ_{n} is elementary since $g \in \mathcal{V}$, and, for each ω

$$
\int_{S}^{T}\left(g-\phi_{n}\right)^{2} \mathrm{~d} t \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

since $g(\cdot, \omega)$ is continuous for each ω.
Hence $E\left[\int_{S}^{T}\left(g-\phi_{n}\right)^{2} \mathrm{~d} t\right] \rightarrow 0$ as $n \rightarrow \infty$ by bounded convergence.

Construction of the Itô Integral

Lemma (Lemma 2)

Let $h \in \mathcal{V}$ be bounded.
Then there exist bounded functions $g_{n} \in \mathcal{V}$ such that $g_{n}(\cdot, \omega)$ is continuous for all ω and n, and

$$
E\left[\int_{S}^{T}\left(h-g_{n}\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Proof.

Suppose $|h(t, \omega)| \leq M$ for all (t, ω).
For each n let ψ_{n} be a non-negative, continuous function on \mathbb{R} such that
(i) $\psi_{n}(x)=0$ for $x \leq-1 / n$ and $x \geq 0$
(ii) $\int_{-\infty}^{+\infty} \psi_{n}(x) \mathrm{d} x=1$.

Let us define

$$
g_{n}(t, \omega)=\int_{0}^{t} \psi_{n}(s-t) h(s, \omega) \mathrm{d} s .
$$

Clearly, $g_{n}(\cdot, \omega)$ is continuous for each ω and $\left|g_{n}(t, \omega)\right| \leq M$.

Construction of the Itô Integral

Proof.

Since $h \in \mathcal{V}, g_{n}(t, \cdot)$ is \mathcal{F}_{t}-measurable for all t.
Moreover,

$$
\int_{S}^{T}\left(h(s, \omega)-g_{n}(s, \omega)\right)^{2} \mathrm{~d} s \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { for each } \omega
$$

By bounded convergence we get

$$
E\left[\int_{S}^{T}\left(h(s, \omega)-g_{n}(s, \omega)\right)^{2} \mathrm{~d} s\right] \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

Construction of the Itô Integral

Lemma (Lemma 3)

Let $f \in \mathcal{V}$. There exists a sequence of bounded functions $\left\{h_{n}\right\} \subset \mathcal{V}$ such that

$$
E\left[\int_{S}^{T}\left(f-h_{n}\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Proof.

Let us define

$$
h_{n}(t, \omega)=\left\{\begin{array}{ll}
-n & \text { if } f(t, \omega)<-n \\
f(t, \omega) & \text { if }-n<f(t, \omega)<n . \\
n & \text { if } f(t, \omega)>n
\end{array} .\right.
$$

Then h_{n} is bounded for each $n \in \mathbb{N}$ and

$$
\int_{S}^{T}\left(f(s, \omega)-h_{n}(s, \omega)\right)^{2} \mathrm{~d} s \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { for each } \omega .
$$

The result then follows by dominated convergence.

Construction of the Itô Integral

- We can now complete the definition of the Itô integral

$$
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega), \quad \text { for } f \in \mathcal{V}
$$

- If $f \in \mathcal{V}$ by Lemmas 1 to 3 we can choose elementary functions $\phi_{n} \in \mathcal{V}$ such that

$$
E\left[\int_{S}^{T}\left(f-\phi_{n}\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

- We can then define

$$
\mathcal{I}[f](\omega)=\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)=\lim _{n \rightarrow \infty} \int_{S}^{T} \phi_{n}(t, \omega) \mathrm{d} B_{t}(\omega)
$$

- The limit above exists as an element of $L^{2}(P)$ since

$$
\left\{\int_{S}^{T} \phi_{n}(t, \omega) \mathrm{d} B_{t}(\omega)\right\}
$$

is a Cauchy sequence in $L^{2}(P)$ by the Itô Isometry.

The Itô Integral

Definition (The Itô integral)

Let $f \in \mathcal{V}(S, T)$. Then the Itô integral of f (from S to T) is defined by

$$
\begin{equation*}
\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)=\lim _{n \rightarrow \infty} \int_{S}^{T} \phi_{n}(t, \omega) \mathrm{d} B_{t}(\omega) \quad \text { limit in } L^{2}(P) \tag{1}
\end{equation*}
$$

where $\left\{\phi_{n}\right\}$ is a sequence of elementary functions such that

$$
\begin{equation*}
E\left[\int_{S}^{T}\left(f(t, \omega)-\phi_{n}(t, \omega)\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

- Note that:
- such a sequence $\left\{\phi_{n}\right\}$ exists by Lemmas 1 to 3.
- the limit in (1) exists and does not depend on the choice of $\left\{\phi_{n}\right\}$, as long as (2) holds

The Itô Integral

We easily obtain the following two consequences from the construction above.
Corollary (The Itô isometry)

$$
E\left[\left(\int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega)\right)^{2}\right]=E\left[\int_{S}^{T}(f(t, \omega))^{2} \mathrm{~d} t\right] \quad \text { for all } f \in \mathcal{V}(S, T) \text {. }
$$

Corollary

If $f(t, \omega) \in \mathcal{V}(S, T), f_{n}(t, \omega) \in \mathcal{V}(t, \omega)$ for $n=1,2, \ldots$ and

$$
E\left[\int_{S}^{T}\left(f_{n}(t, \omega)-f(t, \omega)\right)^{2} \mathrm{~d} t\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

then

$$
\int_{S}^{T} f_{n}(t, \omega) \mathrm{d} B_{t}(\omega) \rightarrow \int_{S}^{T} f(t, \omega) \mathrm{d} B_{t}(\omega) \quad \text { in } L^{2}(P) \text { as } n \rightarrow \infty .
$$

The Itô Integral

Example
Assume $B_{0}=0$. Then

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t
$$

To prove this we consider the sequence of elementary functions

$$
\phi_{n}(t, \omega)=\sum_{j} B_{j}(\omega) I_{\left[t t_{j}, t_{j+1}\right)}(t),
$$

where $B_{j}=B_{t_{j}}$. Then

$$
\begin{aligned}
E\left[\int_{0}^{t}\left(\phi_{n}-B_{s}\right)^{2} \mathrm{~d} s\right] & =E\left[\sum_{j} \int_{t_{j}}^{t_{j+1}}\left(B_{j}-B_{s}\right)^{2} \mathrm{~d} s\right] \\
& =\sum_{j} \int_{t_{j}}^{t_{j+1}}\left(s-t_{j}\right) \mathrm{d} s \\
& =\sum_{\substack{i \\
2}} \frac{1}{2}\left(t_{j+1}-t_{j}\right)^{2} \rightarrow 0 \quad \text { as } \Delta t_{j} \rightarrow 0 .
\end{aligned}
$$

The Itô Integral

Example

By the previous corollary, we get that

$$
\int_{0}^{t} B_{s} \mathrm{~d} B_{s}=\lim _{\Delta t_{j} \rightarrow 0} \int_{0}^{t} \phi_{n} \mathrm{~d} B_{s}=\lim _{\Delta t_{j} \rightarrow 0} \sum_{j} B_{j} \Delta B_{j}
$$

We now note that

$$
\Delta\left(B_{j}^{2}\right)=B_{j+1}^{2}-B_{j}^{2}=\left(B_{j+1}-B_{j}\right)^{2}+2 B_{j}\left(B_{j+1}-B_{j}\right)=\left(\Delta B_{j}\right)^{2}+2 B_{j} \Delta B_{j}
$$

and therefore

$$
B_{t}^{2}=\sum_{j} \Delta\left(B_{j}^{2}\right)=\sum_{j}\left(\Delta B_{j}\right)^{2}+2 \sum_{j} B_{j} \Delta B_{j},
$$

that is

$$
\sum_{j} B_{j} \Delta B_{j}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} \sum_{j}\left(\Delta B_{j}\right)^{2}
$$

Noting that $\sum_{j}\left(\Delta B_{j}\right)^{2} \rightarrow t$ in $L^{2}(P)$ as $\Delta t_{j} \rightarrow 0$, we obtain the result.

The Itô Integral

- Next time:
- will state several properties of the Itô integral, namely the martingale property.
- will study possible changes to the assumptions made in the set \mathcal{V} in order to generalize the concept of Itô integral to a broader class.
- will extend the notions above to multi-dimensional Itô integrals.
- will (very briefly) discuss the Stratonovich integral.

