Diogo Pinheiro

CEMAPRE - ISEG - UTL dpinheiro@iseg.utl.pt

October 14, 2009

・ロト ・回 ト ・ ヨト ・ ヨ

Some references

A. Friedman.

Stochastic Differential Equations and Applications, Vol. I. Academic Press, 1975.

I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer, 2000.

B. Oksendal. Stochastic Differential Equations: An Introduction with Applications. Springer, 5th edition, 1995.

< ロ > < 同 > < 回 > <

Definition (Measurable space)

A measurable space is a pair (Ω, \mathcal{F}) , where Ω is a set and \mathcal{F} is a collection of subsets of Ω with a σ -algebra structure, i.e.:

- $\emptyset \in \mathcal{F}$
- ${\mathcal F}$ is closed under complementation and countable unions.

Definition (Measure space and probability space)

A measure space is a triple $(\Omega, \mathcal{F}, \mu)$, where (Ω, \mathcal{F}) is a measurable space and μ is a measure on (Ω, \mathcal{F}) , i.e.:

•
$$\mu(\emptyset) = 0;$$

- $\mu(A) \ge 0$ for all $A \in \mathcal{F}$;
- if $\{A_i\}_{i \in I}$ is a countable collection of pairwise disjoint elements of \mathcal{F} then $\mu(\cup_i A_i) = \sum_i \mu(A_i)$.

A probability measure is a measure with total measure one, i.e. $\mu(\Omega) = 1$. A probability space is a measure space with a probability measure.

Definition (Stochastic process)

A stochastic process is a collection of random variables $X = \{X_t; 0 \le t < \infty\}$ on a measurable space (Ω, \mathcal{F}) , which takes values on a second measurable space (Π, \mathcal{G}) .

- (Ω, \mathcal{F}) is called the sample space.
- (Π, G) is called the state space. We take it to be (ℝ^d, B(ℝ^d)).
- For a fixed sample point ω ∈ Ω, the function t → X_t(ω); t ≥ 0 is the sample path of the process X associated with ω.

Definition (Measurable stochastic process)

The stochastic process X is called *measurable* if for every $A \in \mathcal{B}(\mathbb{R}^d)$ the set $\{(t, \omega) : X_t(\omega) \in A\}$ belongs to $\mathcal{B}([0, \infty)) \otimes \mathcal{F}$, i.e.

$$X_t(\omega): ([0,\infty] imes\Omega,\mathcal{B}([0,\infty))\otimes\mathcal{F}) o (\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$$

is measurable.

<ロ> (日) (日) (日) (日) (日)

• We assume that our sample space (Ω, \mathcal{F}) is equipped with a filtration.

Definition (Filtration)

A filtration on a measurable space (Ω, \mathcal{F}) is a nondecreasing family $\{\mathcal{F}_t; t \ge 0\}$ of sub- σ -algebras of \mathcal{F} , i.e. $\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}$ for $0 \le s < t < \infty$.

For a given stochastic process, the simplest choice of a filtration is the one generated by the process itself, *F*^X_t = σ(X_s; 0 ≤ s ≤ t), the smallest σ-algebra with respect to which X_s is measurable for every s ∈ [0, t].

Definition (Adapted stochastic process)

The stochastic process X is *adapted* to the filtration $\{\mathcal{F}_t\}$ if, for every $t \ge 0$, X_t is an \mathcal{F}_t -measurable random variable.

• Every stochastic process X is adapted to $\{\mathcal{F}_t^X\}$.

(日)

Definition (standard, one-dimensional Brownian motion)

A standard, one-dimensional Brownian motion is a continuous, adapted process $B = \{B_t, \mathcal{F}_t, 0 \leq t < \infty\}$, defined on some probability space (Ω, \mathcal{F}, P) , with the following properties:

- B₀ = 0 a.s.;
- for $0 \le s < t$, the increment $B_t B_s$ is independent of \mathcal{F}_s ;
- for $0 \le s < t$, the increment $B_t B_s$ is normally distributed with mean zero and variance t s.

Analogously, we can define a Brownian motion $B = \{B_t, \mathcal{F}_t, 0 \le t < T\}$ on [0, *T*], for some T > 0.

- If *B* is a Brownian motion and $0 = t_0 < t_1 < ... < t_n < \infty$, then the increments $\{B_{t_j} B_{t_{j-1}}\}_{j=1}^n$ are independent and the distribution of $B_{t_j} B_{t_{j-1}}$ depends on t_j and t_{j-1} only through the difference $t_j t_{j-1}$: it is normal with mean zero and variance $t_j t_{j-1}$.
 - ▶ We say that *B* has stationary, independent increments.

Definition (*d*-dimensional Brownian motion with initial distribution μ)

Let *d* be a positive integer and μ a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Let $B = \{B_t, \mathcal{F}_t : t \ge 0\}$ be a continuous, adapted process with values in \mathbb{R}^d , defined on some probability space (Ω, \mathcal{F}, P) . This process is called a *d*-dimensional Brownian motion with initial distribution μ , if

- $P[B_0 \in \Gamma] = \mu(\Gamma)$, for all $\Gamma \in \mathcal{B}(\mathbb{R}^d)$,
- for $0 \leq s < t$, the increment $B_t B_s$ is independent of \mathcal{F}_s ,
- for $0 \le s < t$, the increment $B_t B_s$ is normally distributed with mean zero and covariance matrix equal to $(t s)I_d$, where I_d denotes the $d \times d$ identity matrix.

If μ assigns measure one to some singleton $\{x\}$, we say that B is a *d*-dimensional Brownian motion starting at x.

< ロ > < 同 > < 回 > < 回 >

- Some useful Brownian motion properties:
 - One-dimensional Brownian motion is a zero-mean Gaussian process with covariance function ρ(s, t) = min{s, t}.
 - ► For almost every $\omega \in \Omega$, the sample path $W_{\cdot}(\omega)$ is of unbounded variation on every finite interval [0, t].
 - For almost every $\omega \in \Omega$, the quadratic variation of the sample path $W_{\cdot}(\omega)$ on [0, t] converges to t in L^2 .
 - For almost every $\omega \in \Omega$, the Brownian sample path $W_{\cdot}(\omega)$ is nowhere differentiable.

(日) (四) (三) (三)

• Suppose we are given a differential equation of the form

$$\begin{cases} \mathrm{d}X_t = b(t, X_t) \mathrm{d}t + \sigma(t, X_t) \mathrm{d}B_t \\ X(0) = X_0 \end{cases}$$

• We would like to give a precise meaning to the expression

$$X_t = X_0 + \int_0^t b(s, X_s) \mathrm{d}s + \int_0^t \sigma(s, X_s) \mathrm{d}B_s \; .$$

> Thus, we need to give a proper definition for the stochastic integral

$$\int_0^t f(s,\omega) \mathrm{d}B_s(\omega) \;,$$

where B_t is a one-dimensional Brownian motion and $f : [0, \infty) \times \Omega \to \mathbb{R}$ belongs to a wide class of functions.

<ロト < 同ト < ヨト < ヨト

• Assume $0 \le S < T$ and $f(t, \omega)$ are given. We want to define

$$\int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega) \ .$$

- We start with a definition for a simple class of functions *f* and extend it by an approximation procedure.
 - Assume that f has the form

$$\phi(t,\omega) = \sum_{j\geq 0} e_j(\omega) . I_{[j2^{-n},(j+1)2^{-n})}(t) \; ,$$

where I denotes the characteristic function and n is a natural number.

For this class of functions we can define

$$\int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega) = \sum_{j\geq 0} e_{j}(\omega) [B_{t_{j+1}} - B_{t_{j}}](\omega) ,$$

where

$$t_k = t_k^{(n)} = \begin{cases} k2^{-n} & \text{if } S \le k2^{-n} \le T \\ S & \text{if } k2^{-n} < S \\ T & \text{if } k2^{-n} > T \end{cases}$$

• However, without further assumptions on the functions $e_j(\omega)$ the definition above may lead to difficulties, as the next example shows.

Example

Take the following two approximations to $f(t, \omega) = B_t(\omega)$:

$$egin{array}{rcl} \phi_1(t,\omega) &=& \displaystyle\sum_{j\geq 0} B_{j2^{-n}}(\omega).I_{[j2^{-n},(j+1)2^{-n})}(t) \ \phi_2(t,\omega) &=& \displaystyle\sum_{j\geq 0} B_{(j+1)2^{-n}}(\omega).I_{[j2^{-n},(j+1)2^{-n})}(t) \end{array}$$

We would like both choices to provide a reasonable approximation for the stochastic integral

$$\int_{s}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega) \; .$$

(日)

Example

However, we have that

$$E\left[\int_0^T \phi_1(t,\omega) \mathrm{d}B_t(\omega)\right] = \sum_{j\geq 0} E\left[B_{t_j}(B_{t_{j+1}} - B_{t_j})\right] = 0$$

but

$$\begin{split} E\left[\int_0^T \phi_2(t,\omega) \mathrm{d}B_t(\omega)\right] &= \sum_{j\geq 0} E\left[B_{t_{j+1}}(B_{t_{j+1}}-B_{t_j})\right] \\ &= \sum_{j\geq 0} E\left[(B_{t_{j+1}}-B_{t_j})^2\right] = T \;. \end{split}$$

(日) (四) (里) (里)

- Despite the fact that both ϕ_1 and ϕ_2 seem to be good approximations to $B_t(\omega)$, their integrals as defined above are not close, no matter how large *n* is chosen.
 - ► This example reflects the fact that the variations of the paths of *B_t* are too big to enable us to define the integral in the Riemann-Stieltjes sense.
- In general it is natural to approximate a given function $f(t,\omega)$ by

$$\sum_j f(t_j^*,\omega) I_{[t_j,t_{j+1})}(t) ,$$

where the points t_j^* belong to the intervals $[t_j, t_{j+1})$, and then define $\int_S^T f(t, \omega) dB_t(\omega)$ as the limit of $\sum_i f(t_j^*, \omega) [B_{t_{j+1}} - B_{t_j}](\omega)$ as $n \to \infty$.

- The previous example shows that, unlike the Riemann-Stieltjes integral, in our case it does make a difference what point t^{*}_i we choose:
 - * The choice $t_i^* = t_j$ (the left end point) leads to the ltô Integral.
 - * The choice $t_i^* = (t_j + t_{j+1})/2$ (the mid point) leads to the Stratonovich Integral.

(日)

- Therefore, we must restrict ourselves to a special class of functions f(t, ω) (even in the case where they are as simple as above) to obtain a reasonable definition of the integral.
 - The approximation procedure leading to the Itô Integral (left end point) will work out successfully provided *f* is such that each of the functions ω → f(t_i, ω) only depends on the behaviour of B_s(ω) up to time t_i.

Definition

Denote by $\{\mathcal{F}_t\}_t$ the filtration generated by the one-dimensional Brownian motion B_t and by \mathcal{B} the Borel σ -algebra on $[0, \infty)$. Let $\mathcal{V} = \mathcal{V}(S, T)$ be the class of functions $f : [0, \infty) \times \Omega \to \mathbb{R}$ such that (i) $(t, \omega) \to f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ measurable. (ii) $f(t, \omega)$ is \mathcal{F}_t adapted. (iii) $E\left[\int_S^T (f(t, \omega))^2 dt\right] < \infty$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• For functions $f \in \mathcal{V}$ we will define the Itô integral

$$\mathcal{I}[f](\omega) = \int_{S}^{T} f(t,\omega) \mathrm{d}B_t(\omega) \;,$$

where B_t is a one-dimensional Brownian motion.

- We use the following approach:
 - 1) We define $\mathcal{I}[\phi]$ for a simple class of functions ϕ .
 - We show that each f ∈ V can be approximated in an appropriate sense by some function φ.
 - 3) We use this approximation to define $\int f dB$ as the limit of $\int \phi dB$ as $\phi \to f$.

< ロ > < 同 > < 回 > < 回 > < 国 > < 国

Definition (Elementary function)

A function $\phi \in \mathcal{V}$ is called elementary if it has the form

$$\phi(t,\omega) = \sum_j e_j(\omega) I_{[t_j,t_{j+1})}(t) \; .$$

- Note that since $\phi \in \mathcal{V}$ each function e_j must be \mathcal{F}_{t_j} -measurable
 - Remember the example: ϕ_1 was elementary while ϕ_2 was not.
- For elementary functions φ(t, ω) we define the integral as was done previously:

$$\int_{\mathcal{S}}^{\mathcal{T}} \phi(t,\omega) \mathrm{d}B_t(\omega) = \sum_{j \ge 0} e_j(\omega) [B_{t_{j+1}} - B_{t_j}](\omega) ,$$

・ロト ・回ト ・ヨト ・ヨ

Lemma (The Itô isometry)

If $\phi(t,\omega)$ is bounded and elementary then

$$E\left[\left(\int_{S}^{T}\phi(t,\omega)\mathrm{d}B_{t}(\omega)\right)^{2}\right]=E\left[\int_{S}^{T}\left(\phi(t,\omega)\right)^{2}\mathrm{d}t\right]$$

Proof.

Let
$$\Delta B_j = B_{t_{j+1}} - B_{t_j}$$
. Then

$$E[e_i e_j \Delta B_i \Delta B_j] = \begin{cases} 0 & \text{if } i \neq j \\ E[e_j^2](t_{j+1} - t_j) & \text{if } i = j \end{cases}$$

using independence of $e_i e_j \Delta B_i$ and ΔB_j if i < j. Thus

$$E\left[\left(\int_{S}^{T}\phi \mathrm{d}B\right)^{2}\right] = \sum_{i,j} E[e_{i}e_{j}\Delta B_{i}\Delta B_{j}] = \sum_{j} E[e_{j}^{2}](t_{j+1}-t_{j}) = E\left[\int_{S}^{T}\phi^{2}\mathrm{d}t\right].$$

Diogo Pinheiro (CEMAPRE)

- We now use the Itô isometry to extend the definition from elementary functions to functions on \mathcal{V} .
- We need the following two results.

Lemma (Dominated convergence theorem)

Suppose $\{f_n\}_n$ is a sequence of measurable functions on a measure space $(\Omega, \mathcal{F}, \mu)$ such that

$$f(x) = \lim_{n \to \infty} f_n(x)$$
, μ a.e. $x \in \Omega$.

If there is an integrable function g, i.e. $\int_\Omega g\mathrm{d}\mu <\infty,$ such that

 $|f_n(x)| \leq g(x)$, for μ a.e. $x \in \Omega$ and for all $n \in \mathbb{N}$

then f is integrable and

$$\lim_{n\to\infty}\int_{\Omega}f_n\,\mathrm{d}\mu=\int_{\Omega}f\,\mathrm{d}\mu\;.$$

Lemma (Bounded convergence theorem)

Let $\{f_n\}_n$ be a sequence of uniformly bounded and measurable functions on a bounded measure space $(\Omega, \mathcal{F}, \mu)$ such that

$$f(x) = \lim_{n \to \infty} f_n(x) , \quad \mu \text{ a.e. } x \in \Omega .$$

Then, f is integrable and

$$\lim_{n\to\infty}\int_{\Omega}f_n\,\mathrm{d}\mu=\int_{\Omega}f\,\mathrm{d}\mu\;.$$

(日)

Lemma (Lemma 1)

Let $g \in \mathcal{V}$ be bounded and $g(\cdot, \omega)$ continuous for each ω . Then there exist elementary functions $\phi_n \in \mathcal{V}$ such that

$$E\left[\int_{S}^{T}(g-\phi_{n})^{2}\mathrm{d}t
ight]
ightarrow0$$
 as $n
ightarrow\infty$.

Proof.

Define $\phi_n(t,\omega) = \sum_j g(t_j,\omega) I_{[t_j,t_{j+1})}(t)$. Then ϕ_n is elementary since $g \in \mathcal{V}$, and, for each ω

$$\int_{\mathcal{S}}^{T} (g - \phi_n)^2 \mathrm{d}t o 0 \quad \text{ as } n o \infty \; ,$$

since $g(\cdot, \omega)$ is continuous for each ω . Hence $E\left[\int_{S}^{T} (g - \phi_n)^2 dt\right] \to 0$ as $n \to \infty$ by bounded convergence.

< 日 > < 同 > < 三 > <

Lemma (Lemma 2)

Let $h \in \mathcal{V}$ be bounded.

Then there exist bounded functions $g_n \in \mathcal{V}$ such that $g_n(\cdot, \omega)$ is continuous for all ω and n, and

$$E\left[\int_{\mathcal{S}}^{T}(h-g_n)^2\mathrm{d}t
ight] o 0 \quad \text{as }n o\infty \;.$$

Proof.

Suppose $|h(t,\omega)| \leq M$ for all (t,ω) . For each n let ψ_n be a non-negative, continuous function on \mathbb{R} such that (i) $\psi_n(x) = 0$ for $x \leq -1/n$ and $x \geq 0$ (ii) $\int_{-\infty}^{+\infty} \psi_n(x) dx = 1$. Let us define $g_n(t,\omega) = \int_0^t \psi_n(s-t)h(s,\omega) ds$.

Clearly, $g_n(\cdot, \omega)$ is continuous for each ω and $|g_n(t, \omega)| \leq M$.

Proof.

Since $h \in \mathcal{V}$, $g_n(t, \cdot)$ is \mathcal{F}_t -measurable for all t. Moreover,

$$\int_{\mathcal{S}}^{T} (h(s,\omega) - g_n(s,\omega))^2 \mathrm{d} s \to 0 \quad \text{as } n \to \infty, \text{ for each } \omega \ ,$$

By bounded convergence we get

$$E\left[\int_{S}^{T}(h(s,\omega)-g_{n}(s,\omega))^{2}\mathrm{d}s
ight]
ightarrow0$$
, as $n
ightarrow\infty$.

<ロ> <四> <四> <日> <日</p>

Lemma (Lemma 3)

Let $f \in \mathcal{V}$. There exists a sequence of bounded functions $\{h_n\} \subset \mathcal{V}$ such that

$$E\left[\int_{\mathcal{S}}^{\mathcal{T}}(f-h_n)^2\mathrm{d}t
ight]
ightarrow 0\quad \text{as }n
ightarrow\infty\;.$$

Proof.

Let us define

$$h_n(t,\omega) = \begin{cases} -n & \text{if } f(t,\omega) < -n \\ f(t,\omega) & \text{if } -n < f(t,\omega) < n \\ n & \text{if } f(t,\omega) > n \end{cases}$$

Then h_n is bounded for each $n \in \mathbb{N}$ and

$$\int_{\mathcal{S}}^{\mathcal{T}} (f(s,\omega) - h_n(s,\omega))^2 \mathrm{d} s \to 0 \quad \text{as } n \to \infty, \text{ for each } \omega \ .$$

The result then follows by dominated convergence.

• We can now complete the definition of the Itô integral

$$\int_{\mathcal{S}}^{\mathcal{T}} f(t,\omega) \mathrm{d}B_t(\omega) \ , \quad \text{for } f \in \mathcal{V} \ .$$

▶ If $f \in \mathcal{V}$ by Lemmas 1 to 3 we can choose elementary functions $\phi_n \in \mathcal{V}$ such that

$$E\left[\int_{S}^{T}(f-\phi_{n})^{2}\mathrm{d}t
ight]
ightarrow0$$
 as $n
ightarrow\infty$.

We can then define

$$\mathcal{I}[f](\omega) = \int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) \mathrm{d}B_{t}(\omega)$$

• The limit above exists as an element of $L^2(P)$ since

$$\left\{\int_{S}^{T}\phi_{n}(t,\omega)\mathrm{d}B_{t}(\omega)\right\}$$

is a Cauchy sequence in $L^2(P)$ by the Itô Isometry.

(a)

Definition (The Itô integral)

Let $f \in \mathcal{V}(S, T)$. Then the *Itô integral* of f (from S to T) is defined by

$$\int_{S}^{T} f(t,\omega) dB_{t}(\omega) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) dB_{t}(\omega) \quad \text{limit in } L^{2}(P) , \qquad (1)$$

where $\{\phi_n\}$ is a sequence of elementary functions such that

$$\mathsf{E}\left[\int_{S}^{T} (f(t,\omega) - \phi_{n}(t,\omega))^{2} \mathrm{d}t\right] \to 0 \quad \text{as } n \to \infty .$$
⁽²⁾

- Note that:
 - such a sequence $\{\phi_n\}$ exists by Lemmas 1 to 3.
 - the limit in (1) exists and does not depend on the choice of {\u03c6n}, as long as (2) holds

(日) (四) (三) (三)

We easily obtain the following two consequences from the construction above.

Corollary (The Itô isometry)

$$E\left[\left(\int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega)\right)^{2}\right] = E\left[\int_{S}^{T} (f(t,\omega))^{2} \mathrm{d}t\right] \quad \text{for all } f \in \mathcal{V}(S,T).$$

Corollary

If
$$f(t,\omega) \in \mathcal{V}(S,T)$$
, $f_n(t,\omega) \in \mathcal{V}(t,\omega)$ for $n = 1, 2, ...$ and

$$E\left[\int_{S}^{T}(f_{n}(t,\omega)-f(t,\omega))^{2}\mathrm{d}t
ight]
ightarrow0$$
 as $n
ightarrow\infty$,

then

$$\int_{S}^{T} f_{n}(t,\omega) \mathrm{d}B_{t}(\omega) \to \int_{S}^{T} f(t,\omega) \mathrm{d}B_{t}(\omega) \quad \text{in } L^{2}(P) \text{ as } n \to \infty.$$

<ロ> (日) (日) (日) (日) (日)

Example

Assume $B_0 = 0$. Then

$$\int_0^t B_s \mathrm{d}B_s = \frac{1}{2}B_t^2 - \frac{1}{2}t \; .$$

To prove this we consider the sequence of elementary functions

$$\phi_n(t,\omega) = \sum_j B_j(\omega) I_{[t_j,t_{j+1}]}(t),$$

where $B_j = B_{t_j}$. Then

$$E\left[\int_{0}^{t} (\phi_{n} - B_{s})^{2} ds\right] = E\left[\sum_{j} \int_{t_{j}}^{t_{j+1}} (B_{j} - B_{s})^{2} ds\right]$$
$$= \sum_{j} \int_{t_{j}}^{t_{j+1}} (s - t_{j}) ds$$
$$= \sum_{j} \frac{1}{2} (t_{j+1} - t_{j})^{2} \rightarrow 0 \quad \text{as } \Delta t_{j} \rightarrow 0.$$

Example

By the previous corollary, we get that

$$\int_0^t B_s \mathrm{d}B_s = \lim_{\Delta t_j \to 0} \int_0^t \phi_n \mathrm{d}B_s = \lim_{\Delta t_j \to 0} \sum_j B_j \Delta B_j \ .$$

We now note that

$$\Delta(B_j^2) = B_{j+1}^2 - B_j^2 = (B_{j+1} - B_j)^2 + 2B_j(B_{j+1} - B_j) = (\Delta B_j)^2 + 2B_j\Delta B_j ,$$

and therefore

$$B_t^2 = \sum_j \Delta(B_j^2) = \sum_j (\Delta B_j)^2 + 2 \sum_j B_j \Delta B_j ,$$

that is

$$\sum_j B_j \Delta B_j = rac{1}{2} B_t^2 - rac{1}{2} \sum_j (\Delta B_j)^2 \; .$$

Noting that $\sum_{j} (\Delta B_j)^2 \to t$ in $L^2(P)$ as $\Delta t_j \to 0$, we obtain the result.

- Next time:
 - will state several properties of the Itô integral, namely the martingale property.
 - will study possible changes to the assumptions made in the set V in order to generalize the concept of Itô integral to a broader class.
 - will extend the notions above to multi-dimensional Itô integrals.
 - will (very briefly) discuss the Stratonovich integral.

< ロ > < 同 > < 回 > < 回 > < 国 > < 国