Constructions of Brownian Motion II

Based on the book "Brownian motion and Stochastic Calculus" by I. Karatzas and S. Shreve

Diogo Pinheiro

CEMAPRE - ISEG - UTL dpinheiro@iseg.utl.pt

May 14, 2009

< ロ > < 回 > < 回 > < 回 > < 回 >

- The sample spaces for the Brownian motions in the two previous constructions were, respectively:
 - ▶ the space $\mathbb{R}^{[0,\infty)}$ of all real-valued functions on the half-line;
 - a space Ω rich enough to carry a countable collection of independent standard normal random variables.
- The "canonical" space for Brownian motion is C[0,∞), the space of all continuous real-valued functions on the half-line with metric

$$ho(\omega_1,\omega_2)=\sum_{n=1}^\inftyrac{1}{2^n}\max_{0\leq t\leq n}\{ert\omega_1(t)-\omega_2(t)ert\wedge 1\}\;,$$

where $a \wedge b$ is used to denote min $\{a, b\}$.

• Under the metric ρ , $C[0,\infty)$ is a complete, separable metric space.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Let X be a random variable on a probability space (Ω, F, P) with values in a measurable space (S, B(S)), i.e. X : Ω → S is F/B(S)-measurable.
 - Then X induces a probability measure PX^{-1} on $(S, \mathcal{B}(S))$ by

$$PX^{-1}(B) = P[\omega \in \Omega : X(\omega) \in B] \ , \ B \in \mathcal{B}(S) \ .$$

- When $X = \{X_t : 0 \le t < \infty\}$ is a continuous stochastic process on (Ω, \mathcal{F}, P) , we can think of X as a random variable (Ω, \mathcal{F}, P) with values in $(C[0, \infty), \mathcal{B}(C[0, \infty)))$
 - PX^{-1} is called the *law of X*.

Definition (weak convergence)

Let (S, ρ) be a metric space with Borel σ -algebra $\mathcal{B}(S)$. Let $\{P_n\}_{n=1}^{\infty}$ be a sequence of probability measures on $(S, \mathcal{B}(S))$, and let P be another measure on this space.

We say that $\{P_n\}_{n=1}^{\infty}$ converges weakly to P and write $P_n \to P$ if and only if

$$\lim_{n\to\infty}\int_{S}f(s)\mathrm{d}P_n(s)=\int_{S}f(s)\mathrm{d}P(s)$$

for every bounded, continuous real-valued function f on S.

• The weak limit P is a probability measure and it is unique.

Definition (convergence in distribution)

Let $\{(\Omega_n, \mathcal{F}_n, P_n)\}_{n=1}^{\infty}$ be a sequence of probability spaces, and on each of them consider a random variable X_n with values in the metric space (S, ρ) . Let (Ω, \mathcal{F}, P) be another probability space, on which a random variable X with values in (S, ρ) is given.

We say that $\{X_n\}_{n=1}^{\infty}$ converges to X in distribution, and write $X_n \xrightarrow{\mathcal{D}} X$, if the sequence of measures $\{P_n X_n^{-1}\}_{n=1}^{\infty}$ converges weakly to the measure PX^{-1} .

• Equivalently, $X_n \xrightarrow{\mathcal{D}} X$ if and only if

$$\lim_{n\to\infty}E_nf(X_n)=Ef(x)$$

for every bounded, continuous real-valued function f on S, where E_n and E denote expectations with respect to P_n and P, respectively.

If S = ℝ^d, then X_n → X if and only if the sequence of characteristic functions φ_n(u) = E_n[exp{i(u, X_n)}] converges to φ(u) = E[exp{i(u, X)}] for every u ∈ ℝ^d.

A D > A B > A B > A B >

- The most important example of convergence in distribution is provided by the central limit theorem:
 - if $\{\xi_n\}_{n=1}^{\infty}$ is a sequence of iid random variables with mean zero and variance σ^2 , then $\{S_n\}$ defined by

$$S_n = \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^n \xi_k$$

converges in distribution to a standard normal random variable.

It is this fact that dictates that a properly normalized sequence of random walks will converge in distribution to Brownian motion.

Definition (relatively compact and tight family of probability measures)

Let (S, ρ) be a metric space and let Π be a family of probability measures on $(S, \mathcal{B}(S))$.

- We say that Π is *relatively compact* if every sequence of elements of Π contains a weakly convergent subsequence.
- We say that Π is *tight* if for every ε > 0, there exists a compact set K ⊆ S such that P(K) ≥ 1 − ε, for every P ∈ Π.
- Let {X_α}_{α∈A} be a family of random variables, each one defined on a probability space (Ω_α, F_α, P_α) and taking values in S.
 We say that this family is *relatively compact* or *tight* if the family of induced measures P_αX_α⁻¹_{α∈A} has the appropriate property.

イロト イポト イヨト イヨト

Theorem (Prohorov (1956))

Let Π be a family of probability measures on a complete, separable metric space S. This family is relatively compact if and only if is tight.

- We are interested in the case $S = C[0, \infty)$, for which we have another characterization of tightness.
- The special case $S = \mathbb{R}$ can be used to prove the central limit theorem.

Definition (modulus of continuity)

For each $\omega \in C[0,\infty)$, T > 0 and $\delta > 0$ the modulus of continuity on [0, T]:

$$m^{T}(\omega,\delta) = \max_{|s-t| \leq \delta, \ 0 \leq s,t \leq T} |\omega(s) - \omega(t)| \; .$$

Theorem (Theorem A)

A sequence $\{P_n\}_{n=1}^{\infty}$ of probability measures on $(C[0,\infty), \mathcal{B}(C[0,\infty)))$ is tight if and only if

$$\begin{split} &\lim_{\lambda \uparrow \infty} \sup_{n \ge 1} P_n[\omega : |\omega(0)| > \lambda] = 0\\ &\lim_{\delta \downarrow 0} \sup_{n \ge 1} P_n[\omega : m^T(\omega, \delta) > \epsilon] = 0, \forall T > 0, \epsilon > 0. \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

- Let X be a continuous process on some probability space (Ω, \mathcal{F}, P) .
 - For each ω, the function t → X_t(ω) is a member of C[0,∞), which we denote by X(ω).
 - We can then consider the random function $X : \Omega \to C[0,\infty)$.
- Let {X⁽ⁿ⁾}_{n=1}[∞] be a sequence of continuous processes (with each X⁽ⁿ⁾ defined on a perhaps distinct probability space (Ω_n, F_n, P_n).
 - We can ask whether $X^{(n)} \xrightarrow{\mathcal{D}} X$.
 - ► We can also ask whether the finite-dimensional distributions of {X⁽ⁿ⁾}_{n=1}[∞] converge to those of X, i.e. whether

$$(X_{t_1}^{(n)}, X_{t_2}^{(n)}, ..., X_{t_d}^{(n)}) \xrightarrow{\mathcal{D}} (X_{t_1}, X_{t_2}, ..., X_{t_d})$$
.

 This latter question is easier to answer than the former, since the convergence in distribution of finite-dimensional random vectors can be resolved by studying characteristic functions.

<ロ> (日) (日) (日) (日) (日)

• For any finite subset $\{t_1, ..., t_d\}$ of $[0, \infty)$, define the projection mapping $\pi_{t_1,...,t_d} : C[0, \infty) \to \mathbb{R}^d$ as

$$\pi_{t_1,...,t_d}(\omega) = (\omega(t_1),...,\omega(t_d))$$
.

- If the function f : ℝ^d → ℝ is bounded and continuous, then the composite mapping f ∘ π_{t1},...,t_d : C[0,∞) → ℝ enjoys the same properties.
- Thus, $X^{(n)} \xrightarrow{\mathcal{D}} X$ implies

$$\lim_{n \to \infty} E_n f(X_{t_1}^{(n)}, ..., X_{t_d}^{(n)}) = \lim_{n \to \infty} E_n f \circ \pi_{t_1, ..., t_d}(X^{(n)}) \\ = E f \circ \pi_{t_1, ..., t_d}(X) = E f(X_{t_1}, ..., X_{t_d}).$$

- If the sequence of processes {X⁽ⁿ⁾}_{n=1}[∞] converges in distribution to the process X, then all finite-dimensional distributions converge as well.
- The converse holds in the presence tightness.

Theorem (Theorem B)

Let $\{X^{(n)}\}_{n=1}^{\infty}$ be a tight sequence of continuous processes with the property that, whenever $0 \le t_1 < ... < t_d < \infty$, then the sequence of random vectors $\{(X_{t_1}^{(n)}, ..., X_{t_d}^{(n)})\}_{n=1}^{\infty}$ converges in distribution. Let P_n be the measure induced on $(C[0, \infty), \mathcal{B}(C[0, \infty)))$ by $X^{(n)}$. Then $\{P_n\}_{n=1}^{\infty}$ converges weakly to a measure P, under which the coordinate mapping process $W_t(\omega) = \omega(t)$ on $C[0, \infty)$ satisfies

$$(X_{t_1}^{(n)},...,X_{t_d}^{(n)}) \stackrel{\mathcal{D}}{
ightarrow} (W_{t_1},...,W_{t_d}) \;,\; 0 \leq t_1 < ... < t_d < \infty \;,\; d \geq 1$$

<ロ> (日) (日) (日) (日) (日)

- Consider now:
 - a sequence {ξ_j}_{j=1}[∞] of independent, identically distributed random variables with mean zero and variance σ² (0 < σ² < ∞).</p>
 - a sequence of partial sums $S_0 = 0$, $S_k = \sum_{j=0}^k \xi_j$, $k \ge 1$.
- We can obtain a continuous process $Y = \{Y_t : t \ge 0\}$ from the sequence $\{S_k\}_{k=0}^{\infty}$ by linear interpolation:

$$Y_t = S_{[t]} + (t - [t])\xi_{[t]+1} , t \ge 0 ,$$

where [t] denotes the greatest integer less than or equal to t.

 Scaling appropriately both time and space, we obtain from Y a sequence of processes {X⁽ⁿ⁾}:

$$X^{(n)}_t=rac{1}{\sigma\sqrt{n}}Y_{nt}\;,\;t\geq 0\;.$$

- Let s = k/n and t = (k+1)/n:
 - the increment X⁽ⁿ⁾_t − X⁽ⁿ⁾_s = (1/σ√n)ξ_{k+1} is independent of *F*^{X⁽ⁿ⁾}_s = σ(ξ₁,...,ξ_k).

 X⁽ⁿ⁾_s − X⁽ⁿ⁾_s has zero mean and variance t − s.
- This suggests that $\{X_t^{(n)}: t \ge 0\}$ is approximately a Brownian motion.
- In the next theorem we prove that even though the random variables ξ_j are not necessarily normal, the central limit theorem dictates that the limiting distributions of the increments of $X^{(n)}$ are normal.

<ロ> (日) (日) (日) (日) (日)

Theorem (Theorem C)

For $0 \leq t_1 < ... < t_d < \infty$, we have that as $n \to \infty$

$$(X_{t_1}^{(n)},...,X_{t_d}^{(n)}) \xrightarrow{\mathcal{D}} (B_{t_1},...,B_{t_d})$$

where $\{B_t, \mathcal{F}_t^{\mathcal{B}} : t \ge 0\}$ is a standard, one-dimensional Brownian motion.

- We prove the result for the case d = 2, the general case being analogous.
- Set $s = t_1$ and $t = t_2$. We want to show that

$$(X_s^{(n)}, X_t^{(n)}) \xrightarrow{\mathcal{D}} (B_t, B_t)$$
.

Since

$$\left|X_t^{(n)} - rac{1}{\sigma\sqrt{n}}S_{[tn]}
ight| \leq rac{1}{\sigma\sqrt{n}}\left|\xi_{[tn]+1}
ight| \; ,$$

we obtain by Chebyshev inequality

$$P\left[\left|X_{t}^{(n)}-\frac{1}{\sigma\sqrt{n}}S_{[tn]}\right|>\epsilon\right]\leq\frac{1}{\epsilon^{2}n},$$

as $n \to \infty$.

Diogo Pinheiro (CEMAPRE)

<ロト < 同ト < ヨト < ヨト

• Therefore,

$$\left| (X_s^{(n)}, X_t^{(n)}) - \frac{1}{\sigma \sqrt{n}} (S_{[sn]}, S_{[tn]}) \right| \to 0$$

in probability.

Lemma (Auxiliary lemma 1)

Let $\{X^{(n)}\}_{n=1}^{\infty}$, $\{Y^{(n)}\}_{n=1}^{\infty}$, and X be random variables with values in a separable metric space (S, ρ) . Assume also that for each $n \ge 1$, $X^{(n)}$ and $Y^{(n)}$ are defined on the same probability space. If $X^{(n)} \xrightarrow{\mathcal{D}} X$ and $\rho(X^{(n)}, Y^{(n)}) \to 0$ in probability as $n \to \infty$ then $Y^{(n)} \xrightarrow{\mathcal{D}} X$ as $n \to \infty$.

• Therefore, we need only to show that

$$\frac{1}{\sigma\sqrt{n}}(S_{[sn]},S_{[tn]}) \xrightarrow{\mathcal{D}} (B_t,B_t) \ .$$

<ロト < 同ト < ヨト < ヨト

• But proving the convergence

$$\frac{1}{\sigma\sqrt{n}}(S_{[sn]},S_{[tn]}) \xrightarrow{\mathcal{D}} (B_t,B_t) .$$

is equivalent to proving

$$\frac{1}{\sigma\sqrt{n}}\left(\sum_{j=1}^{[sn]}\xi_j,\sum_{j=[sn]+1}^{[tn]}\xi_j\right)\stackrel{\mathcal{D}}{\rightarrow} (B_s,B_t-B_s)$$

by the auxiliary lemma below.

Lemma (Auxiliary lemma 2)

Let $\{X^{(n)}\}_{n=1}^{\infty}$ be a sequence of random variables taking values in a metric space (S_1, ρ_1) and converging in distribution to X. Suppose that (S_1, ρ_1) is also a metric space and let $\phi : S_1 \to S_2$ be a continuous map. Then $Y^{(n)} = \phi(X^{(n)})$ converges in distribution to $Y = \phi(X)$.

<ロ> <問> <問> < 目> < 目>

• Independence of the random variables $\{\xi_j\}_{j=1}^{\infty}$ implies

$$\lim_{n \to \infty} E\left[\exp\left\{\frac{\mathrm{i}u}{\sigma\sqrt{n}}\sum_{j=1}^{[sn]}\xi_j + \frac{\mathrm{i}v}{\sigma\sqrt{n}}\sum_{j=[sn]+1}^{[tn]}\xi_j\right\}\right]$$
$$= \lim_{n \to \infty} E\left[\exp\left\{\frac{\mathrm{i}u}{\sigma\sqrt{n}}\sum_{j=1}^{[sn]}\xi_j\right\}\right]\lim_{n \to \infty} E\left[\exp\left\{\frac{\mathrm{i}v}{\sigma\sqrt{n}}\sum_{j=[sn]+1}^{[tn]}\xi_j\right\}\right]$$

provided both limits on the right hand side exist.

• We deal with the first limit on the right hand side, the other being similar.

<ロ> <問> <問> < 目> < 目>

Since

$$\left|\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^{[sn]}\xi_j - \frac{\sqrt{s}}{\sigma\sqrt{[sn]}}\sum_{j=1}^{[sn]}\xi_j\right| \to 0$$

in probability and, by the central limit theorem $(\sqrt{s}/\sigma\sqrt{[sn]})\sum_{j=1}^{[sn]}\xi_j$ converges in distribution to a normal variable with mean zero and variance s, we have

$$\lim_{n \to \infty} E\left[\exp\left\{\frac{\mathrm{i}v}{\sigma\sqrt{n}}\sum_{j=[sn]+1}^{[tn]}\xi_j\right\}\right] = \mathrm{e}^{-u^2s/2}$$

Similarly

$$\lim_{n \to \infty} E\left[\exp\left\{\frac{\mathrm{i}u}{\sigma\sqrt{n}}\sum_{j=1}^{[sn]}\xi_j\right\}\right] = \mathrm{e}^{-v^2(t-s)/2}$$

Substitution in the equality in the previous slide completes the proof.

- In fact, the sequence $\{X^{(n)}\}$ of linearly interpolated and normalized random walks converges to Brownian motion in distribution.
- For the tightness required to carry out such an extension (see Theorem B), we need one more auxiliary result.

Lemma

Set $S_k = \sum_{j=1}^k \xi_j$, where $\{\xi_j\}_{j=1}^\infty$ is a sequence of independent, identically distributed random variables, with mean zero and finite variance $\sigma^2 > 0$. Then, for any $\epsilon \ge 0$

$$\lim_{\delta \downarrow 0} \overline{\lim}_{n \to \infty} \frac{1}{\delta} P \left[\max_{1 \le j \le [n\delta] + 1} |S_j| > \epsilon \sigma \sqrt{n} \right] = 0 .$$

Furthermore, for any T > 0

$$\lim_{\delta \downarrow 0} \overline{\lim}_{n \to \infty} P\left[\max_{1 \le j \le [n\delta] + 1, \ 1 \le k \le [nT] + 1} |S_{j+k} - S_k| > \epsilon \sigma \sqrt{n}\right] = 0.$$

<ロ> <問> <問> < 目> < 目>

Theorem (The Invariance Principle of Donsker (1951))

Let (Ω, \mathcal{F}, P) be a probability space on which is given a sequence $\{\xi_j\}_{j=1}^{\infty}$ of independent, identically distributed random variables, with mean zero and finite variance $\sigma^2 > 0$. Let $X^{(n)} = \{X_{*}^{(n)}\}$ be defined by

$$X_t^{(n)} = rac{1}{\sigma \sqrt{n}} Y_{nt} \ , \ t \geq 0 \ ,$$

where

$$Y_t = S_{[t]} + (t - [t])\xi_{[t]+1} \;,\; t \ge 0 \;,$$

 $S_0 = 0$ and $S_k = \sum_{j=0}^k \xi_j$. Furthermore, let P_n be the measure induced by $X^{(n)}$ on $(C[0,\infty), \mathcal{B}(C[0,\infty)))$. Then $\{P_n\}_{n=1}^{\infty}$ converges weakly to a measure P_* under which the coordinate mapping process $W_t(\omega) = \omega(t)$ on $C[0,\infty)$ is a standard, one dimensional Brownian motion.

<ロ> (日) (日) (日) (日) (日)

- Due to Theorems B and C, we only need to show that $\{X^{(n)}\}$ is tight.
 - To prove this, we use Theorem A:
 - * the first condition is trivially satisfied since $X_0^{(n)} = 0$ a.s. for every *n*;
 - \star thus, we only need to establish that for arbitrary $\epsilon > 0$ and T > 0

$$\limsup_{\delta \downarrow 0} \sup_{n \ge 1} P\left[\max_{|s-t| \le \delta, \ 0 \le s, t \le T} |X_s^{(n)} - X_t^{(n)}| > \epsilon\right] = 0$$

- * We can replace $\sup_{n\geq 1}$ in the expression above by $\overline{\lim}_{n\to\infty}$ since for a finite number of integers n we can make the probability above as small as we choose by reducing δ .
- ★ But note that

$$P\left[\max_{|s-t|\leq\delta,\ 0\leq s,t\leq T}|X_s^{(n)}-X_t^{(n)}|>\epsilon\right]=P\left[\max_{|s-t|\leq n\delta,\ 0\leq s,t\leq nT}|Y_s-Y_t|>\epsilon\right]$$

and

$$\begin{array}{rcl} \max_{s-t|\leq n\delta,\; 0\leq s,t\leq nT} |Y_s - Y_t| &\leq & \max_{|s-t|\leq [n\delta]+1,\; 0\leq s,t\leq [nT]+1} |Y_s - Y_t| \\ &\leq & \max_{1\leq j\leq [n\delta]+1,\; 0\leq k\leq [nT]+1} |S_{j+k} - S_k| \;, \end{array}$$

where the last inequality follows from the fact that Y is piecewise linear and changes slope only at integer values of t.

* The result now follows from the previous lemma.

Definition (Wiener measure)

The probability measure P_* on $(C[0,\infty), \mathcal{B}(C[0,\infty)))$ under which the coordinate mapping process $W_t(\omega) = \omega(t)$, $0 \le t < \infty$, is a standard, one dimensional Brownian motion is called *Wiener measure*.

- A standard, one-dimensional Brownian motion defined on any probability space can be thought of as a random variable with values in C[0,∞).
 - ▶ Regarded this way, Brownian motion induces the Wiener measure on (C[0,∞), B(C[0,∞))).
 - For this reason, (C[0,∞), B([0,∞)), P_{*}), where P_{*} is the Wiener measure, is called the canonical probability space for Brownian motion.

<ロト < 同ト < ヨト < ヨト

Definition (*d*-dimensional Brownian motion with initial distribution μ)

Let *d* be a positive integer and μ a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Let $B = \{B_t, \mathcal{F}_t : t \ge 0\}$ be a continuous, adapted process with values in \mathbb{R}^d , defined on some probability space (Ω, \mathcal{F}, P) . This process is called a *d*-dimensional Brownian motion with initial distribution μ , if

- $P[B_0 \in \Gamma] = \mu(\Gamma)$, for all $\Gamma \in \mathcal{B}(\mathbb{R}^d)$,
- for $0 \leq s < t$, the increment $B_t B_s$ is independent of \mathcal{F}_s ,
- for $0 \le s < t$, the increment $B_t B_s$ is normally distributed with mean zero and covariance matrix equal to $(t s)I_d$, where I_d denotes the $d \times d$ identity matrix.

If μ assigns measure one to some singleton $\{x\}$, we say that B is a *d*-dimensional Brownian motion starting at x.

- Let us see how to construct a *d*-dimensional Brownian motion with initial distribution μ :
 - Let X(ω₀) = ω₀ be the identity random variable on (ℝ^d, B(ℝ^d), μ).
 - For each i = 1, ..., d, let B̃⁽ⁱ⁾ = {B̃⁽ⁱ⁾_t, F̃^{B̃⁽ⁱ⁾}_t : t ≥ 0} be a standard one-dimensional Brownian motion on some (Ω⁽ⁱ⁾, F⁽ⁱ⁾, P⁽ⁱ⁾).
 - On the product space

$$(\mathbb{R}^{d} \times \Omega^{(1)} \times ... \times \Omega^{(d)}, \mathcal{B}(\mathbb{R}^{d}) \otimes \mathcal{F}^{(1)} \otimes ... \otimes \mathcal{F}^{(d)}, \mu \times \mathcal{P}^{(1)} \times ... \times \mathcal{P}^{(d)})$$

define

$$B_t(\omega) = X(\omega_0) + (\tilde{B}_t^{(1)}(\omega_1), ..., \tilde{B}_t^{(d)}(\omega_d))$$

and set $\mathcal{F}_t = \mathcal{F}_t^B$

• $B = \{B_t, \mathcal{F}_t : t \ge 0\}$ is a *d*-dimensional Brownian motion with initial distribution μ

- Another construction for a *d*-dimensional Brownian motion with initial distribution μ :
 - ► Let $P^{(i)}$, i = 1, ..., d, be d copies of the Wiener measure on $(C[0, \infty), \mathcal{B}([0, \infty)))$.
 - Then P⁰ = P⁽¹⁾ × ... × P^(d) is a measure, called the *d*-dimensional Wiener measure, on (C[0,∞)^d, B(C[0,∞)^d)).
 - Under P^0 , the coordinate mapping process $B_t(\omega) = \omega(t)$ together with the filtration $\{\mathcal{F}_t^B\}$ is a *d*-dimensional Brownian motion starting at the origin.

<ロ> (日) (日) (日) (日) (日)

• For $x \in \mathbb{R}^d$, define the probability measure P^x on $\mathcal{B}(C[0,\infty)^d)$ by

$$P^{x}(F) = P^{0}(F-x) , \qquad F \in \mathcal{B}(C[0,\infty)^{d}) ,$$

where $F - x = \{\omega \in C[0,\infty)^d : \omega(.) + x \in F\}$.

- Under P^x , $B = \{B_t, \mathcal{F}_t^B : t \ge 0\}$ is a *d*-dimensional Brownian motion starting at *x*.
- Finally, for a probability measure μ on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, we define P^{μ} on $\mathcal{B}(C[0,\infty)^d$ by

$$P^{\mu}(F) = \int_{\mathbb{R}^d} P^x(F) \mu(\mathrm{d} x) \; .$$

 The coordinate mapping process B = {B_t, F^B_t : t ≥ 0} on (C[0,∞)^d, B(C[0,∞)^d), P^μ) is a d-dimensional Brownian motion with initial distribution μ.

Definition (Universally measurable function)

Given a metric space (S, ρ) , we denote by $\overline{\mathcal{B}(S)}^{\mu}$ the completion of the Borel σ -field $\mathcal{B}(S)$ with respect to the finite measure μ on $(S, \mathcal{B}(S))$. The *universal* σ -field is $\mathcal{U}(S) = \bigcap_{\mu} \overline{\mathcal{B}(S)}^{\mu}$, where the intersection is over all finite measures.

A $\mathcal{U}(S)/\mathcal{B}(\mathbb{R})$ -measurable real-valued function is said to be *universally measurable*.

・ロト ・四ト ・ヨト ・ヨ

Definition (*d*-dimensional Brownian family)

A *d*-dimensional Brownian family is an adapted, *d*-dimensional process $B = \{B_t, \mathcal{F}_t : t \ge 0\}$ on a measurable space (Ω, \mathcal{F}) , and a family of probability measures $\{P^x\}_{x \in \mathbb{R}^d}$, such that

- for each $F \in \mathcal{F}$, the mapping $x \mapsto P^x(F)$ is universally measurable,
- for each $x \in \mathbb{R}^d$, $P^x[B_0 = x] = 1$,
- under each *P*^x, the process *B* is a *d*-dimensional Brownian motion starting at *x*.
- The *d*-dimensional Brownian motion constructed above, together with the family of probability measures {*P*[×]}, is an example of a *d*-dimensional Brownian family.

Definition (*d*-dimensional Brownian motion with drift μ and dispersion coefficient σ)

Let $B = \{B_t, \mathcal{F}_t : t \ge 0\}$, (Ω, \mathcal{F}) , $\{P^x\}_{x \in \mathbb{R}^d}$ be a *d*-dimensional Brownian family. If $\mu \in \mathbb{R}^d$ and $\sigma \in L(\mathbb{R}^d, \mathbb{R}^d)$ are constant and σ is nonsingular, then with

$$Y_t = \mu t + \sigma B_t ,$$

we say that $Y = \{Y_t, \mathcal{F}_t : t \ge 0\}$, (Ω, \mathcal{F}) , $\{P^{\sigma^{-1}x}\}_{x \in \mathbb{R}^d}$ is a *d*-dimensional Brownian motion with drift μ and dispersion coefficient σ .

イロト イボト イヨト イヨ

Definition (Conditional expectation with respect to a σ -algebra)

Let (Ω, \mathcal{F}, P) be a probability space, X a $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ -valued random variable on (Ω, \mathcal{F}) and \mathcal{G} a sub- σ -algebra of \mathcal{F} .

The conditional expectation of X given \mathcal{G} is denoted by $E[X|\mathcal{G}]$ and defined as the function from Ω to \mathbb{R}^d satisfying

• E[X|G] is G-measurable

•
$$\int_A E[X|\mathcal{G}] dP = \int_A X dP$$
, for all $A \in \mathcal{G}$.

- It can be shown, via Radon-Nikodym Theorem, that E[X|G] always exists and is unique almost everywhere:
 - any two \mathcal{G} -measurable random variables Y and Z with

$$\int_{A} \mathbf{Y} \mathrm{d} \mathbf{P} = \int_{A} \mathbf{Z} \mathrm{d} \mathbf{P} = \int_{A} \mathbf{X} \mathrm{d} \mathbf{P}$$

for every $A \in \mathcal{G}$, differ by a null event in \mathcal{G} .

<ロ> (日) (日) (日) (日) (日)

- Let X and Y be $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ -valued random variables on (Ω, \mathcal{F}) with $E[|X|] < \infty$ and $E[|Y|] < \infty$. Let also $\alpha, \beta \in \mathbb{R}$.
- The conditional expecta
 - $\models E[\alpha X + \beta Y|\mathcal{G}] = \alpha E[X|\mathcal{G}] + \beta E[X|\mathcal{G}].$
 - $\blacktriangleright E[E[X|\mathcal{G}]] = E[X].$
 - $E[X|\mathcal{G}] = X$ if X is \mathcal{G} -measurable.
 - $E[X|\mathcal{G}] = E[X]$ if X is independent of \mathcal{G} .
 - $E[YX|\mathcal{G}] = YE[X|\mathcal{G}]$ if Y is \mathcal{G} -measurable.

Definition (conditional probability)

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space, $A \in \mathcal{F}$ an event and \mathcal{G} a sub- σ -algebra of \mathcal{F} . The conditional probability of A given \mathcal{G} is the conditional expectation of I_A given \mathcal{G} , i.e.:

$$P[A|\mathcal{G}] = E[I_A|\mathcal{G}].$$

Similarly, we can define the *conditional probability of A given a random variable X* on (Ω, \mathcal{F}) as

$$P[A|X] = E[I_A|\mathcal{F}^X].$$

イロト イボト イヨト イヨ

Definition (Martingale)

Let $X = \{X_t : 0 \le t < \infty\}$ be a real-valued process defined on a probability space (Ω, \mathcal{F}, P) , adapted to a given filtration $\{\mathcal{F}_t\}$. Furthermore, assume that $E|X_t| < \infty$ for all $t \ge 0$. The process X is a *martingale* if, for every $0 \le s < t < \infty$, we have, a.s. P:

$$E[X_t|\mathcal{F}_s] = X_s$$
.

Markov Processes and Markov families

- Suppose that we observe a Brownian motion with initial distribution µ up to time s, 0 ≤ s < t.
- In particular, assume we see the value of B_s , to which we call y.
 - Conditioned on these observations, what is the probability that B_t is in some set $\Gamma \in \mathcal{B}(\mathbb{R}^d)$?
 - * $B_t = (B_t B_s) + B_s$ and the increment $B_t B_s$ is independent of the observations up to time *s* and is distributed just as B_{t-s} is under P^0 .
 - * B_s depends on the observations: we are conditioning on $B_s = y$.
 - * We get that $B_t = (B_t B_s) + B_s$ is distributed as B_{t-s} is under P^y
 - Summarizing:
 - (i) Knowledge of the whole past up to time s provides as much information about B_t as knowledge of the value of B_s :

$$P^{\mu}[B_t \in \Gamma | \mathcal{F}_s] = P^{\mu}[B_t \in \Gamma | B_s] , \qquad 0 \leq s < t , \qquad \Gamma \in \mathcal{B}(\mathbb{R}^d) .$$

(ii) Conditioned on $B_s = y$, B_t is distributed as B_{t-s} is under P^y :

$$P^{\mu}[B_t \in \Gamma | B_s = y] = P^{y}[B_{t-s} \in \Gamma] , \qquad 0 \le s < t , \qquad \Gamma \in \mathcal{B}(\mathbb{R}^d) .$$

Definition (Markov Process with initial distribution μ)

Let *d* be a positive integer and μ a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. An adapted, *d*-dimensional process $X = \{X_t, \mathcal{F}_t : t \ge 0\}$ on some probability space $(\Omega, \mathcal{F}, P^{\mu})$ is said to be a *Markov process with initial distribution* μ if

- $P^{\mu}[X_0 \in \Gamma] = \mu(\Gamma)$, for every $\Gamma \in \mathcal{B}(\mathbb{R}^d)$.
- for $s, t \geq 0$ and $\Gamma \in \mathcal{B}(\mathbb{R}^d)$,

$$P^{\mu}[X_{t+s} \in \Gamma | \mathcal{F}_s] = P^{\mu}[X_{t+s} \in \Gamma | X_s]$$
, P^{μ} a.s.

イロト イポト イヨト イヨ

Markov Processes and Markov families

Definition (Markov family)

Let *d* be a positive integer. A *d*-dimensional *Markov family* is an adapted process $X = \{X_t, \mathcal{F}_t : t \ge 0\}$ on some measurable space (Ω, \mathcal{F}) , together with a family of probability measures $\{P^x\}_{x \in \mathbb{R}^d}$ on (Ω, \mathcal{F}) , such that

- for each $F \in \mathcal{F}$, the mapping $x \mapsto P^x(F)$ is universally measurable,
- for each $x \in \mathbb{R}^d$, $P^x[X_0 = x] = 1$,
- for $x \in \mathbb{R}^d$, $s, t \ge 0$ and $\Gamma \in \mathcal{B}(\mathbb{R}^d)$,

$$P^{ imes}[X_{t+s}\in \Gamma|\mathcal{F}_s]=P^{ imes}[X_{t+s}\in \Gamma|X_s]\;,\qquad P^{ imes}$$
 a.s.

• for $x \in \mathbb{R}^d$, $s, t \ge 0$ and $\Gamma \in \mathcal{B}(\mathbb{R}^d)$, $P^x[X_{t+s} \in \Gamma | X_s = y] = P^y[X_t \in \Gamma]$, $P^x X_s^{-1}$ a.e.y

Markov Processes and Markov families

- The following properties hold:
 - A *d*-dimensional Brownian motion is a Markov process.
 - A *d*-dimensional Brownian family is a Markov family.
 - Standard, one dimensional Brownian motion is both a martingale and a Markov process.
 - Brownian motion with non-zero drift is a Markov process but is not a martingale.

イロト イポト イヨト イヨ

- We will state the basic absolute properties of Brownian motion, i.e. those which hold with probability one, also called sample path properties.
 - These include:
 - * Bad behaviour: nondifferentiability and lack of points of increase.
 - * Good behaviour: law of the iterated logarithm
- It is worth to remark that sample paths of any continuous martingale can be obtained by running those of a Brownian motion according to a different, path-dependent clock.
 - Therefore, the study of Brownian motion provides the sample path properties for a much more general class of processes, which includes continuous martingales and diffusions.

<ロ> (日) (日) (日) (日) (日)

- We will state the basic absolute properties of Brownian motion, i.e. those which hold with probability one, also called sample path properties.
 - These include:
 - * Bad behaviour: nondifferentiability and lack of points of increase.
 - * Good behaviour: law of the iterated logarithm
- It is worth to remark that sample paths of any continuous martingale can be obtained by running those of a Brownian motion according to a different, path-dependent clock.
 - Therefore, the study of Brownian motion provides the sample path properties for a much more general class of processes, which includes continuous martingales and diffusions.

<ロ> (日) (日) (日) (日) (日)

Definition (Gaussian process)

An \mathbb{R}^d -valued stochastic process $X = \{X_t : 0 \le t < \infty\}$ is called *Gaussian* if, for any integer $k \ge 1$ and real numbers $0 \le t_1 < t_2 < ... < t_k < \infty$, the random vector $(X_{t_1}, X_{t_2}, ..., X_{t_k})$ has a joint normal distribution. If the distribution of $(X_{t+t_1}, X_{t+t_2}, ..., X_{t+t_k})$ does not depend on t, we say that the process is *stationary*.

イロト イボト イヨト イヨ

 The finite dimensional distributions of a Gaussian process X are determined by its expectation vector m(t) = E[X_t], t ≥ 0, and its covariance matrix

$$\rho(s,t) = E[(X_s - m(s))(X_t - m(t))^T], \qquad s,t \ge 0.$$

- If m(t) = 0 for all $t \ge 0$ we say that X is a zero-mean Gaussian process.
- One-dimensional Brownian motion is a zero-mean Gaussian process with covariance function $\rho(s, t) = \min\{s, t\}$
- Conversely, any zero-mean Gaussian process $X = \{X_t, \mathcal{F}_t^X : 0 \le t < \infty\}$ with a.s. continuous paths and covariance function given by $\rho(s, t) = \min\{s, t\}$ is a one-dimensional Brownian motion.

From now on, let:

- W = {W_t, F_t : 0 ≤ t < ∞} be a standard one dimensional Brownian motion on (Ω, F, P).
- ▶ W₀ = 0 a.s. P.
- for fixed $\omega \in \Omega$, $W_{\cdot}(\omega)$ denotes the sample path $t \mapsto W_t(\omega)$.
- Strong Law of Large Numbers:

$$\lim_{t\to\infty}\frac{W_t}{t}=0\qquad\text{a.s.}$$

<ロ> (日) (日) (日) (日) (日)

• Equivalence transformations:

- When W = {W_t, F_t : 0 ≤ t < ∞} be a standard Brownian motion, so are the processes obtained from the following equivalence transformations:</p>
 - ★ Scaling: $X = \{X_t, \mathcal{F}_{ct} : 0 \le t < \infty\}$ defined for c > 0 by

$$X_t = rac{1}{\sqrt{c}} W_{ct} \;, \qquad 0 \leq t < \infty \;.$$

* Time-inversion: $Y = \{Y_t, \mathcal{F}_t^Y : 0 \le t < \infty\}$ defined by

$$Y_t = t W_{1/t} \ , \ 0 < t < \infty \ , \qquad Y_0 = 0 \ .$$

* Time-reversal: $Z = \{Z_t, \mathcal{F}_t^Z : 0 \le t \le T\}$ defined for T > 0 by

$$Z_t = W_T - W_{T-t} , \ 0 \le t \le T .$$

* Symmetry: $-W = \{-W_t, \mathcal{F}_t : 0 \le t < \infty\}.$

- Zero set:
 - For fixed $\omega \in \Omega$, define the zero set of $W_{\cdot}(\omega)$ as

$$\mathcal{L}_{\omega} = \{ 0 \leq t < \infty : W_t(\omega) = 0 \}$$
.

- For *P*-a.e. $\omega \in \Omega$, the zero set \mathcal{L}_{ω}
 - (i) has Lebesgue measure zero,
 - (ii) is closed and unbounded,
 - (iii) has an accumulation point at t = 0,
 - (iv) has no isolated point in $(0,\infty)$, and therefore
 - (v) is dense in itself.
- With probability one, a standard, one-dimensional Brownian motion changes sign infinitely many times in any time-interval [0, *ε*], *ε* > 0.
- ▶ For every fixed $b \in \mathbb{R}$ and *P*-a.e. $\omega \in \Omega$, the level set

$$\mathcal{L}_{\omega}(b) = \{ 0 \leq t < \infty : W_t(\omega) = b \}$$

is closed, unbounded, of Lebesgue measure zero, and dense in itself.

• Quadratic Variation:

- ▶ Let $\{\Pi_n\}_{n=1}^{\infty} = \{0 = t_0^{(n)}, t_1^{(n)}, ..., t_{m_n}^{(n)} = t\}_{n=1}^{\infty}$ be a sequence of partitions of the interval [0, t] with $\lim_{n\to\infty} \|\Pi_n\| = 0$.
- Then the quadratic variations

$$V_t^{(2)}(\Pi_n) = \sum_{k=1}^{m_n} |W_{t_k^{(n)}} - W_{t_{k-1}^{(n)}}|^2$$

of the Brownian motion W over these partitions converge to t in L^2 as $n \to \infty$.

- Furthermore, if the partitions become so fine that ∑_{n=1}[∞] ||Π_n|| < ∞ holds, the convergence above takes place also with probability one.</p>
- As a consequence, for almost every ω ∈ Ω, the sample path W_.(ω) is of unbounded variation on every finite interval [0, t].

- Local maxima and points of increase:
 - For almost every $\omega \in \Omega$, the sample path $W_{\cdot}(\omega)$ is monotone in no interval.
 - For almost every ω ∈ Ω, the set of points of local maximum for the Brownian path W.(ω) is countable and dense in [0,∞), and all local maxima are strict.
 - (Dvoretzky, Erdös, Kakutani (1961): Almost every Brownian sample path has no point of increase (or decrease).

- Nowhere differentiability:
 - ▶ For a continuous function $f : [0, \infty) \to \mathbb{R}$, we denote by

$$D^{\pm}f(t) = \overline{\lim}_{h \to 0^{\pm}} \frac{f(t+h) - f(t)}{h}$$

the upper (right and left) Dini derivatives at t, and by

$$D_{\pm}f(t) = \underline{\lim}_{h \to 0^{\pm}} \frac{f(t+h) - f(t)}{h}$$

the lower (right and left) Dini derivatives at t.

- ► The function f is said to be differentiable at t from the right (resp. left), if D⁺f(t) and D₊f(t) (resp. D⁻f(t) and D₋f(t)) are finite and equal.
- ► The function f is said to be *differentiable at t >* 0 if it is differentiable from both the right and the left and the four Dini derivatives agree.
- At t = 0, differentiability is defined as differentiability from the right.
- (Paley, Wiener, Zygmund (1933)):
 For almost every ω ∈ Ω, the Brownian sample path W_.(ω) is nowhere differentiable. More precisely, the set

 $\{\omega \in \Omega : \text{ for each } t \in [0,\infty), \text{ either } D^+W_t(\omega) = \infty \text{ or } D_+W_t(\omega) = -\infty \}$

contains an event $F \in \mathcal{F}$ with P(F) = 1.

• Law of the iterated Logarithm:

► (A. Hinčin (1933)): For almost every $\omega \in \Omega$, we have

(i)
$$\overline{\lim}_{t\downarrow 0} \frac{W_t(\omega)}{\sqrt{2t \log \log(1/t)}} = 1$$

(ii)
$$\underline{\lim}_{t\downarrow 0} \frac{W_t(\omega)}{\sqrt{2t \log \log(1/t)}} = -1$$

(iii)
$$\overline{\lim}_{t\to\infty} \frac{W_t(\omega)}{\sqrt{2t \log \log t}} = 1$$

(iv)
$$\underline{\lim}_{t\to\infty} \frac{W_t(\omega)}{\sqrt{2t \log \log t}} = -1$$
.

・ロト ・回ト ・回ト ・回