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Third construction of Brownian motion

The sample spaces for the Brownian motions in the two previous
constructions were, respectively:

◮ the space R
[0,∞) of all real-valued functions on the half-line;

◮ a space Ω rich enough to carry a countable collection of independent standard
normal random variables.

The“canonical” space for Brownian motion is C [0,∞), the space of all
continuous real-valued functions on the half-line with metric

ρ(ω1, ω2) =

∞
∑

n=1

1

2n
max

0≤t≤n
{|ω1(t) − ω2(t)| ∧ 1} ,

where a ∧ b is used to denote min{a, b}.
◮ Under the metric ρ, C [0,∞) is a complete, separable metric space.
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Third construction of Brownian motion

Let X be a random variable on a probability space (Ω,F ,P) with values in a
measurable space (S ,B(S)), i.e. X : Ω → S is F/B(S)-measurable.

◮ Then X induces a probability measure PX−1 on (S ,B(S)) by

PX−1(B) = P[ω ∈ Ω : X (ω) ∈ B] , B ∈ B(S) .

When X = {Xt : 0 ≤ t < ∞} is a continuous stochastic process on
(Ω,F ,P), we can think of X as a random variable (Ω,F ,P) with values in
(C [0,∞),B(C [0,∞)))

◮ PX−1 is called the law of X .
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Third construction of Brownian motion

Definition (weak convergence)

Let (S , ρ) be a metric space with Borel σ-algebra B(S).
Let {Pn}∞n=1 be a sequence of probability measures on (S ,B(S)), and let P be
another measure on this space.
We say that {Pn}∞n=1 converges weakly to P and write Pn → P if and only if

lim
n→∞

∫

S

f (s)dPn(s) =

∫

S

f (s)dP(s)

for every bounded, continuous real-valued function f on S .

The weak limit P is a probability measure and it is unique.
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Third construction of Brownian motion

Definition (convergence in distribution)

Let {(Ωn,Fn,Pn)}∞n=1 be a sequence of probability spaces, and on each of them
consider a random variable Xn with values in the metric space (S , ρ).
Let (Ω,F ,P) be another probability space, on which a random variable X with
values in (S , ρ) is given.

We say that {Xn}∞n=1 converges to X in distribution, and write Xn
D→ X , if the

sequence of measures {PnX
−1
n }∞n=1 converges weakly to the measure PX−1.

Equivalently, Xn
D→ X if and only if

lim
n→∞

Enf (Xn) = Ef (x)

for every bounded, continuous real-valued function f on S , where En and E

denote expectations with respect to Pn and P, respectively.

If S = R
d , then Xn

D→ X if and only if the sequence of characteristic
functions φn(u) = En[exp{i(u,Xn)}] converges to φ(u) = E [exp{i(u,X )}] for
every u ∈ R

d .
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Third construction of Brownian motion

The most important example of convergence in distribution is provided by the
central limit theorem:

◮ if {ξn}∞n=1 is a sequence of iid random variables with mean zero and variance
σ2, then {Sn} defined by

Sn =
1

σ
√

n

n
∑

k=1

ξk

converges in distribution to a standard normal random variable.
◮ It is this fact that dictates that a properly normalized sequence of random

walks will converge in distribution to Brownian motion.
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Third construction of Brownian motion

Definition (relatively compact and tight family of probability measures)

Let (S , ρ) be a metric space and let Π be a family of probability measures on
(S ,B(S)).

We say that Π is relatively compact if every sequence of elements of Π
contains a weakly convergent subsequence.

We say that Π is tight if for every ǫ > 0, there exists a compact set K ⊆ S

such that P(K ) ≥ 1 − ǫ, for every P ∈ Π.

Let {Xα}α∈A be a family of random variables, each one defined on a
probability space (Ωα,Fα,Pα) and taking values in S .
We say that this family is relatively compact or tight if the family of induced
measures PαX−1

α α∈A has the appropriate property.
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Third construction of Brownian motion

Theorem (Prohorov (1956))

Let Π be a family of probability measures on a complete, separable metric space S.

This family is relatively compact if and only if is tight.

We are interested in the case S = C [0,∞), for which we have another
characterization of tightness.

The special case S = R can be used to prove the central limit theorem.
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Third construction of Brownian motion

Definition (modulus of continuity)

For each ω ∈ C [0,∞), T > 0 and δ > 0 the modulus of continuity on [0,T ]:

mT (ω, δ) = max
|s−t|≤δ, 0≤s,t≤T

|ω(s) − ω(t)| .

Theorem (Theorem A)

A sequence {Pn}∞n=1 of probability measures on (C [0,∞),B(C [0,∞))) is tight if

and only if

lim
λ↑∞

sup
n≥1

Pn[ω : |ω(0)| > λ] = 0

lim
δ↓0

sup
n≥1

Pn[ω : mT (ω, δ) > ǫ] = 0 ,∀T > 0, ǫ > 0 .
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Third construction of Brownian motion

Let X be a continuous process on some probability space (Ω,F ,P).
◮ For each ω, the function t → Xt(ω) is a member of C [0,∞), which we denote

by X (ω).
◮ We can then consider the random function X : Ω → C [0,∞).

Let {X (n)}∞n=1 be a sequence of continuous processes (with each X (n) defined
on a perhaps distinct probability space (Ωn,Fn,Pn).

◮ We can ask whether X (n) D→ X .
◮ We can also ask whether the finite-dimensional distributions of {X (n)}∞n=1

converge to those of X , i.e. whether

(X
(n)
t1

, X
(n)
t2

, ..., X
(n)
td

)
D→ (Xt1 , Xt2 , ..., Xtd ) .

⋆ This latter question is easier to answer than the former, since the convergence
in distribution of finite-dimensional random vectors can be resolved by studying
characteristic functions.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 14, 2009 10 / 49



Third construction of Brownian motion

For any finite subset {t1, ..., td} of [0,∞), define the projection mapping

πt1,...,td : C [0,∞) → R
d as

πt1,...,td (ω) = (ω(t1), ..., ω(td )) .

◮ If the function f : R
d → R is bounded and continuous, then the composite

mapping f ◦ πt1,...,td : C [0,∞) → R enjoys the same properties.

◮ Thus, X (n) D→ X implies

lim
n→∞

Enf (X
(n)
t1

, ..., X
(n)
td

) = lim
n→∞

Enf ◦ πt1,...,td (X
(n))

= Ef ◦ πt1,...,td (X ) = Ef (Xt1 , ..., Xtd ) .

◮ If the sequence of processes {X (n)}∞n=1 converges in distribution to the process
X , then all finite-dimensional distributions converge as well.

◮ The converse holds in the presence tightness.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 14, 2009 11 / 49



Third construction of Brownian motion

Theorem (Theorem B)

Let {X (n)}∞n=1 be a tight sequence of continuous processes with the property that,

whenever 0 ≤ t1 < ... < td < ∞, then the sequence of random vectors

{(X (n)
t1 , ...,X

(n)
td )}∞n=1 converges in distribution.

Let Pn be the measure induced on (C [0,∞),B(C [0,∞))) by X (n).

Then {Pn}∞n=1 converges weakly to a measure P, under which the coordinate

mapping process Wt(ω) = ω(t) on C [0,∞) satisfies

(X
(n)
t1 , ...,X

(n)
td )

D→ (Wt1 , ...,Wtd ) , 0 ≤ t1 < ... < td < ∞ , d ≥ 1 .
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Third construction of Brownian motion

Consider now:
◮ a sequence {ξj}∞j=1 of independent, identically distributed random variables

with mean zero and variance σ2 (0 < σ2 < ∞).
◮ a sequence of partial sums S0 = 0, Sk =

∑k

j=0 ξj , k ≥ 1.

We can obtain a continuous process Y = {Yt : t ≥ 0} from the sequence
{Sk}∞k=0 by linear interpolation:

Yt = S[t] + (t − [t])ξ[t]+1 , t ≥ 0 ,

where [t] denotes the greatest integer less than or equal to t.

Scaling appropriately both time and space, we obtain from Y a sequence of
processes {X (n)}:

X
(n)
t =

1

σ
√

n
Ynt , t ≥ 0 .
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Third construction of Brownian motion

Let s = k/n and t = (k + 1)/n:

◮ the increment X
(n)
t − X

(n)
s = (1/σ

√
n)ξk+1 is independent of

FX (n)

s = σ(ξ1, ..., ξk).
◮ X

(n)
t − X

(n)
s has zero mean and variance t − s.

This suggests that {X (n)
t : t ≥ 0} is approximately a Brownian motion.

In the next theorem we prove that even though the random variables ξj are
not necessarily normal, the central limit theorem dictates that the limiting
distributions of the increments of X (n) are normal.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 14, 2009 14 / 49



Third construction of Brownian motion

Theorem (Theorem C)

For 0 ≤ t1 < ... < td < ∞, we have that as n → ∞

(X
(n)
t1 , ...,X

(n)
td )

D→ (Bt1 , ...,Btd ) ,

where {Bt ,FB
t : t ≥ 0} is a standard, one-dimensional Brownian motion.

We prove the result for the case d = 2, the general case being analogous.

Set s = t1 and t = t2. We want to show that

(X (n)
s ,X

(n)
t )

D→ (Bt ,Bt) .

◮ Since
∣

∣

∣

∣

X
(n)
t − 1

σ
√

n
S[tn]

∣

∣

∣

∣

≤ 1

σ
√

n

∣

∣ξ[tn]+1

∣

∣ ,

we obtain by Chebyshev inequality

P

[∣

∣

∣

∣

X
(n)
t − 1

σ
√

n
S[tn]

∣

∣

∣

∣

> ǫ

]

≤ 1

ǫ2n
,

as n → ∞.
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Third construction of Brownian motion

Therefore,
∥

∥

∥

∥

(X (n)
s ,X

(n)
t ) − 1

σ
√

n
(S[sn],S[tn])

∥

∥

∥

∥

→ 0

in probability.

Lemma (Auxiliary lemma 1)

Let {X (n)}∞n=1, {Y (n)}∞n=1, and X be random variables with values in a separable

metric space (S , ρ).
Assume also that for each n ≥ 1, X (n) and Y (n) are defined on the same

probability space.

If X (n) D→ X and ρ(X (n),Y (n)) → 0 in probability as n → ∞ then Y (n) D→ X as

n → ∞.

Therefore, we need only to show that

1

σ
√

n
(S[sn],S[tn])

D→ (Bt ,Bt) .
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Third construction of Brownian motion

But proving the convergence

1

σ
√

n
(S[sn],S[tn])

D→ (Bt ,Bt) .

is equivalent to proving

1

σ
√

n





[sn]
∑

j=1

ξj ,

[tn]
∑

j=[sn]+1

ξj





D→ (Bs ,Bt − Bs)

by the auxiliary lemma below.

Lemma (Auxiliary lemma 2)

Let {X (n)}∞n=1 be a sequence of random variables taking values in a metric space

(S1, ρ1) and converging in distribution to X .

Suppose that (S1, ρ1) is also a metric space and let φ : S1 → S2 be a continuous

map. Then Y (n) = φ(X (n)) converges in distribution to Y = φ(X ).
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Third construction of Brownian motion

Independence of the random variables {ξj}∞j=1 implies

lim
n→∞

E



exp







iu

σ
√

n

[sn]
∑

j=1

ξj +
iv

σ
√

n

[tn]
∑

j=[sn]+1

ξj











= lim
n→∞

E



exp







iu

σ
√

n

[sn]
∑

j=1

ξj









 lim
n→∞

E



exp







iv

σ
√

n

[tn]
∑

j=[sn]+1

ξj











provided both limits on the right hand side exist.

We deal with the first limit on the right hand side, the other being similar.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 14, 2009 18 / 49



Third construction of Brownian motion

Since
∣

∣

∣

∣

∣

∣

1

σ
√

n

[sn]
∑

j=1

ξj −
√

s

σ
√

[sn]

[sn]
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

→ 0

in probability and, by the central limit theorem (
√

s/σ
√

[sn])
∑[sn]

j=1 ξj

converges in distribution to a normal variable with mean zero and variance s,
we have

lim
n→∞

E



exp







iv

σ
√

n

[tn]
∑

j=[sn]+1

ξj









 = e
−u2s/2 .

Similarly

lim
n→∞

E



exp







iu

σ
√

n

[sn]
∑

j=1

ξj









 = e
−v2(t−s)/2 .

Substitution in the equality in the previous slide completes the proof.
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Third construction of Brownian motion

In fact, the sequence {X (n)} of linearly interpolated and normalized random
walks converges to Brownian motion in distribution.

For the tightness required to carry out such an extension (see Theorem B),
we need one more auxiliary result.

Lemma

Set Sk =
∑k

j=1 ξj , where {ξj}∞j=1 is a sequence of independent, identically

distributed random variables, with mean zero and finite variance σ2 > 0. Then, for

any ǫ ≥ 0

lim
δ↓0

limn→∞
1

δ
P

[

max
1≤j≤[nδ]+1

|Sj | > ǫσ
√

n

]

= 0 .

Furthermore, for any T > 0

lim
δ↓0

limn→∞P

[

max
1≤j≤[nδ]+1, 1≤k≤[nT ]+1

|Sj+k − Sk | > ǫσ
√

n

]

= 0 .
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Third construction of Brownian motion

Theorem (The Invariance Principle of Donsker (1951))

Let (Ω,F ,P) be a probability space on which is given a sequence {ξj}∞j=1 of

independent, identically distributed random variables, with mean zero and finite

variance σ2 > 0.

Let X (n) = {X (n)
t } be defined by

X
(n)
t =

1

σ
√

n
Ynt , t ≥ 0 ,

where

Yt = S[t] + (t − [t])ξ[t]+1 , t ≥ 0 ,

S0 = 0 and Sk =
∑k

j=0 ξj . Furthermore, let Pn be the measure induced by X (n) on

(C [0,∞),B(C [0,∞))).
Then {Pn}∞n=1 converges weakly to a measure P∗ under which the coordinate

mapping process Wt(ω) = ω(t) on C [0,∞) is a standard, one dimensional

Brownian motion.
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Third construction of Brownian motion
Due to Theorems B and C, we only need to show that {X (n)} is tight.

◮ To prove this, we use Theorem A:

⋆ the first condition is trivially satisfied since X
(n)
0 = 0 a.s. for every n;

⋆ thus, we only need to establish that for arbitrary ǫ > 0 and T > 0

lim
δ↓0

sup
n≥1

P

[

max
|s−t|≤δ, 0≤s,t≤T

|X (n)
s − X

(n)
t | > ǫ

]

= 0 .

⋆ We can replace supn≥1 in the expression above by limn→∞ since for a finite
number of integers n we can make the probability above as small as we choose
by reducing δ.

⋆ But note that

P

[

max
|s−t|≤δ, 0≤s,t≤T

|X (n)
s − X

(n)
t | > ǫ

]

= P

[

max
|s−t|≤nδ, 0≤s,t≤nT

|Ys − Yt | > ǫ

]

and

max
|s−t|≤nδ, 0≤s,t≤nT

|Ys − Yt | ≤ max
|s−t|≤[nδ]+1, 0≤s,t≤[nT ]+1

|Ys − Yt |

≤ max
1≤j≤[nδ]+1, 0≤k≤[nT ]+1

|Sj+k − Sk | ,

where the last inequality follows from the fact that Y is piecewise linear and
changes slope only at integer values of t.

⋆ The result now follows from the previous lemma.
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Third construction of Brownian motion

Definition (Wiener measure)

The probability measure P∗ on (C [0,∞),B(C [0,∞))) under which the coordinate
mapping process Wt(ω) = ω(t), 0 ≤ t < ∞, is a standard, one dimensional
Brownian motion is called Wiener measure.

A standard, one-dimensional Brownian motion defined on any probability
space can be thought of as a random variable with values in C [0,∞).

◮ Regarded this way, Brownian motion induces the Wiener measure on
(C [0,∞),B(C [0,∞))).

◮ For this reason, (C [0,∞),B([0,∞)), P∗), where P∗ is the Wiener measure, is
called the canonical probability space for Brownian motion.
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Brownian motion in several dimensions

Definition (d-dimensional Brownian motion with initial distribution µ)

Let d be a positive integer and µ a probability measure on (Rd ,B(Rd)).
Let B = {Bt ,Ft : t ≥ 0} be a continuous, adapted process with values in R

d ,
defined on some probability space (Ω,F ,P). This process is called a
d-dimensional Brownian motion with initial distribution µ, if

P[B0 ∈ Γ] = µ(Γ), for all Γ ∈ B(Rd),

for 0 ≤ s < t, the increment Bt − Bs is independent of Fs ,

for 0 ≤ s < t, the increment Bt − Bs is normally distributed with mean zero
and covariance matrix equal to (t − s)Id , where Id denotes the d × d identity
matrix.

If µ assigns measure one to some singleton {x}, we say that B is a d-dimensional

Brownian motion starting at x .
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Brownian motion in several dimensions

Let us see how to construct a d-dimensional Brownian motion with initial
distribution µ:

◮ Let X (ω0) = ω0 be the identity random variable on (Rd ,B(Rd), µ).

◮ For each i = 1, ..., d , let B̃(i) = {B̃(i)
t , F̃ B̃(i)

t : t ≥ 0} be a standard
one-dimensional Brownian motion on some (Ω(i),F (i), P (i)).

◮ On the product space

(Rd × Ω(1) × ... × Ω(d),B(Rd) ⊗F (1) ⊗ ... ⊗F (d), µ × P (1) × ... × P (d))

define
Bt(ω) = X (ω0) + (B̃

(1)
t (ω1), ..., B̃

(d)
t (ωd))

and set Ft = FB
t

B = {Bt ,Ft : t ≥ 0} is a d-dimensional Brownian motion with initial
distribution µ
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Brownian motion in several dimensions

Another construction for a d-dimensional Brownian motion with initial
distribution µ:

◮ Let P (i), i = 1, ..., d , be d copies of the Wiener measure on
(C [0,∞),B([0,∞))).

◮ Then P0 = P (1) × ... × P (d) is a measure, called the d-dimensional Wiener
measure, on (C [0,∞)d ,B(C [0,∞)d)).

◮ Under P0, the coordinate mapping process Bt(ω) = ω(t) together with the
filtration {FB

t } is a d-dimensional Brownian motion starting at the origin.
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Brownian motion in several dimensions

For x ∈ R
d , define the probability measure Px on B(C [0,∞)d) by

Px(F ) = P0(F − x) , F ∈ B(C [0,∞)d) ,

where F − x = {ω ∈ C [0,∞)d : ω(.) + x ∈ F} .

Under Px , B = {Bt ,FB
t : t ≥ 0} is a d-dimensional Brownian motion

starting at x .

Finally, for a probability measure µ on (Rd ,B(Rd)), we define Pµ on
B(C [0,∞)d by

Pµ(F ) =

∫

Rd

Px(F )µ(dx) .

The coordinate mapping process B = {Bt ,FB
t : t ≥ 0} on

(C [0,∞)d ,B(C [0,∞)d),Pµ) is a d-dimensional Brownian motion with initial
distribution µ.
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Brownian motion in several dimensions

Definition (Universally measurable function)

Given a metric space (S , ρ), we denote by B(S)
µ

the completion of the Borel
σ-field B(S) with respect to the finite measure µ on (S ,B(S)).

The universal σ-field is U(S) = ∩µB(S)
µ
, where the intersection is over all finite

measures.
A U(S)/B(R)-measurable real-valued function is said to be universally measurable.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 14, 2009 28 / 49



Brownian motion in several dimensions

Definition (d-dimensional Brownian family)

A d-dimensional Brownian family is an adapted, d-dimensional process
B = {Bt ,Ft : t ≥ 0} on a measurable space (Ω,F), and a family of probability
measures {Px}x∈Rd , such that

for each F ∈ F , the mapping x 7→ Px(F ) is universally measurable,

for each x ∈ R
d , Px [B0 = x ] = 1,

under each Px , the process B is a d-dimensional Brownian motion starting at
x .

The d-dimensional Brownian motion constructed above, together with the
family of probability measures {Px}, is an example of a d-dimensional
Brownian family.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 14, 2009 29 / 49



Brownian motion in several dimensions

Definition (d-dimensional Brownian motion with drift µ and dispersion
coefficient σ)

Let B = {Bt ,Ft : t ≥ 0}, (Ω,F), {Px}x∈Rd be a d-dimensional Brownian family.
If µ ∈ R

d and σ ∈ L(Rd , Rd) are constant and σ is nonsingular, then with

Yt = µt + σBt ,

we say that Y = {Yt ,Ft : t ≥ 0}, (Ω,F), {Pσ−1x}x∈Rd is a d-dimensional

Brownian motion with drift µ and dispersion coefficient σ.
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Background

Definition (Conditional expectation with respect to a σ-algebra)

Let (Ω,F ,P) be a probability space, X a (Rd ,B(Rd))-valued random variable on
(Ω,F) and G a sub-σ-algebra of F .
The conditional expectation of X given G is denoted by E [X |G] and defined as the
function from Ω to R

d satisfying

E [X |G] is G-measurable
∫

A
E [X |G]dP =

∫

A
XdP, for all A ∈ G.

It can be shown, via Radon-Nikodym Theorem, that E [X |G] always exists and
is unique almost everywhere:

◮ any two G-measurable random variables Y and Z with
∫

A

Y dP =

∫

A

ZdP =

∫

A

XdP

for every A ∈ G, differ by a null event in G.
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Background

Let X and Y be (Rd ,B(Rd))-valued random variables on (Ω,F) with
E [|X |] < ∞ and E [|Y |] < ∞. Let also α, β ∈ R.

The conditional expecta
◮ E [αX + βY |G] = αE [X |G] + βE [X |G].
◮ E [E [X |G]] = E [X ].
◮ E [X |G] = X if X is G-measurable.
◮ E [X |G] = E [X ] if X is independent of G.
◮ E [YX |G] = YE [X |G] if Y is G-measurable.
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Background

Definition (conditional probability)

Let (Ω,F , µ) be a probability space,A ∈ F an event and G a sub-σ-algebra of F .
The conditional probability of A given G is the conditional expectation of IA given
G, i.e.:

P[A|G] = E [IA|G].

Similarly, we can define the conditional probability of A given a random variable X

on (Ω,F) as
P[A|X ] = E [IA|FX ].
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Background

Definition (Martingale)

Let X = {Xt : 0 ≤ t < ∞} be a real-valued process defined on a probability space
(Ω,F ,P), adapted to a given filtration {Ft}.
Furthermore, assume that E |Xt | < ∞ for all t ≥ 0.
The process X is a martingale if, for every 0 ≤ s < t < ∞, we have, a.s. P:

E [Xt |Fs ] = Xs .
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Markov Processes and Markov families

Suppose that we observe a Brownian motion with initial distribution µ up to
time s, 0 ≤ s < t.

In particular, assume we see the value of Bs , to which we call y .
◮ Conditioned on these observations, what is the probability that Bt is in some

set Γ ∈ B(Rd)?
⋆ Bt = (Bt − Bs) + Bs and the increment Bt − Bs is independent of the

observations up to time s and is distributed just as Bt−s is under P0.
⋆ Bs depends on the observations: we are conditioning on Bs = y .
⋆ We get that Bt = (Bt − Bs) + Bs is distributed as Bt−s is under Py

◮ Summarizing:

(i) Knowledge of the whole past up to time s provides as much information about
Bt as knowledge of the value of Bs :

Pµ[Bt ∈ Γ|Fs ] = Pµ[Bt ∈ Γ|Bs ] , 0 ≤ s < t , Γ ∈ B(Rd ) .

(ii) Conditioned on Bs = y , Bt is distributed as Bt−s is under Py :

Pµ[Bt ∈ Γ|Bs = y ] = Py [Bt−s ∈ Γ] , 0 ≤ s < t , Γ ∈ B(Rd ) .
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Markov Processes and Markov families

Definition (Markov Process with initial distribution µ)

Let d be a positive integer and µ a probability measure on (Rd ,B(Rd)).
An adapted, d-dimensional process X = {Xt ,Ft : t ≥ 0} on some probability
space (Ω,F ,Pµ) is said to be a Markov process with initial distribution µ if

Pµ[X0 ∈ Γ] = µ(Γ), for every Γ ∈ B(Rd).

for s, t ≥ 0 and Γ ∈ B(Rd),

Pµ[Xt+s ∈ Γ|Fs ] = Pµ[Xt+s ∈ Γ|Xs ] , Pµ a.s.
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Markov Processes and Markov families

Definition (Markov family)

Let d be a positive integer. A d-dimensional Markov family is an adapted process
X = {Xt ,Ft : t ≥ 0} on some measurable space (Ω,F), together with a family of
probability measures {Px}x∈Rd on (Ω,F), such that

for each F ∈ F , the mapping x 7→ Px(F ) is universally measurable,

for each x ∈ R
d , Px [X0 = x ] = 1,

for x ∈ R
d , s, t ≥ 0 and Γ ∈ B(Rd),

Px [Xt+s ∈ Γ|Fs ] = Px [Xt+s ∈ Γ|Xs ] , Px a.s.

for x ∈ R
d , s, t ≥ 0 and Γ ∈ B(Rd),

Px [Xt+s ∈ Γ|Xs = y ] = Py [Xt ∈ Γ] , PxX−1
s a.e.y
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Markov Processes and Markov families

The following properties hold:
◮ A d-dimensional Brownian motion is a Markov process.
◮ A d-dimensional Brownian family is a Markov family.
◮ Standard, one dimensional Brownian motion is both a martingale and a

Markov process.
◮ Brownian motion with non-zero drift is a Markov process but is not a

martingale.
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Brownian sample paths

We will state the basic absolute properties of Brownian motion, i.e. those
which hold with probability one, also called sample path properties.

◮ These include:
⋆ Bad behaviour: nondifferentiability and lack of points of increase.
⋆ Good behaviour: law of the iterated logarithm

It is worth to remark that sample paths of any continuous martingale can be
obtained by running those of a Brownian motion according to a different,
path-dependent clock.

◮ Therefore, the study of Brownian motion provides the sample path properties
for a much more general class of processes, which includes continuous
martingales and diffusions.
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Brownian sample paths

Definition (Gaussian process)

An R
d -valued stochastic process X = {Xt : 0 ≤ t < ∞} is called Gaussian if, for

any integer k ≥ 1 and real numbers 0 ≤ t1 < t2 < ... < tk < ∞, the random
vector (Xt1 ,Xt2 , ...,Xtk ) has a joint normal distribution.
If the distribution of (Xt+t1 ,Xt+t2 , ...,Xt+tk ) does not depend on t, we say that
the process is stationary.
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Brownian sample paths

The finite dimensional distributions of a Gaussian process X are determined
by its expectation vector m(t) = E [Xt ], t ≥ 0, and its covariance matrix

ρ(s, t) = E [(Xs − m(s))(Xt − m(t))T ], s, t ≥ 0 .

If m(t) = 0 for all t ≥ 0 we say that X is a zero-mean Gaussian process.

One-dimensional Brownian motion is a zero-mean Gaussian process with
covariance function ρ(s, t) = min{s, t}
Conversely, any zero-mean Gaussian process X = {Xt ,FX

t : 0 ≤ t < ∞} with
a.s. continuous paths and covariance function given by ρ(s, t) = min{s, t} is
a one-dimensional Brownian motion.
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Brownian sample paths

From now on, let:
◮ W = {Wt ,Ft : 0 ≤ t < ∞} be a standard one dimensional Brownian motion

on (Ω,F , P).
◮ W0 = 0 a.s. P.
◮ for fixed ω ∈ Ω, W.(ω) denotes the sample path t 7→ Wt(ω).

Strong Law of Large Numbers:

lim
t→∞

Wt

t
= 0 a.s.
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Brownian sample paths

Equivalence transformations:
◮ When W = {Wt ,Ft : 0 ≤ t < ∞} be a standard Brownian motion, so are the

processes obtained from the following equivalence transformations:
⋆ Scaling: X = {Xt ,Fct : 0 ≤ t < ∞} defined for c > 0 by

Xt =
1√
c
Wct , 0 ≤ t < ∞ .

⋆ Time-inversion: Y = {Yt ,FY
t : 0 ≤ t < ∞} defined by

Yt = tW1/t , 0 < t < ∞ , Y0 = 0 .

⋆ Time-reversal: Z = {Zt ,FZ
t : 0 ≤ t ≤ T} defined for T > 0 by

Zt = WT − WT−t , 0 ≤ t ≤ T .

⋆ Symmetry: −W = {−Wt ,Ft : 0 ≤ t < ∞}.
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Brownian sample paths

Zero set:
◮ For fixed ω ∈ Ω, define the zero set of W.(ω) as

Lω = {0 ≤ t < ∞ : Wt(ω) = 0} .

◮ For P-a.e. ω ∈ Ω, the zero set Lω

(i) has Lebesgue measure zero,
(ii) is closed and unbounded,
(iii) has an accumulation point at t = 0,
(iv) has no isolated point in (0,∞), and therefore
(v) is dense in itself.

◮ With probability one, a standard, one-dimensional Brownian motion changes
sign infinitely many times in any time-interval [0, ǫ], ǫ > 0.

◮ For every fixed b ∈ R and P-a.e. ω ∈ Ω, the level set

Lω(b) = {0 ≤ t < ∞ : Wt(ω) = b}

is closed, unbounded, of Lebesgue measure zero, and dense in itself.
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Brownian sample paths

Quadratic Variation:
◮ Let {Πn}∞n=1 = {0 = t

(n)
0 , t

(n)
1 , ..., t

(n)
mn = t}∞n=1 be a sequence of partitions of the

interval [0, t] with limn→∞ ‖Πn‖ = 0.
◮ Then the quadratic variations

V
(2)
t (Πn) =

mn
∑

k=1

|W
t
(n)
k

− W
t
(n)
k−1

|2

of the Brownian motion W over these partitions converge to t in L2 as n → ∞.
◮ Furthermore, if the partitions become so fine that

∑∞
n=1 ‖Πn‖ < ∞ holds, the

convergence above takes place also with probability one.
◮ As a consequence, for almost every ω ∈ Ω, the sample path W.(ω) is of

unbounded variation on every finite interval [0, t].
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Brownian sample paths

Local maxima and points of increase:
◮ For almost every ω ∈ Ω, the sample path W.(ω) is monotone in no interval.
◮ For almost every ω ∈ Ω, the set of points of local maximum for the Brownian

path W.(ω) is countable and dense in [0,∞), and all local maxima are strict.
◮ (Dvoretzky, Erdös, Kakutani (1961):

Almost every Brownian sample path has no point of increase (or decrease).
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Brownian sample paths
Nowhere differentiability:

◮ For a continuous function f : [0,∞) → R, we denote by

D±f (t) = limh→0±
f (t + h) − f (t)

h

the upper (right and left) Dini derivatives at t, and by

D±f (t) = limh→0±
f (t + h) − f (t)

h

the lower (right and left) Dini derivatives at t.
◮ The function f is said to be differentiable at t from the right (resp. left), if

D+f (t) and D+f (t) (resp. D−f (t) and D−f (t)) are finite and equal.
◮ The function f is said to be differentiable at t > 0 if it is differentiable from

both the right and the left and the four Dini derivatives agree.
◮ At t = 0, differentiability is defined as differentiability from the right.

◮ (Paley, Wiener, Zygmund (1933)):
For almost every ω ∈ Ω, the Brownian sample path W.(ω) is nowhere
differentiable. More precisely, the set

{ω ∈ Ω : for each t ∈ [0,∞), either D+Wt(ω) = ∞ or D+Wt(ω) = −∞}
contains an event F ∈ F with P(F ) = 1.
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Brownian sample paths

Law of the iterated Logarithm:
◮ (A. Hinčin (1933)):

For almost every ω ∈ Ω, we have

(i) limt↓0
Wt(ω)

√

2t log log(1/t)
= 1

(ii) limt↓0

Wt(ω)
√

2t log log(1/t)
= −1

(iii) limt→∞
Wt(ω)√

2t log log t
= 1

(iv) limt→∞

Wt(ω)√
2t log log t

= −1 .
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