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Introduction

Definition
A risk measure κ casu quo decision principle ρ, π is a functional
assigning a real number to any random variable defined on (Ω,F);
that is, κ casu quo ρ, π are mappings from X to R.

Difference between κ (Risk measure) and ρ, π (Decision
principles)
Mathematically they are similar concepts. Justifications / derivations
differ: Justifications of risk measures should be based on axiomatic
characterizations. Derivations of decision principles should be based
on an optimization procedure, e.g., by minimizing the total risk as
measured by a risk measure, or on an equilibrium criterion.
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Mean value principle as risk measure

I Condition (c) (continuity condition){
prob(Xaq = a) = q
prob(Xaq = 0) = 1− q

For fixed a > 0, the premium Pa(q) = κ(Xqa) is strictly increasing
(0 ≤ q ≤ 1) with Pa(0) = 0,Pa(1) = a.

I Theorem: A premium principle satisfying condition (c) is iterative
if and only if it is the mean value principle

v(κ(X )) = E(v(X )).

I Example: v(x) = eαx (providing the same results as utility)
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Application to Premium Calculation

I We use v(x) = eαx and minimize the risk measure in an optimal
premium problem that, for any random variable X , only allows
premiums of the form E[ϕ(X )X ], with ϕ(·) a real-valued,
continuous and strictly increasing function satisfying
E[ϕ(X )] = 1. Then, we state the following problem:

min
Ψ

αE [exp (−α(E[ϕ(X )X ]− X ))] , X ∈ X[a,b]

where Ψ is the class of all functions ϕ that satisfy the
aforementioned conditions and X[a,b] is the class of all random
variables with support [a,b], a < b.

I The optimal premium can be expressed as E[ϕ(X )X ] = E[XeαX ]
E[eαX ]

.
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Premium calculation top down

Ut = Ut−1 + c − St , t = 1,2...

Criterion of ruin probability gives Lundberg upper bound e−Ru < ε

eRc = E(eRSt )

In case one starts with R = | ln ε|
u

π(X ) =
u
| ln ε|

ln E(e| ln ε|
St
u )

Interpretation Esscher premium with risk aversion α = | ln ε|
u

Risk Measures and Decisions in Insurance 21st May 2009, Lisbon 6/29



Given two continuous and strictly increasing functions f ,g in [a,b],
are π(X , f ) and π(X ,g) comparable, i.e. is there an inequality

π(X , f ) ≤ π(X ,g) for ∀X ∈ B

Theorem 3: Let f and g be two continuous and strictly increasing
function in R, then a necessary and sufficient condition that π(X , f )
and π(X ,g) should be comparable is that

h = gf−1

should satisfy
h(E(X )) ≤ E(h(X ))

or the reversed inequality for ∀X ∈ B.
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Application of mean value principle to solvency

E
(
φ

(
(X − t)+

ρ− t

))
= φ(κ(X )) = φ(α)

where φ is strictly increasing.
Interpretation 1): X claim size, t premium, ρ− t solvency margin
Interpretation 2): φ(α) = α for 0 ≤ α ≤ 1, φ(α)↗ α > 1.
Then

E
(
φ

(
(X − t)+

ρ− t

))
= αφ(X , ρ, t)

6

-
0
�
�
�
�
�
�

t ρ
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Application of mean value principle to solvency

For α(X , ρ, t) = α(Y , ρ, t), X and Y are ”‘equally solvent”’.
φ1 and φ2 have comparable tails in case

αφ1 (X , ρ, t) < αφ2 (X , ρ, t) ∀X (φ2 convex in φ1

Special case φ1(x) = x

αφ1 (X , ρ, t) ≤ αφ2 (X , ρ, t)

Hence E
(

(X−t)+

ρ−t

)
= α

ρ = t +
1
α

E((X − t)+)
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Application of mean value principle to solvency

Hence

E
(
φ2

(
(X − t)+

ρ− t

))
> α

Such that

E
(
φ2

(
(X − t)+

ρ2 − t

))
= α

resulting in ρ2(X , t , α) ≥ t + 1
αE((X − t)+) ∀t .

Hence

min
t
ρφ(X ) ≥ F−1

X (1− α) +
1
α

E(X − F−1
X (1− α)).
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Haezendonck Risk Measure

Pr [X > ρ] = Pr [X − t > ρ− t ] ≤ E
[
φ

(
(X − t)+

ρ− t

)]
(1)

Lemma: Let X be a risk and let φ(·) be a nonnegative, strictly
increasing and continuous function on [0,+∞) with
φ(0) = 0, φ(1) = 1 and φ(+∞) = +∞. Then for any
−∞ < x < max[X ] and 0 < a < 1, the right hand side of the equation
(1) has a unique solution πα[X , t ] satisfying

ρα[X , t ] ≥ F−1
X (1− α) and ρα[X , t ] > t

Definition 1: Let φ(·) be as in Lemma and let 0 < α < 1 be arbitrarily
fixed. We consider

ρα[X ] = inf
−∞<t<max[X ]

ρα[X , t ]

as the risk measure of a risk X , where ρα[X , x ] is the unique solution
to the equation (1). In honor of the late J.Haezendonck we call it the
Haezendonck risk measure, which is a minimal Orlicz norm risk
measure.
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Optimal value for ρ (depending on α and t)
∫∞

t φ
(

(x−t)+

ρ−t

)
dFX (x) = α

∂
∂t ρ =

E
(
φ′

(
(x−t)+

ρ−t

)
(x−ρ)

)
E

(
(x−t)+φ′

(
(x−t)+

ρ−t

)) = 0

ρ0 = t0 +
E
(
φ′
(

(x−t0)+

ρ0−t0

)
(x − t0)

)
E
(
φ′
(

(x−t0)+

ρ0−t0

))
Special cases:
(1) φ(x) = x

ρ0 = t0 +

∫∞
t0

(x − t0)dFX (x)

1− FX (t0)

(2)φ(x) = eαx

ρ0 = t0 +
E
(

(x − t0)+e
αx

ρ0−t0

)
E
(

e
αx

ρ0−t0

)
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Haezendonck Risk Measure

Theorem 1: Let φ(·) be as in Lemma. The Haezendonck risk
measure ρα[X ] satisfies

F−1
X (1− α) ≤ ρα[X ] ≤ max[X ]

Example: Now we specify the risk in Definition 1 as Bq , as a
Bernoulli variable with

Pr [Bq = 1] = 1− Pr [Bq = 0] = q ∈ [0,1].

Let φ(y)y for y ≥ 0 and let −∞ < t < 1 and 0 < α < 1 be arbitrarily
given. In case −∞ < x < 0 equation (1) leads to

(1− q)
−t
ρ− t

+ q
1− t
ρ− t

= α

whereas in case 0 ≤ t < 1 it leads to q 1−t
ρ−t = α.
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Haezendonck Risk Measure

Theorem 2: Let ρα[·] be the The Haezendonck risk measure with φ(·)
given in Lemma and let 0 < α < 1 be arbitrarily given. Then we have
B1. Monotonicity: If X ≤st Y then ρα[X ] ≤ ρα[Y ];
B2. Positive homogeneity: ρα[cX ] = cρα[X ] for any c > 0;
B3. Subadditivity: If φ(·) is convex, then ρα[X + Y ] ≤ ρα[X ] + ρα[Y ]

holds for any (X ,Y ) such that

max[X + Y ] = max[X ] + max[Y ];

B4. Translation invariance: ρα[X + a] = ρα[X ] + a for any a;
B5. Preservation of convex ordering: If φ(·) is convex, then

X ≤cx Y ⇒ ρα(X ) ≤ ρα(Y ), where X ≤cx Y ; means that
Eϕ(X ) ≤ Eϕ(Y ) holds for all convex functions ϕ(·) for which the
expectations involved exist.

Definition 2: Let φ1(·) and φ2(·) be two real functions on (0,+∞).
We say φ2(·) is convex (concave) in φ1(·) if and only if φ2φ

−1
1 (·) is

convex (concave).
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Solvency Capital Principles

I Several types of solvency capital need to be distinguished,
namely regulatory capital, economic (or management) capital,
rating capital and book capital. For further details we refer to
Laeven & Goovaerts (2004), Goovaerts, Van den Borre & Laeven
(2005) and Dhaene et al. (2008).

I Tradeoff between risk exposure on the one hand and the cost of
economic capital on the other hand. (Compare in statistics type I
and type II errors)

min
k

ik + E((X − k)+)⇒ k = F−1
X (1− i)
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Optimal Risk Sharing

A cooperating ”pool” with n participating insurance companies wants
to insure a risk X . The pool looks for

min
(X1,...,Xn)|X=X1+···+Xn

ρ[X ] =
n∑

i=1

1
αi

log E[eαi Xi ],

where we assume that participant i has an exponential(αi ) utility
function and the claim amount this participant has to pay is denoted
by Xi , hence X = X1 + · · ·+ Xn.
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Optimal Risk Sharing

We will find that the minimal premium ρ−[X ] is obtained by choosing
Xi = αX/αi , where α is such that

∑n
i=1 α/αi = 1. Hence, we get

ρ−[X ] =
n∑

i=1

1
αi

log E[eαi
α
αi

Xi ]

=
1
α

log E[eαX ].
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Optimal asset allocation in case of marginal
information

A conglomerate or insurance regulator faces a total risk
S = S1 + S2 + · · ·+ Sn and has an economic capital
u = u1 + u2 + · · ·+ un. The capital allocation problem can be
formulated as

Minimize
n∑

i=1

ui

| log ε|
log E

[
exp

(
| log ε|

ui
Xi

)]
over all ui with

∑
ui = u.

The solution can be obtained by means of the Lagrange method,

ρi
exp(Xi ) =

ui

| log ε|
log E[e(| log ε|/ui )Xi ];

ρi
Ess(Xi ) =

E[Xie(| log ε|/ui )Xi ]

E[e(| log ε|/ui )Xi ]
.

The optimal solution satisfies the following system of equations:

1
uj

(ρj
exp(Xj )− ρj

Ess(Xj )) =
1
u

∑
i

(ρi
exp(Xi )− ρi

exp(Xi )).
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Optimal asset allocation in case of marginal
information

For small values of the parameters | log ε|/ui in Esscher and the
exponential premiums, the solution can be written in the following
form:

uj

u
≈

Var [Xj ]/(2uj )∑
i Var [Xi ]/(2ui )

.

(X ,Y ) is comonotonic, we have

π[X ; u] + π[Y ; u] ≤ π[X + Y ; u] ≤ π[X ; u1] + π[Y ; u2].
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Reinsurance Principles

The insurer might also consider a more general problem. Let risk X
be decomposed as follows:

X = X1 + X2 + X3 + X4,

with
I X1 = X · 1{X≤0} : the profit layer;

I X2 = min(X · 1{X≤0}, c) : the reinsurance layer with retention 0
and cap c;

I X3 = min((X · 1{X≤0} − c)+, ρ[X ]) : the economic capital layer;

I X4 = (X − ρ[X ])+ : the residual risk layer.
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Applications and Interpretations

Economic Capital Allocation Derived from Risk Measures
a. I Two sided risk measure (TRM)

I One-sided risk measure (ORM)

b. I Var [
∑

X⊥i ] = nVar [Xi ]
I Var [

∑
X c

i ] = n2Var [Xi ]

c. Minimize
∑

j ρj (Xj , πj ,uj , ε) over u1, · · · ,un with
∑

ui = u. This
result should be compared with
ρm(X1 + · · ·+ Xn, π1 + · · ·+ πn,u1 + · · ·+ un, ε), the risk measure
for the parent company.

d. X ≤st Y if FX ≥ FY ,
X ≤st Y ⇒ ρ(X ) ≤ ρ(Y ),
X ≤st Y ⇒ Var [X ] ≤ Var [Y ], nor σ(X ) ≤ σ(Y ).
X ≤st Y and E [X ] = E [Y ]⇒ X ∼ Y ,
E [(X − t)+] ≤ E [(Y − t)+],E [X ] = E [Y ] ∼ X ≤cx Y .
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Examples

Ex 1: Earthquake risk insurance: exchange of portions of life portfolios
between different continents. Splitting of risks.

Ex 2: a.

6

-
0
�
�
�

1

1

F−1
u (0.9) = 0.9

b. -

6

0
��
�
��
�

0.901 9.901

0.901 ��

10

1
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Examples

Ex 3: Allocation of economic capital
Economic capital: u = u1 + u2 + · · ·+ un
ρcongl (X1 + · · ·+ Xn − u)&ρ1(X1 − u1) + · · ·+ ρn(Xn − un)
⇒ ρcongl (X1 + · · ·+ Xn)− u&ρ1(X1) + · · ·+ ρn(Xn)− u in case of
translation invariance.

Ex 4: Rational decision maker ρ(αX ) 6= αρ(X ).

Ex 5: Firewalls

Ex 6: Uniform risk X in the interval (9,10) and a risk Y that is 20 with
certainty. Clearly, Pr [X < Y ] = 1, but X − E [X ] is risky while
Y − E [Y ] represents no risk at all.
X = XI + XR where XI is the retained risk while XR is the
reinsured part. In the case where ρ(XI + XR) ≥ ρ(XI) + ρ(XR) it is
possible that ρ(XI + XR) ≥ ρ(XI) + ρR(XR), where ρR(·) is
reinsurer’s risk measure, and these are the reinsurance treaties
that exist.
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Examples

Ex 7: The condition of subadditivity, ρ(X + Y ) ≤ ρ(X ) + ρ(Y ), for a
translation invariant risk measure can be rewritten as
ρ(X + Y − ρ(Y )) ≤ ρ(X ).
Consider 0 ≤ ρ(X ) ≤ 1 for a Bernoulli(q) risk, add n
comonotonic risks, then the new surplus equals u + nρ(X ) with
probability 1− q and u + nρ(X )− n with probability q.
Note that translation invariance implies that ρ(X − ρ(X )) = 0.

Ex 8: E [X ] and Max [X ]

Ex 9: (1 + α)E [(X − K )+] + iDK

Risk Measures and Decisions in Insurance 21st May 2009, Lisbon 24/29



Examples

Ex 10: Economic capital K , we have to minimize

E [(X − (1 + r)K )+] + (i − r)K .

Based on Yaari’s dual theory, introducing a distortion function g with
g(0) = 0, g(1) = 1, g(x) increasing and g(x) ≥ x , “cost of avoiding
insolvency” can be calculated by∫ ∞

K (1+r)

g(1− FX (x))dx .

Therefore, we just need to minimize∫ ∞
K (1+r)

g(1− FX (x))dx + (i − r)K .

The optimal solution is given by

K =
1

1 + r
F−1

X

(
1− g−1

(
i − r
1 + r

))
.
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