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Background

Definition (Measurable space)

A measurable space a pair (Ω,F), where Ω is a set and F is a collection of
subsets of Ω with a σ-algebra structure, i.e.:

∅ ∈ F
F is closed under complementation and countable unions.

Definition (Measure space and probability space)

A measure space is a triple (Ω,F , µ), where (Ω,F) is a measurable space and µ is
a measure on (Ω,F), i.e.:

µ(∅) = 0;

µ(A) ≥ 0 for all A ∈ F ;

if {Ai}i∈I is a countable collection of pairwise disjoint elements of F then
µ(∪iAi ) =

∑

i µ(Ai ).

A probability measure is a measure with total measure one, i.e. µ(Ω) = 1.
A probability space is a measure space with a probability measure.
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Background

Definition (Stochastic process)

A stochastic process is a collection of random variables X = {Xt ; 0 ≤ t < ∞} on
a measurable space (Ω,F), which takes values on a second measurable space
(Π,G).

(Ω,F) is called the sample space.

(Π,G) is called the state space. We will take it to be (Rd ,B(Rd)).

For a fixed sample point ω ∈ Ω, the function t → Xt(ω); t ≥ 0 is the sample

path of the process X associated with ω.

One can think of the index t ∈ [0,∞] of the random variables Xt as time.
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Background

Implicit in the statement that a random process X = {Xt ; 0 ≤ t < ∞} is a
collection of (Rd ,B(Rd))-valued random variables on (Ω,F), is the
assumption that each Xt is F/B(Rd) measurable.

However, since X is a function of the pair of variables (t, ω), it is convenient
to have joint measurability properties.

Definition (Measurable stochastic process)

The stochastic process X is called measurable if for every A ∈ B(Rd) the set
{(t, ω) : Xt(ω) ∈ A} belongs to B([0,∞]) ⊗F , i.e.

Xt(ω) : ([0,∞] × Ω,B([0,∞]) ⊗F) → (Rd ,B(Rd))

is measurable
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Background

The temporal feature of a stochastic process suggests a flow of time, in
which, at every moment t ≥ 0, we can:

◮ talk about past, present and future.
◮ ask how much an observer of the process knows about it at present, as

compared to how much he knew at some point in the past or will know at
some point in the future.

σ-algebras are used in the study of stochastic processes to keep track of
information.

From now on, we assume that our sample space (Ω,F) is equipped with a
filtration.

Definition (Filtration)

A filtration on a measurable space (Ω,F) is a nondecreasing family {Ft ; t ≥ 0} of
sub-σ-algebras of F , i.e. Fs ⊂ Ft ⊂ F for 0 ≤ s < t < ∞.
We set F∞ = σ(∪t≥0Ft), the smallest σ-algebra containing ∪t≥0Ft .

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 7, 2009 5 / 35



Background
For a given stochastic process, the simplest choice of a filtration is the one
generated by the process itself:

FX
t = σ(Xs ; 0 ≤ s ≤ t) ,

the smallest σ-algebra with respect to which Xs is measurable for every
s ∈ [0, t].

◮ We can interpret A ∈ FX
t to mean that by time t, an observer of X knows

whether or not A has occured.

The concept of measurability for a stochastic process introduced before is still
rather weak.

The introduction of a filtration {Ft} enables us to use more interesting and
useful concepts.

Definition (Adapted stochastic process)

The stochastic process X is adapted to the filtration {Ft} if, for every t ≥ 0, Xt is
an Ft-measurable random variable.

Every stochastic process X is adapted to {FX
t }.
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Background

Definition (Independent σ-algebras)

Let (Ω,F ,P) be a probability space and let F1,F2, ...,Fn be sub-σ-algebras of F .
A finite set of sub-σ-algebras F1,F2, ...,Fn is independent if for any set of events
Ai ∈ Fi , i = 1, ..., n, we have that

P(A1 ∩ A2 ∩ ... ∩ An) = P(A1)P(A2)...P(An) .

An arbitrary set S of σ-algebras is mutually independent if any finite subset of S
is independent.

The above definitions are generalizations of the notions of independence for
events and for random variables:

◮ Events B1, ..., Bn ∈ F are mutually independent if the sub-σ-algebras
σ(Bi ) := {∅, Bi , Ω − Bi , Ω} are mutually independent.

◮ Random variables X1, ..., Xn defined on (Ω,F , P) are mutually independent if
the sub-σ-algebras σ(Xi ) = {X−1

i (B) : B ∈ B(Rd)} are mutually independent.
◮ In general, mutual independence among events Bi , random variables Xj and

σ-algebras Fk means the mutual independence among σ(Bi ), σ(Xj) and Fk .
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Brownian motion

Definition (standard, one-dimensional Brownian motion)

A standard, one-dimensional Brownian motion is a continuous, adapted process
B = {Bt ,Ft , 0 ≤ t < ∞}, defined on some probability space (Ω,F ,P), with the
following properties:

B0 = 0 a.s.;

for 0 ≤ s < t, the increment Bt − Bs is independent of Fs ;

for 0 ≤ s < t, the increment Bt − Bs is normally distributed with mean zero
and variance t − s.

Analogously, we can define a Brownian motion B = {Bt ,Ft , 0 ≤ t < T} on
[0,T ], for some T > 0.

If B is a Brownian motion and 0 = t0 < t1 < ... < tn < ∞, then the
increments {Btj − Btj−1

}n
j=1 are independent and the distribution of

Btj − Btj−1
depends on tj and tj−1 only through the difference tj − tj−1: it is

normal with mean zero and variance tj − tj−1.
◮ We say that B has stationary, independent increments.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 7, 2009 8 / 35



Brownian motion

The filtration {Ft} is a key part in the definition of Brownian motion.

However, if we are given {Bt ; 0 ≤ t < ∞} but no filtration, and if we know
that B has stationary independent increments and that Bt −B0 is normal with
mean zero and variance t, then {Bt ,FB

t ; 0 ≤ t < ∞} is a Brownian motion.

If {Ft} is “larger” than {FB
t } (in the sense that FB

t ⊂ Ft for all t ≥ 0) and if
Bt − Bs is independent of Fs whenever 0 ≤ s < t, then {Bt ,Ft ; 0 ≤ t < ∞}
is still a Brownian motion.
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Brownian motion

The first problem one encounters with Brownian motion is its existence.

We will go through the ideas in three distinct approaches to the proof of
existence of Browinian motion.

◮ A first approach is to write down what the finite-dimensional distributions of
this process must be (based on the stationarity, independence and normality of
its increments), and then construct a probability measure on an appropriate
measurable space in such a way that we obtain the prescribed
finite-dimensional distributions.

◮ A second construction exploits the Gaussian property of this process and is
closely related to Wiener’s original construction.

◮ The third proof is based on the idea of the weak limit of a sequence of random
walks.
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First construction of Brownian motion

Let R
[0,∞) denote the set of all real-valued functions on the half-line [0,∞).

Definition (n-dimensional cylinder set)

An n-dimensional cylinder set in R
[0,∞)is a set of the form

C = {ω ∈ R
[0,∞) : (ω(t1), ..., ω(tn)) ∈ A} ,

where ti ∈ [0,∞), i = 1, ..., n, and A ∈ B(Rn).

Let:
◮ C denote the algebra of all cylinder sets (of all finite dimensions) in R

[0,∞)

◮ B(R[0,∞)) denote the smallest σ-algebra containing C.
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First construction of Brownian motion

Definition (Family of finite-dimensional distributions)

Let T be the set of finite sequences t = (t1, ..., tn) of distinct, nonnegative
numbers, where the length n of these sequences ranges over the set of positive
integers.
Suppose that for each t of length n, we have a probability measure Qt on
(Rn,B(Rn)).
Then the collection {Qt}t∈T is called a family of finite-dimensional distributions.
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First construction of Brownian motion

Definition (Consistent family of finite-dimensional distributions)

A family of finite-dimensional distributions {Qt}t∈T is consistent if the following
two conditions are satisfied:

if s = (ti1 , ti2 , ..., tin) is a permutation of t = (t1, t2, ..., tn) then for any
Ai ∈ B(R), i = 1, ..., n, we have

Qt(A1 × A2 × ... × An) = Qs(Ai1 × Ai2 × ... × Ain) ;

if t = (t1, t2, ..., tn) with n ≥ 1, s = (t1, t2, ..., tn−1) and A ∈ B(Rn−1), then

Qt(A × R) = Qs(A) .
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First construction of Brownian motion

If we have a probability measure P on (R[0,∞),B(R[0,∞))), then we can
define a consistent family of finite-dimensional distributions by

Qt(A) = P[ω ∈ R
[0,∞) : (ω(t1), ..., ω(tn)) ∈ A] ,

where A ∈ B(Rn) and t = (t1, ..., tn) ∈ T .

We are interested in the converse of this fact, since it will enable us to
construct a probability measure P from the finite-dimensional distributions of
Brownian motion.
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First construction of Brownian motion

Theorem (Daniell (1918), Kolmogorov (1933))

Let {Qt} be a consistent family of finite-dimensional distributions. Then there is a

probability measure P on (R[0,∞),B(R[0,∞))) such that the equality

Qt(A) = P[ω ∈ R
[0,∞) : (ω(t1), ..., ω(tn)) ∈ A] ,

holds for every t ∈ T.
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First construction of Brownian motion

We want to construct a probability measure P on (R[0,∞),B(R[0,∞))) so that
the process B = {Bt ,FB

t : 0 ≤ t < ∞} defined by Bt(ω) = ω(t), the
coordinate mapping process, is “almost‘”a standard, one-dimensional
Brownian motion under P.

We say that the process is “almost”a Brownian motion because we are
neglecting the requirement of sample path continuity.

We concentrate on the finite-dimensional distributions now and will deal with
continuity of the process later.
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First construction of Brownian motion

Let 0 = s0 < s1 < s2 < ... < sn.

The cumulative distribution function for (Bs1
, ...,Bsn

) must be

F(s1,s2,...,sn)(x1, ..., xn) =

∫ x1

−∞

∫ x2

−∞

...

∫ xn

−∞

p(s1; 0, y1)p(s2; y1, y2)...

...p(sn − sn−1, yn−1, yn)dyndyn−1...dy1 ,

for (x1, ..., xn) ∈ R
n, where p is the Gaussian kernel

p(t; x , y) =
1√
2πt

e
−(x−y)2/2t , t > 0, x , y ∈ R .
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First construction of Brownian motion

Let t = (t1, t2, ..., tn), where the tj are not ncessarily ordered but are distinct.

Let the random vector (Bt1 ,Bt2 , ...,Btn) have the distribution determined in
the previous slide (where the tj must be ordered from smallest to largest to
obtain s = (s1, ..., sn).

For A ∈ B(Rn), let Qt(A) be the probability under this distribution that
(Bt1 ,Bt2 , ...,Btn) is in A.

This defines a family of finite-dimensional distributions {Qt}t∈T .
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First construction of Brownian motion

Lemma

The family of finite-dimensional distributions {Qt}t∈T defined above is consistent.

Fix t = (t1, t2, ..., tn) and let s = (ti1 , ti2 , ..., tin) be a permutation of t.

We have a distribution for the random vector (Bt1 ,Bt2 , ...,Btn) under which

Qt(A1 × A2 × ... × An) = P[(Bt1 ,Bt2 , ...,Btn) ∈ A1 × A2 × ... × An]

= P[(Bti1
,Bti2

, ...,Btin
) ∈ Ai1 × Ai2 × ... × Ain ]

= Qs(Ai1 × Ai2 × ... × Ain) .

Furthermore, for A ∈ B(Rn−1) and s ′ = (ti1 , ti2 , ..., tin−1
),

Qt(A ∈ R) = P[(Bt1 ,Bt2 , ...,Btn−1
) ∈ A]

= Qs′(A) .
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First construction of Brownian motion

Combining the contruction of the consistent family of finite-dimensional
distributions above with the Daniell-Kolmogorov theorem we obtain the
following result

Corollary

There is a probability measure P on (R[0,∞),B(R[0,∞))), under which the

coordinate mapping process

Bt(ω) = ω(t) , ω ∈ R
[0,∞) , t ≥ 0 ,

has stationary, independent increments. An increment Bt − Bs , where 0 ≤ s < t,

is normally distributed with mean zero and variance t − s.

Diogo Pinheiro (CEMAPRE) LXDS Seminar May 7, 2009 20 / 35



First construction of Brownian motion

The construction of Brownian motion would be over were not for the fact
that we have built the process on the sample space R

[0,∞) rather than on the
space C [0,∞) of continuous functions on the half-line.

◮ One could try to overcome this difficulty by showing that the probability
measure P of the previous corollary assigns measure one to C [0,∞].

◮ However, C [0,∞) is not in the σ-algebra B(R[0,∞)) and, therefore, P[C [0,∞)]
is not defined.

◮ This failure is due to the fact that the σ-algebra B(R[0,∞)) is “too small” for a
space as big as R

[0,∞); no set in B(R[0,∞)) can have restrictions on
uncountably many coordinates.

◮ In constrast to the space C [0,∞), it is not possible to determine a function in
R

[0,∞) by specifying its values at only countably many coordinates.
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First construction of Brownian motion

We avoid the problems described in the slide above by constructing a
continuous modification of the coordinate mapping process in the previous
corollary.

Definition

Let X and Y be stochastic processes on a probability space (Ω,F ,P).
The process Y is a modification of X if, for every t ≥ 0, we have P[Xt = Yt ] = 1.
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First construction of Brownian motion

Theorem (Kolmogorov,Čentsov (1956))

Suppose that a process X = {Xt : 0 ≤ t ≤ T} on a probability space (Ω,F ,P)
satisfies the condition

E |Xt − Xs |α ≤ C |t − s|1+β , 0 ≤ s, t ≤ T ,

for some positive constants α, β and C. Then there exists a continuous

modification X̃ = {X̃t : 0 ≤ t ≤ T} of X , which is locally Hölder-continuous with

exponent γ for every γ ∈ (0, β/α), i.e.

P

[

ω : sup
0<t−s<h(ω), s,t∈[0,T ]

|X̃t(ω) − X̃s(ω)|
|t − s|γ ≤ δ

]

= 1 ,

where h(ω) is an a.s. positive random variable and δ > 0 is an appropriate

constant.
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First construction of Brownian motion

Lemma
Let Bt −Bs , 0 ≤ s < t, be normally distributed with mean zero and variance t − s.

Then for each positive integer n, there is a positive constant Cn for which

E |Bt − Bs |2n = Cn|t − s|n .

Let In = E |Bt − Bs |2n. Then

In =
1

√

2π(t − s)

∫

R

x2n
e
−x2/2(t−s)

dx .

Clearly I1 = t − s = |t − s|.
Integration by parts gives In+1 = (2n + 1)|t − s|In.
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First construction of Brownian motion

Corollary

There is a probability measure P on (R[0,∞),B(R[0,∞))), and a stochastic process

W = {Wt ,FW
t : t ≥ 0} on the same space such that under P, W is a Brownian

motion.

According to Kolmogorov-Čentsov theorem and the previous lemma, there is
for each T > 0 a modification W T of the process B in the previous corollary
such that W T is continuous on [0,T ].

◮ Let
ΩT = {ω : W

T
t (ω) = Bt(ω) for every rational t ∈ [0, T ]} ,

so P(ΩT ) = 1.
◮ On Ω̃ = ∩∞

T=1ΩT , we have for positive integers T1 and T2,
W

T1
t (ω) = W

T2
t (ω), for every rational t ∈ [0, min{T1, T2}].

◮ Since both processes are continuous on t ∈ [0, min{T1, T2}], we must have
W

T1
t (ω) = W

T2
t (ω) for every t ∈ [0, min{T1, T2}], ω ∈ Ω̃.

◮ Define Wt(ω) to be this common value.
◮ For ω /∈ Ω̃, set Wt(ω) = 0 for all t ≥ 0.
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First construction of Brownian motion

Actually, Kolmogorov-Čentsov theorem gives a bit more than what is stated
in the previous result:

◮ For P a.e. ω ∈ R
[0,∞), the Brownian sample path {Wt(ω) : 0 ≤ t < ∞} is

locally Hölder-continuous with exponent γ, for every γ ∈ (0, 1/2).
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Second construction of Brownian motion

Suppose that {Bt ,Ft : t ≥ 0} is a Brownian motion, fix 0 ≤ s < t < ∞ and
set θ = (t + s)/2.

Conditioned on Bs = x and Bt = z , the random variable Bθ is normal with
mean µ = (x + z)/2 and variance σ2 = (t − s)/4.

◮ Knowing the distribution and independence of the increments Bs , Bθ − Bs and
Bt − Bθ leads to the joint density

P[Bs ∈ dx , Bθ ∈ dy , Bt ∈ dz] =

= p(s, 0, x)p
(

t − s

2
, x , y

)

p
(

t − s

2
, y , z

)

dxdydz

= p(s, 0, x)p (t − s, x , z)
1

σ
√

2π
e
−(y−µ)2/2σ2

dxdydz

◮ Dividing by P[Bs ∈ dx , Bt ∈ dz] = p(s, 0, x)p (t − s, x , z)dxdz we get

P[Bθ ∈ dy |Bs ∈ dx , Bt ∈ dz] =
1

σ
√

2π
e
−(y−µ)2/2σ2

dy .
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Second construction of Brownian motion

The simple form of the conditional distribution for B(t+s)/2 suggests that we
can construct Brownian motion on some finite time-interval, say [0, 1], by
interpolation.

Once we have completed the construction on [0, 1], patching together a
sequence of such Brownian motions will result in a Brownian motion defined
for all t ≥ 0.
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Second construction of Brownian motion

Let (Ω,F ,P) be a probability space.

Let I (n) be the set of odd integers between 0 and 2n

I (0) = {1}, I (1) = {1}, I (2) = {1, 3}, etc. ...

◮ Consider a countable collection {ξ(n)
k : k ∈ I (n), n = 0, 1, ...} of independent,

standard normal variables on (Ω,F , P).
◮ For each n ≥ 0, define a process B(n) = {B(n)

t : 0 ≤ t ≤ 1} by recursion and
linear interpolation, as follows:

⋆ For n ≥ 1, B
(n)

k/2n−1 = B
(n−1)

k/2n−1 , for k = 0, 1, ..., 2n−1.

⋆ Thus, for each value of n, we only need to specify B
(n)
k/2n for k ∈ I (n).

⋆ Set B
(0)
0 = 0, B

(0)
1 = ξ

(0)
1 .

⋆ If the values of B
(n−1)

k/2n−1 , k = 0, 1, ..., 2n−1 have been specified (and B
(n−1)
t

defined for 0 ≤ t ≤ 1 be piecewise-linear interpolation) and k ∈ I (n), we denote

s =
k − 1

2n
, t =

k + 1

2n
, µ =

1

2
(B

(n−1)
s + B

(n−1)
t ) , σ2 =

1

4
(t − s) =

1

2n+1

and set
B

(n)
k/2n = B

(n)
(t+s)/2

= µ + σξ
(n)
k

.
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Second construction of Brownian motion
Our goal is show that, almost surely, B

(n)
t converges uniformly in t to a

continuous function Bt , and {Bt,FB
t : 0 ≤ t ≤ 1} is a Brownian motion.

The first step is to give a more convenient representation for the processes
B(n), n = 0, 1, ....

◮ Define the Haar functions by:
⋆ H

(0)
1 (t) = 1, 0 ≤ t ≤ 1;

⋆ for n ≥ 1, k ∈ I (n), H
(n)
k

(t) is given by

H
(n)
k

(t) =











2(n−1)/2 , k−1
2n ≤ t < k

2n

−2(n−1)/2 , k
2n ≤ t < k+1

2n

0 , otherwise

.

⋆ Define the Schauder functions by

S
(n)
k

(t) =

∫ t

0
H

(n)
k

(u)du , 0 ≤ t ≤ 1 , n ≥ 0 , k ∈ I (n) .

⋆ Note that S
(0)
1 (t) = t and for n ≥ 1 the graphs of S

(n)
k

are tents of height

2−(n−1)/2 centered at k/2n and nonoverlapping for different values of k ∈ I (n).

⋆ Clearly B
(0)
t = ξ

(0)
1 S

(0)
1 (t).

⋆ By induction on n, we get the following representation for the processes B(n)

B
(n)
t =

n
∑

m=0

∑

k∈I (m)

ξ
(m)
k

S
(m)
k

(t) , 0 ≤ t ≤ 1 , n ≥ 0 .
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Second construction of Brownian motion

Lemma

As n → ∞, the sequence of functions {B(n)
t : 0 ≤ t ≤ 1}, n ≥ 0, converges

uniformly in t to a continuous function {Bt(ω) : 0 ≤ t ≤ 1} for a.e. ω ∈ Ω.

Define bn = maxk∈I (n) |ξ(n)
k |.

◮ For x > 0

P[|ξ(n)
k | > x ] =

√

2

π

∫

∞

x

e
−u2/2

du ≤
√

2

π

∫

∞

x

u

x
e
−u2/2

du =

√

2

π

e−x2/2

x
.

which, for n ≥ 1, gives

P[bn > n] = P
[

∪k∈I (n){|ξ(n)
k | > n}

]

≤ 2n
P[|ξ(n)

1 | > n] ≤
√

2

π

2ne−n2/2

n
.
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Second construction of Brownian motion

We now use Borel-Cantelli lemma.

Lemma (Borel-Cantelli lemma)

Let (En)n∈N be a sequence of events in some probability space (Ω,F ,P).
If

∑

n P(En) < ∞ then the probability that infinitely many of them occur is zero,

i.e. P(lim supn→∞ En) = 0.

Since
∞
∑

n=1

2n
e
−n2/2

n
< ∞ ,

Borel-Cantelli lemma implies that there is a set Ω̃ with P(Ω̃) = 1 such that
for each ω ∈ Ω̃ there is an integer n(ω) satisfying bn(ω) ≤ n for all n ≥ n(ω).
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Second construction of Brownian motion

We get that

|Bt − B
(n)
t | =

∣

∣

∣

∣

∣

∣

∞
∑

n=n(ω)

∑

k∈I (n)

ξ
(n)
k S

(n)
k (t)

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=n(ω)

∑

k∈I (n)

|ξ(n)
k S

(n)
k (t)|

≤
∞
∑

n=n(ω)

∑

k∈I (n)

n2−(n+1)/2 < ∞

Therefore, for ω ∈ Ω̃, B
(n)
t converges uniformly in t to a limit Bt(ω).

Continuity of {Bt(ω) : 0 ≤ t ≤ 1} follows from the uniformity of the
convergence.
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Second construction of Brownian motion

Theorem

With {B(n)
t }∞n=1 as defined above and Bt = limn→∞ B

(n)
t , the process

{Bt ,FB
t : 0 ≤ t ≤ 1} is a Brownian motion on [0, 1].

It is enough to prove that, for 0 = t0 < t1 < ... < tn ≤ 1, the increments
{Btj − Btj−1

}n
j=1 are independent, normally distributed, with mean zero and

variance tj − tj−1.
◮ This follows by proving the following equality, for λj ∈ R, j = 1, ..., n:

E



exp







i

n
∑

j=1

λj(Btj − Btj−1)









 =
n

∏

j=1

exp

{

−1

2
λj

2(tj − tj−1)

}

.

◮ The equality is proved using the sequence {B(n)
t }∞n=1 and the independence and

standard normality of the random variables {ξ(n)
k }.
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Second construction of Brownian motion

Corollary

There is a probability space (Ω,F ,P) and a stochastic process

B = {Bt ,FB
t : 0 ≤ t < ∞} on it, such that B is a standard, one-dimensional

Brownian motion.

According to the previous theorem, there is a sequence (Ωn,Fn,Pn),
n = 1, 2, ... of probability spaces together with a Brownian motion

{X (n)
t : 0 ≤ t ≤ 1} on each space.

Let Ω = Ω1 × Ω2 × ..., F = F1 ⊗F2 ⊗ ..., and P = P1 × P2 × ....

Define B on Ω recursively by

Bt = X
(1)
t , 0 ≤ t ≤ 1

Bt = Bn + X
(n+1)
t−n , n ≤ t ≤ n + 1 .

The process B is clearly continuous and its increments are independent and
normal with mean zero and the proper variances.
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