Notes on Furstenberg's paper "Noncommuting Random products", Part I

Pedro Duarte

March 12, 2009

Pedro Duarte Notes on Furstenberg's paper "Noncommuting Random produc

Introduction

Theorem Statements

Fundamental Concepts

Pedro Duarte Notes on Furstenberg's paper "Noncommuting Random produc

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Linear Cocycles

Let G be a semisimple group of $d \times d$ matrices, (X, μ) be a probability space, $T : X \to X$ a μ -preserving map, and $A : X \to G$ a measurable function.

Definition

We call *G*-linear cocycle to the skew-product map determined by T and A,

$$F: X \times \mathbb{R}^d \to X \times \mathbb{R}^d$$
 $F(x, v) = (T(x), A(x)v)$

whose iterates are given by $F^n(x, v) = (T^n(x), A^n(x) v)$ where $A^n(x) = A(T^{n-1}(x)) \cdots A(T(x)) A(x)$

Cocycle Actions

Let (T, *) be a group or semigroup. Definition We call *G*-linear cocycle action of *T* to an action of *T* on the trivial bundle $X \times \mathbb{R}^d$.

$$F: T \times (X \times \mathbb{R}^d) \to X \times \mathbb{R}^d \qquad F^t(x, v) = (T^t(x), A(t, x) v)$$

for which there is some measure μ preserved by every base map $T^t: X \to X$, and such that the action is linear on each fiber

•
$$A(t,x) \in G$$
, for $t \in T$, $x \in X$

•
$$A(1, x) = I$$
,
• $A(t' * t, x) = A(t', T^t(x)) A(t, x)$, for $t', t \in T$, $x \in X$

Integrability

Definition

The cocycle $F = (\mu, T, A)$ is said to be *integrable* iff

$$\int_X \log^+ \|A(x)\| \,\, d\mu(x) < \infty \;.$$

where $\log^+(x) = \max\{\log x, 0\}$.

Oseledet's Theorem (Non-invertible case)

Assume G is any subgroup of $SL(d, \mathbb{R})$.

Theorem (V. Oseledet)

If the cocycle (μ, T, A) is integrable then there are measurable functions $n(x) \in \mathbb{N}$ and $\lambda_1(x) > \lambda_2(x) > \cdots > \lambda_{n(x)}(x)$ and an *F*-invariant measurable filtration $\mathbb{R}^d = E_1(x) \supset E_2(x) \supset \cdots \supset E_{n(x)}$ such that for μ -almost every $x \in X$,

1.
$$\lambda_i(x) = \lim_{n \to \infty} \frac{1}{n} \log ||A^n(x)v||, \quad \forall v \in E_i(x) - E_{i+1}(x)$$

2. $\sum_{i=1}^{n(x)} \lambda_i(x) (\dim E_i(x) - \dim E_{i+1}) = 0$

Lyapunov Exponents

The numbers $\lambda_i(x)$ are called the *Lyapunov exponents* of the linear cocycle $F = (\mu, T, A)$. These numbers are independent of x whenever T is ergodic w.r.t. μ .

The largest Lyapunov exponent is

$$\lambda_1(x) = \lim_{n \to \infty} \frac{1}{n} \log \|A^n(x)\|$$

Oseledet's Theorem (Invertible case)

Assume T is invertible.

Theorem (V. Oseledet)

If the cocycle (μ, T, A) and its inverse (μ, A^{-1}, T^{-1}) are integrable then there are measurable functions $n(x) \in \mathbb{N}$ and $\lambda_1(x) > \lambda_2(x) > \cdots > \lambda_{n(x)}(x)$ and an *F*-invariant measurable decomposition $\mathbb{R}^d = \bigoplus_{i=1}^{n(x)} E_i(x)$ such that for μ -almost every $x \in X$,

1.
$$\lambda_i(x) = \lim_{n \to \pm \infty} \frac{1}{n} \log ||A^n(x)v|| \quad \forall v \in E_i(x)$$

2. $\sum_{i=1}^{n(x)} \lambda_i(x) \dim E_i(x) = 0$

Furstenberg's perspective: Law of Large Numbers

Theorem

Given any sequence of i.i.d. real valued random variables $X_n(\omega)$ on some probability space (Ω, P) , for P-almost every $\omega \in \Omega$,

$$\lim_{n\to\infty}\frac{1}{n}\left(X_0(\omega)+\cdots+X_{n-1}(\omega)\right)=\mu\,,$$

where $\mu = \mathbb{E}(X_n)$ is the common expected value of the random variables $X_n(\omega)$.

The same theorem holds for i.i.d. processes valued in any commutative group.

Multiplicative L.L.N.

Theorem

Given any sequence of i.i.d. random variables $X_n(\omega)$ valued in the multiplicative group of positive real numbers (\mathbb{R}_+, \cdot) , for almost every $\omega \in \Omega$,

$$\lim_{n\to\infty}\frac{1}{n}\log(X_{n-1}\cdots X_1 X_0)(\omega)=\mathbb{E}(\log X_n).$$

Does such a theorem holds for i.i.d. processes valued in a noncommutative group G?

Difficulties with a noncommutative L.L.N.

For any non-commutative semisimple Lie group G,

1. There is no continuous globally defined logarithm function $\log : G \rightarrow \mathfrak{g}$, characterized by the functional equation

$$\log(a b) = \log(a) + \log(b) .$$

2. There is no continuous non-vanishing group homomorphism $f: G \to (\mathbb{R}, +)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Furstenberg's A-cocycles

Assume $G \times M \rightarrow M$ is some action on M.

Definition

We call *A*-cocycle to any function ρ : $G \times M \rightarrow \mathbb{R}$ such that

1.
$$\rho(k,x) = 0$$
, for every rotation $k \in G$

2.
$$ho(g g', x) =
ho(g, g' x) +
ho(g', x)$$
, for $g, g' \in G$, $x \in M$

Each A-cocycle determines a 1-dimensional linear cocycle action of G on the trival bundle $M \times \mathbb{R}$,

$$F: G imes (M imes \mathbb{R}) o M imes \mathbb{R}, \qquad F^g(x, v) = (g \, x, e^{
ho(g, x)} \, v) \; .$$

Examples of A-cocycles

The *log-norm* $\rho: G \times \mathbb{R}^d - \{0\} \to \mathbb{R}^d - \{0\}$, $\rho(g, x) = \log ||g x|| / ||x||$ is an A-cocycle which induces another A-cocycle, still referred as the *norm-logarithm cocycle*, on the real projective space $\rho: G \times \mathbb{P}^{d-1} \to \mathbb{P}^{d-1}$.

The Jacobian cocycle $\rho: G \times \mathbb{P}^{d-1} \to \mathbb{P}^{d-1}$, is defined by $\rho(g, x) = \log \det [(D\varphi_g)_x]$ where $\varphi_g: \mathbb{P}^{d-1} \to \mathbb{P}^{d-1}$, $\varphi_g(x) = g x$.

Let G be the Möbius group (linear fractional transformations), and \mathbb{D} be the Poincaré disk. Then $\rho: G \times \mathbb{D} \to \mathbb{R}$, $\rho(g, z) = \log |g'(z)|$ is an A-cocycle, called the log-derivative cocycle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Furstenberg's Theorems (I)

Let G be a semisimple group with finite center. Denote by $\mathcal{P}(M)$ the compact convex space of probability measures on M, and by $\mathcal{W}_G(M)$ the space of A-cocycles $\rho : G \times M \to \mathbb{R}$.

Theorem

If *M* is a boundary of *G*, for every absolutely continuous measure, w.r.t. Haar, with compact support $\mu \in \mathcal{P}(G)$ there is a unique measure $\nu \in \mathcal{P}(M)$ such that $\mu * \nu = \nu$.

Theorem

If M is a boundary of G then $W_G(M)$ is a finite dimensional vector space.

・ロト ・回ト ・ヨト ・ヨト

A Functional on A-cocycles

A measure $\mu \in \mathcal{P}(G)$ is said to be of *class* B_1 iff it has compact support, it is absolutely continuous w.r.t. Haar, and every A-cocycle ρ on the maximal boundary M of G is integrable,

$$\int_{\mathcal{G}} \sup_{x\in \mathcal{M}} |
ho(g,x)| \,\, d\mu(g) < \infty \;.$$

Given a probability of class B_1 , $\mu \in \mathcal{P}(G)$, we can define a linear functional

$$\alpha_{\mu}: \mathcal{W}_{G}(M) \to \mathbb{R}, \quad \alpha_{\mu}(\rho) = \int_{G} \int_{M} \rho(g, x) \, d\nu(x) \, d\mu(g) \; ,$$

where $\nu \in \mathcal{P}(M)$ is the unique μ -stationary measure $(\mu * \nu = \nu)$.

Furstenberg's Theorems (II)

Theorem (Non-commutative Law of Large Numbers) If M is a boundary of G, for every measure $\mu \in \mathcal{P}(G)$ of class B_1 , every i.i.d. G-valued process $\{X_n\}$ with distribution μ , every cocycle $\rho \in \mathcal{W}_G(M)$, and every $x \in M$, with probability 1,

$$\lim_{n\to\infty}\frac{1}{n}\,\rho(X_{n-1}\cdots X_1\,X_0,x)=\alpha_\mu(\rho)\;.$$

Pedro Duarte Notes on Furstenberg's paper "Noncommuting Random produc

・ロン ・回 と ・ 回 と ・ 回 と

Furstenberg's Context in our Linear Cocycles' Setting

Let G be a subgroup of $\mathrm{SL}(d,\mathbb{R})$, and $\mu \in \mathcal{P}(G)$ a measure of class B_1 . Consider also $X = G^{\mathbb{N}}$ and $\mu^{\mathbb{N}}$ product measure in X, $T: G^{\mathbb{N}} \to G^{\mathbb{N}}$ the shift map $T(g_n)_{n\geq 0} = (g_{n+1})_{n\geq 0}$, $A: G^{\mathbb{N}} \to G$ which "observes" the first matrix $A(g_n)_{n\geq 0} = g_0$, $F = (\mu, T, A)$ a G-linear cocycle, \mathbb{P}^{d-1} , which is a boundary of the group $\mathrm{SL}(d,\mathbb{R})$, $\rho \in \mathcal{W}_{\mathrm{SL}(d,\mathbb{R})}(\mathbb{P}^{d-1})$ the norm-logarithm A-cocycle. Then $\alpha_{\mu}(\rho) = \text{largest Lyapunov exponent of } F = (\mu, T, A)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Irreducibility

Let G be a subgroup of $SL(d, \mathbb{R})$.

Definition

A subspace $V \subset \mathbb{R}^d$ is said to be *G*-invariant iff g V = V for every $g \in G$.

Definition

The group G is said to be *irreducible* iff $\{0\}$ and \mathbb{R}^d are the only G-invariant subspaces of \mathbb{R}^d .

Furstenberg's Theorems (III)

Let G be a subgroup of $SL(d, \mathbb{R})$.

Theorem

Given $\mu \in \mathcal{P}(\mathrm{SL}(d,\mathbb{R}))$ with compact support such that $\int \log \|g\| \ d\mu(g) < \infty$, let G be the closed subgroup generated by the support of μ . If G is irreducible then for every, every i.i.d. $\mathrm{SL}(d,\mathbb{R})$ -valued process $\{X_n\}$ with distribution μ , and every $x \in \mathbb{P}^{d-1}$, with probability 1,

$$\lim_{n\to\infty}\frac{1}{n}\,\log\|X_{n-1}\cdots X_1\,X_0\,x\|=\alpha(\mu)\,,$$

where $\alpha(\mu) = \int_G \int_{\mathbb{P}^{d-1}} \log \|g x\| d\nu(x) d\mu(g)$ for every measure $\nu \in \mathcal{P}(\mathbb{P}^{d-1})$ such that $\mu * \nu = \nu$.

A Trivial Example

$$\mathsf{Consider} \; g = \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda^{-1} \end{array} \right) \in \mathrm{SL}(2,\mathbb{R}) \; \mathsf{and} \; \mu = \delta_g.$$

The subgroup generated by supp (μ) , $G = \{ g^n : n \in \mathbb{Z} \}$, is reducible.

If $p_1, p_2 \in \mathbb{P}^1$ correspond to the two eigen-directions of g then δ_{p_1} and δ_{p_2} are the only two μ -stationary measures. $\int_G \int_{\mathbb{P}^{d-1}} \log \|g x\| \, d\nu(x) \, d\mu(g) \text{ takes the values } \log \lambda \text{ and } -\log \lambda$ for $\nu = \delta_{p_1}$ and $\nu = \delta_{p_2}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Furstenberg's Example

Consider the matrices
$$g_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
, $g_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ in $SL(2, \mathbb{R})$ and let $\mu = \frac{1}{2} \delta_{g_1} + \frac{1}{2} \delta_{g_2}$.

The subgroup G generated by $supp(\mu)$ is irreducible, but it contains the cyclic subgroup $H \subset G$ generated by g_1 with index [G : H] = 2, which is reducible.

If $p_1, p_2 \in \mathbb{P}^1$ correspond to the eigen-directions of g_1 then $\nu = \frac{1}{2} \delta_{p_1} + \frac{1}{2} \delta_{p_2}$ is the only μ -stationary measure. The largest Lyapunov exponent is zero,

$$\begin{aligned} \alpha(\mu) &= \int_{G} \frac{1}{2} \log \|g \, p_1\| + \frac{1}{2} \log \|g \, p_2\| \, d\mu(g) \\ &= \frac{1}{4} \left(\log \|g_1 \, p_1\| + \log \|g_1 \, p_2\| + \log \|g_2 \, p_1\| + \log \|g_2 \, p_2\| \right) = 0 \end{aligned}$$

Furstenberg's Theorems (IV)

In the next theorems $G \subset SL(d, \mathbb{R})$ is assumed to be a non-compact closed subgroup such that every subgroup of G with finite index is irreducible.

Theorem

There is no measure $\nu \in \mathcal{P}(\mathbb{P}^{d-1})$ which is G-invariant, meaning $g \nu = \nu$ for every $g \in G$.

Theorem

Given $\mu \in \mathcal{P}(\mathrm{SL}(d,\mathbb{R}))$ with compact support such that $\int \log \|g\| \ d\mu(g) < \infty$, if G is the closed subgroup generated by the support of μ then $\alpha(\mu) > 0$.

QR Decomposition

Given $g \in GL(d, \mathbb{R})$, there are unique matrices: k orthogonal and u upper triangular with positive diagonal, such that g = k u. This decomposition is obtained applying the *Gram-Schmidt* orthogonalization process to the columns of g.

The matrix u can be factored as u = a n, where a is a diagonal matrix and n an upper triangular matrix with 1's on the diagonal.

The resulting decomposition, $g = k \stackrel{u}{\overbrace{an}}$, was generalized to semisimple Lie groups by Kenkichi Iwasawa.

Iwasawa Decomposition

Let G be a connected semisimple real Lie group.

Theorem

Then G has subgoups: K maximal compact, A abelian and N nilpotent such that $G = K \cdot A \cdot N$. For each $g \in G$, there is a unique decomposition g = k an with $k \in K$, $a \in A$ and $n \in N$.

The Iwasawa decomposition $G = K \cdot A \cdot N$ is not unique.

The subgroup $S = A \cdot N$ is *solvable*.

Iwasawa Decomposition of $\mathrm{SL}(d,\mathbb{R})$

 $SL(d, \mathbb{R})$ is a connected semisimple real Lie group.

$$egin{aligned} & \mathcal{K} = \mathrm{O}(d,\mathbb{R}) \ & \mathcal{A} = \mathrm{Diag}_+(d,\mathbb{R}) \ & \mathcal{N} = \mathrm{UT}_1(d,\mathbb{R}) \end{aligned}$$

 $S = \mathrm{UT}_+(d,\mathbb{R})$

orthogonal matrices positive diagonal matrices upper triangular matrices with 1's on the diagonal upper triangular matrices with positive diagonal

Iwasawa Decomposition of $\operatorname{Sp}(d,\mathbb{R})$

 $Sp(d, \mathbb{R})$ is a connected semisimple real Lie group.

 $egin{split} &\mathcal{K}=\mathrm{U}(d,\mathbb{R})\ &\mathcal{A}=\mathrm{Diag}^{\mathrm{sp}}_+(d,\mathbb{R})\ &\mathcal{N}=\mathrm{UT}^{\mathrm{sp}}_1(d,\mathbb{R}) \end{split}$

 $S=\mathrm{UT}^{\mathrm{sp}}_+(d,\mathbb{R})$

unitary (sympl. orthog.) matrices symplectic positive diagonal matrices "upper triangular" matrices $\begin{pmatrix} u & * \\ 0 & u^{-T} \end{pmatrix}$ with $u \in UT_1(d, \mathbb{R})$ "upper triangular" matrices $\begin{pmatrix} u & * \\ 0 & u^{-T} \end{pmatrix}$ with $u \in UT_+(d, \mathbb{R})$

G-spaces

Definition

We call *G*-space to any manifold *M* equipped with a transitive action $G \times M \rightarrow M$.

For any subgroup $H \subset G$, the quotient $G/H = \{g H : g \in G\}$ is a *G*-space with the left multiplication action of *G*. In particular, *G* is itself a *G*-space.

 $\mathcal{P}(M)$ denotes the space of probability measures in M with compact support.

Random Walks

Definition

A *random walk* on M is any weakly continuous map $\mu: M \to \mathcal{P}(M), x \mapsto \mu_x$.

The continuity means that $P_{\mu}^{*}(\phi)(x) := \int_{M} \phi(y) d\mu_{x}(y)$ is a continuous function on M whenever $\phi(x)$ is. The operator on continuous functions $P_{\mu}^{*} : \mathcal{C}(M) \to \mathcal{C}(M)$ is the adjoint of the Perron operator on measures, $P_{\mu} : \mathcal{P}(M) \to \mathcal{P}(M)$ defined by $P_{\mu}(\nu) = \int_{G} \mu_{x} d\nu(x)$. A μ -process is any M-valued process $\{X_{n}\}$ such that $\mu_{x}(A) = \mathbb{P}(X_{n} \in A | X_{n-1} = x)$, for every $n \geq 1$.

An *M*-valued process $\{X_n\}$ is called *stationary* iff all X_n have the same distribution probability $\nu \in \mathcal{P}(M)$.

Convolution of Measures

Let M be a compact G-space. The convolution of measures is the operation $*: \mathfrak{P}(G) \times \mathfrak{P}(M) \to \mathfrak{P}(M)$ defined by

$$\int_M \phi(x) d(\mu * \nu)(x) = \int_G \int_M \phi(g x) d\mu(g) d\nu(x) .$$

Given measures $\mu \in \mathcal{P}(G)$, $\nu \in \mathcal{P}(M)$, and points $g \in G$ and $x \in M$, we shall write $g \nu = \delta_g * \nu$ and $\mu x = \mu * \delta_x$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Convolution and Stationary Measures

Assume *M* is a compact *G*-space and $\mu \in \mathcal{P}(G)$. μ determines the random walk $x \mapsto \mu x = \mu * \delta_x$.

Theorem

Consider an i.i.d. process $\{X_n\}$ where each X_n takes values in G with distribution μ , and let W_0 be an M-valued random variable with distribution $\nu \in \mathcal{P}(M)$. Then $W_n = X_n \cdots X_2 X_1 W_0$ is a μ -process, and $\{W_n\}$ is stationary iff $\mu * \nu = \nu$.

イロト イボト イヨト イヨト 二日

Boundaries of a Lie Group

Definition

A boundary of G is any compact G-space with the property that for every $\pi \in \mathcal{P}(M)$ there is a sequence $g_n \in G$ such that $g_n \pi$ converges weakly to a point mass δ_p , with $p \in M$.

Definition

Given boundaries M and M' of G, $M \leq M'$ iff M is the epimorphic image of M' by some G-equivariant epimorphism.

The relation \leq is a partial order on the set of *G*-equivariant equivalence classes of boundaries of *G*.

Up to *G*-equivariant equivalence, there is a unique *maximal* boundary of *G*, w.r.t. \leq , which is denoted by B = B(G).

Geometry of a Boundary

Let M be a boundary of G.

The group K acts transitively on M, and there is a unique K-invariant Riemannian structure on M, whose associated normalized measure we denote by m.

Definition

We say that $p \in M$ is an attractive boundary point for $g \in G$ iff the diffeo $\varphi_g : M \to M$, $\varphi_g(x) = g x$, has p as its unique attractive fixed point p = g p, and its basin of attraction has full Riemannian measure, $m(W^s(p)) = 1$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Geometry of a Boundary

Assume $p \in M$ is an attractive boundary point for $g \in G$, and $\pi \in \mathcal{P}(M)$ is a probability measure such that $\pi(W^s(p)) = 1$. Then $g^n \pi$ converges weakly to the point mass δ_p .

If *M* is a boundary of *G* then every point $p \in M$ is an attractive boundary point for some $g \in G$.

B-sugroups of G

Definition

A subgroup $H \subset G$ is called a *B*-subgroup iff G/H is a boundary of G. Given B-subgroups H and H', $H \preceq H'$ iff H is conjugate to a subgroup of H'.

The relation \leq is a partial order on the set of conjugation classes of B-subgroups

Up to conjugation, there is a unique *minimal B-subgroup of G*, w.r.t. \leq , which is denoted by H = H(G). Off course B(G) = G/H(G).

Characterization of Boundaries and B-subgroups

Let G be a semisimple Lie group with finite center, and $L = \{ k \in K : k a = a k, \forall a \in A \} =$ Centralizer of A in K.

Theorem $H = L \cdot S$ is a minimal B-subroup and $B = G/H \simeq K/L$ is a maximal boundary of G.

Theorem

Up to conjugacy, every B-subgroup of G has the form $H' = L' \cdot S$, and up to equivariant equivalence every boundary of G has the form M' = K/L', for some subgroup $L \subset L' \subset K$.

Flag Manifolds

Take $1 \le k \le d$. The space of k-flags is defined as $\mathfrak{F}_{d,k} = \{ V_* = (V_1, \ldots, V_k) : V_1 \subset \ldots \subset V_k \subset \mathbb{R}^d, \dim V_i = i \}.$ $\mathrm{SL}(d, \mathbb{R})$ acts transitively on k-flags: $\mathrm{SL}(d, \mathbb{R}) \times \mathfrak{F}_{d,k} \to \mathfrak{F}_{d,k}$ by $g V_* = (g V_1, \ldots, g V_k).$

Theorem

Each $\mathcal{F}_{d,k}$ is a boundary of $\mathrm{SL}(d,\mathbb{R})$. $\mathcal{F}_{d,d}$ is the maximal boundary of $\mathrm{SL}(d,\mathbb{R})$.

For k = 1, $\mathfrak{F}_{d,1} = \mathbb{P}^{d-1}$.

Isotropic Flag Manifolds

Fix a linear symplectic structure on \mathbb{R}^{2d} . A *k*-flag $V_* \in \mathcal{F}_{2d,k}$ is called *isotropic* iff the subspace V_k is isotropic.

Let
$$\mathcal{F}_{d,k}^{\mathrm{sp}} =$$
 submanifold of isotropic *k*-flags in $\mathcal{F}_{2d,k}$.
 $\mathcal{F}_{d,k}^{\mathrm{sp}}$ is invariant under $\mathrm{Sp}(d,\mathbb{R})$, and the symplectic group acts transitively there.

Theorem

Each $\mathcal{F}_{d,k}^{\mathrm{sp}}$ is a boundary of $\mathrm{Sp}(d, \mathbb{R})$. $\mathcal{F}_{d,d}^{\mathrm{sp}}$ is the maximal boundary of $\mathrm{Sp}(d, \mathbb{R})$.

For k = 1, $\mathfrak{F}_{d,1}^{\mathrm{sp}} = \mathbb{P}^{2d-1}$.

Isotropy Groups of Flag Manifolds

From now on we assume $G = SL(d, \mathbb{R})$.

Define
$$\ell_i := i^{\text{th}}$$
 axis of \mathbb{R}^d ,
 $V_*^{(i)} := (\ell_1, \ell_1 \oplus \ell_2, \dots, \ell_1 \oplus \dots \oplus \ell_i) \in \mathcal{F}_{d,i}$,
 $H_i = \{ g \in G : g V_*^{(i)} = V_*^{(i)} \} = \text{isotropy group of } \mathcal{F}_{d,i} \text{ at } V_*^{(i)}$.

Then $H_k \subset \ldots \subset H_1$ and $\mathfrak{F}_{d,i} = G/H_i$, for $i = 1, \ldots, d$.

Orthogonal Isotropy Groups of Flag Manifolds

Let $L_i = \{ k \in K : k \ell_j = \ell_j, \text{ for } j = 1, \dots, i \}$. L_d is the group of order 2^{d-1} consisting of diagonal matrices with units ± 1 on the diagonal. It is also the centralizer of A in K, previously denoted by L. These groups satisfy $L_d \subset \ldots \subset L_1$. Furthermore, $H_i = L_i S$, for every $i = 1, \dots, k$.

Thus
$$K/L_i = K S/(L_i S) = G/H_i = \mathcal{F}_{d,i}$$
.

In particular, K acts transitively on $\mathcal{F}_{d,i}$, and $L_i = \text{isotropy group of this action at } V_*^{(i)}$.

Compact G-spaces

Theorem

If M is a compact G-space then K acts transitively on M. In particular, $M = K/\Sigma = G/(\Sigma S)$ for some subgroup $\Sigma \subset K$.

Therefore, the maximal compact G-space is K = G/S.

Action of G on K = G/SGiven $g \in G$ and $k \in K$, g * k := k', where g k = k' u is the QR decomposition, with $k' \in K$ and $u \in S$.

K is not a boundary

Given $g \in G$, the diffeomorphism $\varphi_g : K \to K$ is *L*-equivariant.

Thus, every weak-* limit measure $\nu = \lim_{n\to\infty} g_n \pi$, with $\pi \in \mathcal{P}(K)$, must be *L*-invariant. Since point masses δ_p are not *L*-invariant, *K* is not a boundary.

If $k \in K$ is an attractive fixed point of φ_g then all points in Lk are also fixed points of φ_g with the same character as k. In particular, the attractive fixed points of $\varphi_g : K \to K$ are never unique. The typical limit measures will be convex linear combinations of Dirac measures.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Maximal Boundary and Minimal B-subgroup

The previous argument shows that given a subgroup $\Sigma \subset K$, if $M = K/\Sigma$ is a boundary then $L \subset \Sigma$.

Therefore, $\mathfrak{F}_{d,d} = K/L_d = K/L$ is the maximal boundary of *G*.

and H_d is the minimal B-subgroup of G.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Semisimple Groups

Definition

A non-commutative group G is called *semisimple* iff if it has no connected normal solvable subgroup $H \subset G$.

The special linear group $G = SL(d, \mathbb{R})$, and the symplectic group $G = Sp(d, \mathbb{R})$ are examples of semisimple groups.

Solvable Groups

Definition

A group *G* is called *solvable* iff if there is a finite series of normal subgroups $\{1\} = H_0 \subset H_1 \subset \cdots \subset H_m = G$ such that H_i/H_{i-1} is commutative for every $i = 1, \ldots, m$.

The group $G = UT(d, \mathbb{R})$ of upper triangular matrices is solvable. It admits the series $\{1\} \subset H_1 \subset \cdots \subset H_{d-1} = G$, where H_i is the subgroup of upper triangular matrices whose restriction to the first d - i + 1 columns is diagonal.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Nilpotent Groups

The *lower central series* of a group G is the descending series of normal subgroups $G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n \supseteq \ldots$, where $G_{n+1} = [G_n, G]$ is the subgroup of G generated by all commutators $[x, y] = x^{-1} y^{-1} x y$ with $x \in G_n$ and $y \in G$.

Definition

A group G is called *nilpotent* iff $G_m = \{1\}$ for some $m \ge 1$.

The group $G = UT_1(d, \mathbb{R})$ of upper triangular matrices with 1's on the diagonal is nilpotent. Its lower central series terminates with $G_{d+1} = \{1\}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Center of a Group

Definition

The *center* of a group *G* is the normal subgroup $Z(G) = \{ g \in G : g h = h g, \forall h \in G \}.$

The center of $\operatorname{GL}(d, \mathbb{R})$ is the group $\{aI : a \in \mathbb{R}\}$. The semisimple groups $G = \operatorname{SL}(d, \mathbb{R})$ and $G = \operatorname{Sp}(d, \mathbb{R})$ have centers equal to $\{-I, I\}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Maximal Compact subgroup

Definition

A maximal compact subgroup K of G is any compact subgroup of G which is maximal amongst such subgroups.

Semisimple groups always have maximal compact subgroups. Any compact subgroup $H \subset SL(d, \mathbb{R})$ preserves some euclidean inner product on \mathbb{R}^d . Therefore, the maximal compact subgroups of $SL(d, \mathbb{R})$ are the conjugates of the orthogonal group $O(d, \mathbb{R})$.

・ロト ・回ト ・ヨト ・ヨト

Equivariant maps

Let M and M' be G-spaces.

Definition A map $f : M \to M'$ is said to be *G*-equivariant iff f(g x) = g f(x), for every $x \in M$ and $g \in G$.

A G-equivariant equivalence is any G-equivariant diffeomorphism.