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Linear Cocycles

Let G be a semisimple group of d × d matrices, (X , µ) be a
probability space, T : X → X a µ-preserving map, and A : X → G
a measurable function.

Definition
We call G -linear cocycle to the skew-product map determined by
T and A,

F : X × Rd → X × Rd F (x , v) = (T (x),A(x) v)

whose iterates are given by F n(x , v) = (T n(x),An(x) v) where
An(x) = A(T n−1(x)) · · · A(T (x)) A(x)
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Cocycle Actions

Let (T , ∗) be a group or semigroup.

Definition
We call G -linear cocycle action of T to an action of T on the
trivial bundle X × Rd ,

F : T × (X × Rd)→ X × Rd F t(x , v) = (T t(x),A(t, x) v)

for which there is some measure µ preserved by every base map
T t : X → X , and such that the action is linear on each fiber
• A(t, x) ∈ G , for t ∈ T , x ∈ X
• A(1, x) = I ,
• A(t ′ ∗ t, x) = A(t ′,T t(x)) A(t, x), for t ′, t ∈ T , x ∈ X
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Integrability

Definition
The cocycle F = (µ,T ,A) is said to be integrable iff∫

X
log+ ‖A(x)‖ dµ(x) <∞ .

where log+(x) = max{log x , 0}.
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Oseledet’s Theorem (Non-invertible case)

Assume G is any subgroup of SL(d ,R).

Theorem (V. Oseledet)

If the cocycle (µ,T ,A) is integrable then there are measurable
functions n(x) ∈ N and λ1(x) > λ2(x) > · · · > λn(x)(x) and an
F -invariant measurable filtration
Rd = E1(x) ⊃ E2(x) ⊃ . . . ⊃ En(x) such that for µ-almost every
x ∈ X ,

1. λi (x) = limn→∞
1
n log ‖An(x) v‖, ∀ v ∈ Ei (x)− Ei+1(x)

2.
∑n(x)

i=1 λi (x) (dim Ei (x)− dim Ei+1) = 0
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Lyapunov Exponents

The numbers λi (x) are called the Lyapunov exponents of the
linear cocycle F = (µ,T ,A). These numbers are independent of x
whenever T is ergodic w.r.t. µ.

The largest Lyapunov exponent is

λ1(x) = lim
n→∞

1

n
log ‖An(x)‖
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Oseledet’s Theorem (Invertible case)

Assume T is invertible.

Theorem (V. Oseledet)

If the cocycle (µ,T ,A) and its inverse (µ,A−1,T−1) are integrable
then there are measurable functions n(x) ∈ N and
λ1(x) > λ2(x) > · · · > λn(x)(x) and an F -invariant measurable

decomposition Rd = ⊕n(x)
i=1 Ei (x) such that for µ-almost every

x ∈ X ,

1. λi (x) = limn→±∞
1
n log ‖An(x) v‖ ∀ v ∈ Ei (x)

2.
∑n(x)

i=1 λi (x) dim Ei (x) = 0

Pedro Duarte Notes on Furstenberg’s paper ”Noncommuting Random products”, Part I



Outline
Introduction

Theorem Statements
Fundamental Concepts

Furstenberg’s perspective: Law of Large Numbers

Theorem
Given any sequence of i.i.d. real valued random variables Xn(ω) on
some probability space (Ω,P), for P-almost every ω ∈ Ω,

lim
n→∞

1

n
(X0(ω) + · · ·+ Xn−1(ω)) = µ ,

where µ = E(Xn) is the common expected value of the random
variables Xn(ω).

The same theorem holds for i.i.d. processes valued in any
commutative group.
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Multiplicative L.L.N.

Theorem
Given any sequence of i.i.d. random variables Xn(ω) valued in the
multiplicative group of positive real numbers (R+, ·), for almost
every ω ∈ Ω,

lim
n→∞

1

n
log(Xn−1 · · ·X1 X0)(ω) = E(log Xn) .

Does such a theorem holds for i.i.d. processes valued in a
noncommutative group G ?
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Difficulties with a noncommutative L.L.N.

For any non-commutative semisimple Lie group G ,

1. There is no continuous globally defined logarithm function
log : G → g, characterized by the functional equation

log(a b) = log(a) + log(b) .

2. There is no continuous non-vanishing group homomorphism
f : G → (R,+) .
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Furstenberg’s A-cocycles

Assume G ×M → M is some action on M.

Definition
We call A-cocycle to any function ρ : G ×M → R such that

1. ρ(k , x) = 0, for every rotation k ∈ G

2. ρ(g g ′, x) = ρ(g , g ′ x) + ρ(g ′, x), for g , g ′ ∈ G , x ∈ M

Each A-cocycle determines a 1-dimensional linear cocycle action of
G on the trival bundle M × R,

F : G × (M × R)→ M × R, F g (x , v) = (g x , eρ(g ,x) v) .
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Examples of A-cocycles

The log-norm ρ : G × Rd − {0} → Rd − {0},
ρ(g , x) = log ‖g x‖/‖x‖ is an A-cocycle which induces another
A-cocycle, still referred as the norm-logarithm cocycle, on the real
projective space ρ : G × Pd−1 → Pd−1.

The Jacobian cocycle ρ : G × Pd−1 → Pd−1, is defined by
ρ(g , x) = log det [(Dϕg )x ] where ϕg : Pd−1 → Pd−1, ϕg (x) = g x .

Let G be the Möbius group (linear fractional transformations), and
D be the Poincaré disk. Then ρ : G × D→ R, ρ(g , z) = log |g ′(z)|
is an A-cocycle, called the log-derivative cocycle.
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Furstenberg’s Theorems (I)

Let G be a semisimple group with finite center. Denote by P(M)
the compact convex space of probability measures on M, and by
WG (M) the space of A-cocycles ρ : G ×M → R.

Theorem
If M is a boundary of G, for every absolutely continuous measure,
w.r.t. Haar, with compact support µ ∈ P(G ) there is a unique
measure ν ∈ P(M) such that µ ∗ ν = ν.

Theorem
If M is a boundary of G then WG (M) is a finite dimensional vector
space.
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A Functional on A-cocycles

A measure µ ∈ P(G ) is said to be of class B1 iff it has compact
support, it is absolutely continuous w.r.t. Haar, and every
A-cocycle ρ on the maximal boundary M of G is integrable,∫

G
sup
x∈M
|ρ(g , x)| dµ(g) <∞ .

Given a probability of class B1, µ ∈ P(G ), we can define a linear
functional

αµ : WG (M)→ R, αµ(ρ) =

∫
G

∫
M
ρ(g , x) dν(x) dµ(g) ,

where ν ∈ P(M) is the unique µ-stationary measure (µ ∗ ν = ν).
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Furstenberg’s Theorems (II)

Theorem (Non-commutative Law of Large Numbers)

If M is a boundary of G, for every measure µ ∈ P(G ) of class B1,
every i.i.d. G -valued process {Xn} with distribution µ, every
cocycle ρ ∈WG (M), and every x ∈ M, with probability 1,

lim
n→∞

1

n
ρ(Xn−1 · · ·X1 X0, x) = αµ(ρ) .
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Furstenberg’s Context in our Linear Cocycles’ Setting

Let G be a subgroup of SL(d ,R), and µ ∈ P(G ) a measure of
class B1. Consider also X = G N and µN product measure in X ,
T : G N → G N the shift map T (gn)n≥0 = (gn+1)n≥0,
A : G N → G which ”observes” the first matrix A(gn)n≥0 = g0,
F = (µ,T ,A) a G -linear cocycle,
Pd−1, which is a boundary of the group SL(d ,R) ,
ρ ∈WSL(d ,R)(Pd−1) the norm-logarithm A-cocycle.
Then αµ(ρ) = largest Lyapunov exponent of F = (µ,T ,A).
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Irreducibility

Let G be a subgroup of SL(d ,R).

Definition
A subspace V ⊂ Rd is said to be G -invariant iff g V = V for
every g ∈ G .

Definition
The group G is said to be irreducible iff {0} and Rd are the only
G -invariant subspaces of Rd .
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Furstenberg’s Theorems (III)

Let G be a subgroup of SL(d ,R).

Theorem
Given µ ∈ P(SL(d ,R)) with compact support such that∫

log ‖g‖ dµ(g) <∞, let G be the closed subgroup generated by
the support of µ. If G is irreducible then for every, every i.i.d.
SL(d ,R)-valued process {Xn} with distribution µ, and every
x ∈ Pd−1, with probability 1,

lim
n→∞

1

n
log ‖Xn−1 · · ·X1 X0 x‖ = α(µ) ,

where α(µ) =
∫
G

∫
Pd−1 log ‖g x‖ dν(x) dµ(g) for every measure

ν ∈ P(Pd−1) such that µ ∗ ν = ν.
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A Trivial Example

Consider g =

(
λ 0
0 λ−1

)
∈ SL(2,R) and µ = δg .

The subgroup generated by supp(µ), G = { gn : n ∈ Z }, is
reducible.

If p1, p2 ∈ P1 correspond to the two eigen-directions of g then δp1

and δp2 are the only two µ-stationary measures.∫
G

∫
Pd−1 log ‖g x‖ dν(x) dµ(g) takes the values log λ and − log λ

for ν = δp1 and ν = δp2 .
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Furstenberg’s Example

Consider the matrices g1 =

(
λ 0
0 λ−1

)
, g2 =

(
0 −1
1 0

)
in

SL(2,R) and let µ = 1
2 δg1 + 1

2 δg2 .

The subgroup G generated by supp(µ) is irreducible, but it
contains the cyclic subgroup H ⊂ G generated by g1 with index
[G : H] = 2, which is reducible.

If p1, p2 ∈ P1 correspond to the eigen-directions of g1 then
ν = 1

2 δp1 + 1
2 δp2 is the only µ-stationary measure.

The largest Lyapunov exponent is zero,

α(µ) =

∫
G

1

2
log ‖g p1‖+

1

2
log ‖g p2‖ dµ(g)

=
1

4
(log ‖g1 p1‖+ log ‖g1 p2‖+ log ‖g2 p1‖+ log ‖g2 p2‖) = 0
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Furstenberg’s Theorems (IV)

In the next theorems G ⊂ SL(d ,R) is assumed to be a
non-compact closed subgroup such that every subgroup of G with
finite index is irreducible.

Theorem
There is no measure ν ∈ P(Pd−1) which is G -invariant, meaning
g ν = ν for every g ∈ G .

Theorem
Given µ ∈ P(SL(d ,R)) with compact support such that∫

log ‖g‖ dµ(g) <∞, if G is the closed subgroup generated by
the support of µ then α(µ) > 0.
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QR Decomposition

Given g ∈ GL(d ,R), there are unique matrices: k orthogonal and
u upper triangular with positive diagonal, such that g = k u. This
decomposition is obtained applying the Gram-Schmidt
orthogonalization process to the columns of g .

The matrix u can be factored as u = a n, where a is a diagonal
matrix and n an upper triangular matrix with 1’s on the diagonal.

The resulting decomposition, g = k

u︷︸︸︷
a n , was generalized to

semisimple Lie groups by Kenkichi Iwasawa.
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Iwasawa Decomposition

Let G be a connected semisimple real Lie group.

Theorem
Then G has subgoups: K maximal compact , A abelian and N
nilpotent such that G = K · A · N. For each g ∈ G , there is a
unique decomposition g = k a n with k ∈ K , a ∈ A and n ∈ N.

The Iwasawa decomposition G = K · A · N is not unique.

The subgroup S = A · N is solvable .
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Iwasawa Decomposition of SL(d , R)

SL(d ,R) is a connected semisimple real Lie group.

K = O(d ,R) orthogonal matrices
A = Diag+(d ,R) positive diagonal matrices
N = UT1(d ,R) upper triangular matrices with

1’s on the diagonal
S = UT+(d ,R) upper triangular matrices with

positive diagonal

Pedro Duarte Notes on Furstenberg’s paper ”Noncommuting Random products”, Part I



Outline
Introduction

Theorem Statements
Fundamental Concepts

Iwasawa Decomposition of Sp(d , R)

Sp(d ,R) is a connected semisimple real Lie group.

K = U(d ,R) unitary (sympl. orthog.) matrices
A = Diagsp

+ (d ,R) symplectic positive diagonal matrices

N = UTsp
1 (d ,R) ”upper triangular” matrices

(
u ∗
0 u−T

)
with u ∈ UT1(d ,R)

S = UTsp
+ (d ,R) ”upper triangular” matrices

(
u ∗
0 u−T

)
with u ∈ UT+(d ,R)
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G -spaces

Definition
We call G -space to any manifold M equipped with a transitive
action G ×M → M.

For any subgroup H ⊂ G , the quotient G/H = { g H : g ∈ G } is
a G -space with the left multiplication action of G . In particular, G
is itself a G -space.

P(M) denotes the space of probability measures in M with
compact support.
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Random Walks

Definition
A random walk on M is any weakly continuous map
µ : M → P(M), x 7→ µx .

The continuity means that P∗µ(φ)(x) :=
∫
M φ(y) dµx(y) is a

continuous function on M whenever φ(x) is. The operator on
continuous functions P∗µ : C(M)→ C(M) is the adjoint of the
Perron operator on measures, Pµ : P(M)→ P(M) defined by
Pµ(ν) =

∫
G µx dν(x).

A µ-process is any M-valued process {Xn} such that
µx(A) = P(Xn ∈ A|Xn−1 = x), for every n ≥ 1.

An M-valued process {Xn} is called stationary iff all Xn have the
same distribution probability ν ∈ P(M).
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Convolution of Measures

Let M be a compact G -space.
The convolution of measures is the operation
∗ : P(G )× P(M)→ P(M) defined by∫

M
φ(x) d(µ ∗ ν)(x) =

∫
G

∫
M
φ(g x) dµ(g) dν(x) .

Given measures µ ∈ P(G ), ν ∈ P(M), and points g ∈ G and
x ∈ M, we shall write g ν = δg ∗ ν and µ x = µ ∗ δx
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Convolution and Stationary Measures

Assume M is a compact G -space and µ ∈ P(G ).
µ determines the random walk x 7→ µ x = µ ∗ δx .

Theorem
Consider an i.i.d. process {Xn} where each Xn takes values in G
with distribution µ, and let W0 be an M-valued random variable
with distribution ν ∈ P(M). Then Wn = Xn · · ·X2 X1 W0 is a
µ-process, and {Wn} is stationary iff µ ∗ ν = ν.
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Boundaries of a Lie Group

Definition
A boundary of G is any compact G -space with the property that
for every π ∈ P(M) there is a sequence gn ∈ G such that gn π
converges weakly to a point mass δp, with p ∈ M.

Definition
Given boundaries M and M ′ of G , M � M ′ iff M is the
epimorphic image of M ′ by some G -equivariant epimorphism.

The relation � is a partial order on the set of G -equivariant
equivalence classes of boundaries of G .

Up to G -equivariant equivalence, there is a unique maximal
boundary of G , w.r.t. �, which is denoted by B = B(G ).
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Geometry of a Boundary

Let M be a boundary of G .
The group K acts transitively on M, and there is a unique
K -invariant Riemannian structure on M, whose associated
normalized measure we denote by m.

Definition
We say that p ∈ M is an attractive boundary point for g ∈ G iff
the diffeo ϕg : M → M, ϕg (x) = g x , has p as its unique
attractive fixed point p = g p, and its basin of attraction has full
Riemannian measure, m(W s(p)) = 1.
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Geometry of a Boundary

Assume p ∈ M is an attractive boundary point for g ∈ G , and
π ∈ P(M) is a probability measure such that π(W s(p)) = 1.
Then gn π converges weakly to the point mass δp.

If M is a boundary of G then every point p ∈ M is an attractive
boundary point for some g ∈ G .
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B-sugroups of G

Definition
A subgroup H ⊂ G is called a B-subgroup iff G/H is a boundary
of G . Given B-subgroups H and H ′, H � H ′ iff H is conjugate
to a subgroup of H ′.

The relation � is a partial order on the set of conjugation classes
of B-subgroups

Up to conjugation, there is a unique minimal B-subgroup of G ,
w.r.t. �, which is denoted by H = H(G ).
Off course B(G ) = G/H(G ).
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Characterization of Boundaries and B-subgroups

Let G be a semisimple Lie group with finite center,
and L = { k ∈ K : k a = a k , ∀ a ∈ A } = Centralizer of A in K .

Theorem
H = L · S is a minimal B-subroup and
B = G/H ' K/L is a maximal boundary of G.

Theorem
Up to conjugacy, every B-subgroup of G has the form H ′ = L′ · S,
and up to equivariant equivalence every boundary of G has the
form M ′ = K/L′, for some subgroup L ⊂ L′ ⊂ K .
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Flag Manifolds

Take 1 ≤ k ≤ d . The space of k-flags is defined as
Fd ,k = {V∗ = (V1, . . . ,Vk) : V1 ⊂ . . . ⊂ Vk ⊂ Rd , dim Vi = i }.
SL(d ,R) acts transitively on k-flags: SL(d ,R)× Fd ,k → Fd ,k by
g V∗ = (g V1, . . . , g Vk).

Theorem
Each Fd ,k is a boundary of SL(d ,R).
Fd ,d is the maximal boundary of SL(d ,R).

For k = 1, Fd ,1 = Pd−1.
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Isotropic Flag Manifolds

Fix a linear symplectic structure on R2d . A k-flag V∗ ∈ F2d ,k is
called isotropic iff the subspace Vk is isotropic.

Let F
sp
d ,k = submanifold of isotropic k-flags in F2d ,k .

F
sp
d ,k is invariant under Sp(d ,R), and the symplectic group acts

transitively there.

Theorem
Each F

sp
d ,k is a boundary of Sp(d ,R).

F
sp
d ,d is the maximal boundary of Sp(d ,R).

For k = 1, F
sp
d ,1 = P2d−1.
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Isotropy Groups of Flag Manifolds

From now on we assume G = SL(d ,R).

Define `i := i th axis of Rd ,
V

(i)
∗ := (`1, `1 ⊕ `2, . . . , `1 ⊕ · · · ⊕ `i ) ∈ Fd ,i ,

Hi = { g ∈ G : g V
(i)
∗ = V

(i)
∗ } = isotropy group of Fd ,i at V

(i)
∗ .

Then Hk ⊂ . . . ⊂ H1 and Fd ,i = G/Hi , for i = 1, . . . , d .
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Orthogonal Isotropy Groups of Flag Manifolds

Let Li = { k ∈ K : k `j = `j , for j = 1, . . . , i }.
Ld is the group of order 2d−1 consisting of diagonal matrices with
units ±1 on the diagonal. It is also the centralizer of A in K ,
previously denoted by L. These groups satisfy Ld ⊂ . . . ⊂ L1.
Furthermore, Hi = Li S , for every i = 1, . . . , k .

Thus K/Li = K S/(Li S) = G/Hi = Fd ,i .

In particular, K acts transitively on Fd ,i , and

Li = isotropy group of this action at V
(i)
∗ .
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Compact G -spaces

Theorem
If M is a compact G-space then K acts transitively on M.
In particular, M = K/Σ = G/(Σ S) for some subgroup Σ ⊂ K .

Therefore, the maximal compact G -space is K = G/S .

Action of G on K = G/S
Given g ∈ G and k ∈ K , g ∗ k := k ′, where g k = k ′ u is the QR
decomposition, with k ′ ∈ K and u ∈ S .
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K is not a boundary

Given g ∈ G , the diffeomorphism ϕg : K → K is L-equivariant.

Thus, every weak-∗ limit measure ν = limn→∞ gn π, with
π ∈ P(K ), must be L-invariant. Since point masses δp are not
L-invariant, K is not a boundary.

If k ∈ K is an attractive fixed point of ϕg then all points in L k are
also fixed points of ϕg with the same character as k . In particular,
the attractive fixed points of ϕg : K → K are never unique. The
typical limit measures will be convex linear combinations of Dirac
measures.
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Maximal Boundary and Minimal B-subgroup

The previous argument shows that given a subgroup Σ ⊂ K ,
if M = K/Σ is a boundary then L ⊂ Σ.

Therefore,
Fd ,d = K/Ld = K/L is the maximal boundary of G .

and
Hd is the minimal B-subgroup of G .
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Semisimple Groups

Definition
A non-commutative group G is called semisimple iff if it has no
connected normal solvable subgroup H ⊂ G .

The special linear group G = SL(d ,R), and the symplectic group
G = Sp(d ,R) are examples of semisimple groups.
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Solvable Groups

Definition
A group G is called solvable iff if there is a finite series of normal
subgroups {1} = H0 ⊂ H1 ⊂ · · · ⊂ Hm = G such that Hi/Hi−1 is
commutative for every i = 1, . . . ,m.

The group G = UT(d ,R) of upper triangular matrices is solvable.
It admits the series {1} ⊂ H1 ⊂ · · · ⊂ Hd−1 = G , where Hi is the
subgroup of upper triangular matrices whose restriction to the first
d − i + 1 columns is diagonal.
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Nilpotent Groups

The lower central series of a group G is the descending series of
normal subgroups G = G1 ⊇ G2 ⊇ . . . ⊇ Gn ⊇ . . ., where
Gn+1 = [Gn,G ] is the subgroup of G generated by all commutators
[x , y ] = x−1 y−1 x y with x ∈ Gn and y ∈ G .

Definition
A group G is called nilpotent iff Gm = {1} for some m ≥ 1.

The group G = UT1(d ,R) of upper triangular matrices with 1’s on
the diagonal is nilpotent. Its lower central series terminates with
Gd+1 = {1}.
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Center of a Group

Definition
The center of a group G is the normal subgroup
Z (G ) = { g ∈ G : g h = h g , ∀ h ∈ G }.

The center of GL(d ,R) is the group { a I : a ∈ R }. The
semisimple groups G = SL(d ,R) and G = Sp(d ,R) have centers
equal to {−I , I}.
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Maximal Compact subgroup

Definition
A maximal compact subgroup K of G is any compact subgroup of
G which is maximal amongst such subgroups.

Semisimple groups always have maximal compact subgroups. Any
compact subgroup H ⊂ SL(d ,R) preserves some euclidean inner
product on Rd . Therefore, the maximal compact subgroups of
SL(d ,R) are the conjugates of the orthogonal group O(d ,R).
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Equivariant maps

Let M and M ′ be G -spaces.

Definition
A map f : M → M ′ is said to be G -equivariant iff
f (g x) = g f (x), for every x ∈ M and g ∈ G .

A G -equivariant equivalence is any G -equivariant diffeomorphism.
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