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Introduction

Linear Cocycles

Let G be a semisimple group of d x d matrices, (X, u) be a
probability space, T : X — X a u-preserving map, and A: X — G
a measurable function.

Definition

We call G-linear cocycle to the skew-product map determined by
T and A,

F:XxR?—= XxR?  F(x,v) = (T(x),Ax) V)

whose iterates are given by F"(x,v) = (T"(x), A"(x) v) where
AT(x) = A(T" (%) -+ A(T(x) A(x)

Pedro Duarte Notes on Furstenberg’s paper " Noncommuting Random produc



Introduction

Cocycle Actions

Let (T, *) be a group or semigroup.

Definition
We call G-linear cocycle action of T to an action of T on the
trivial bundle X x RY,

F:Tx(XxRY)—XxR? Fi(x,v) = (T*(x), A(t, x) v)

for which there is some measure p preserved by every base map
Tt: X — X, and such that the action is linear on each fiber

o Alt,x)€ G, forteT,xeX

o A(l,x)=1,

o A(t'xt,x)=A(t,THx))A(t,x), fort/,teT, xeX
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Introduction

Integrability

Definition
The cocycle F = (u, T, A) is said to be integrable iff

| 108" 4G du(x) < oc
X

where log™t(x) = max{log x, 0}.
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Introduction

Oseledet’'s Theorem (Non-invertible case)

Assume G is any subgroup of SL(d, R).

Theorem (V. Oseledet)

If the cocycle (1, T, A) is integrable then there are measurable
functions n(x) € N and A\1(x) > Xa(x) > - > Ay(x) and an
F-invariant measurable filtration

R = E1(x) D Ex(x) D ... D Epx) such that for ji-almost every
x e X,

L N(X) =limpoo L log |[A"(X) V||, Vv e E(x)— Ei1(x)

n

2. 319 \i(x) (dim Ej(x) — dim Er4q) = 0
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Introduction

Lyapunov Exponents

The numbers \;(x) are called the Lyapunov exponents of the
linear cocycle F = (u, T, A). These numbers are independent of x
whenever T is ergodic w.r.t. p.

The largest Lyapunov exponent is

1 )
M) = fim  log |A"()|
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Introduction

Oseledet’'s Theorem (Invertible case)

Assume T is invertible.

Theorem (V. Oseledet)

If the cocycle (i, T, A) and its inverse (u, A~t, T~1) are integrable
then there are measurable functions n(x) € N and
A1(x) > Aa(x) > -+ > Ap(x)(x) and an F-invariant measurable

decomposition RY = EB;'LXI) Ei(x) such that for p-almost every
x e X,

1 Xi(x) = limptoo 7 log [|A"(x) v[| Vv € Ei(x)
2. 1) \i(x) dim Ei(x) = 0
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Introduction

Furstenberg's perspective: Law of Large Numbers

Theorem
Given any sequence of i.i.d. real valued random variables X,(w) on
some probability space (2, P), for P-almost every w € Q,

lim E (Xo(w) + -+ Xp—1(w)) = p

n—oo N

where p = E(X,) is the common expected value of the random
variables Xp(w).

The same theorem holds for i.i.d. processes valued in any
commutative group.

Pedro Duarte Notes on Furstenberg’s paper " Noncommuting Random produc



Introduction

Multiplicative L.L.N.

Theorem

Given any sequence of i.i.d. random variables X,(w) valued in the
multiplicative group of positive real numbers (R4, -), for almost
every w € ,

lim = log(Xo_1--- X1 Xo)(w) = E(log X,) .

n—oo n

Does such a theorem holds for i.i.d. processes valued in a
noncommutative group G?
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Introduction

Difficulties with a noncommutative L.L.N.

For any non-commutative semisimple Lie group G,

1. There is no continuous globally defined logarithm function
log : G — g, characterized by the functional equation

log(a b) = log(a) + log(b) .

2. There is no continuous non-vanishing group homomorphism
f:G—(R,+).
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Theorem Statements

Furstenberg's A-cocycles

Assume G x M — M is some action on M.

Definition
We call A-cocycle to any function p: G x M — R such that
1. p(k,x) =0, for every rotation k € G

2. p(gg',x)=plg, &' x)+p(g' %), forg,g € G,xeM

Each A-cocycle determines a 1-dimensional linear cocycle action of
G on the trival bundle M x R,

FGX(MXR)—?MXR, Fg(X7V):(gX?ep(g7X)V).
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Theorem Statements

Examples of A-cocycles

The log-norm p: G x R? — {0} — R9 — {0},

p(g,x) = log |lg x||/||x]| is an A-cocycle which induces another
A-cocycle, still referred as the norm-logarithm cocycle, on the real
projective space p: G x P9~1 — pd-1,

The Jacobian cocycle p: G x Pd-1 _, Pd-1 s defined by
p(g, x) = logdet [(Dyg)x] where g : PY1 — P91, g, (x) = g x.

Let G be the Mobius group (linear fractional transformations), and
D be the Poincaré disk. Then p: G x D — R, p(g,z) = log|g’(z)|
is an A-cocycle, called the log-derivative cocycle.
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Theorem Statements

Furstenberg's Theorems (1)

Let G be a semisimple group with finite center. Denote by P(M)
the compact convex space of probability measures on M, and by
We(M) the space of A-cocycles p: G x M — R.

Theorem

If M is a boundary of G, for every absolutely continuous measure,
w.r.t. Haar, with compact support . € P(G) there is a unique
measure v € P(M) such that pxv = v.

Theorem
If M is a boundary of G then W (M) is a finite dimensional vector
space.
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Theorem Statements

A Functional on A-cocycles

A measure p € P(G) is said to be of class By iff it has compact
support, it is absolutely continuous w.r.t. Haar, and every
A-cocycle p on the maximal boundary M of G is integrable,

| sup (e ) dne) < .
G xeM

Given a probability of class By, u € P(G), we can define a linear
functional

o, We(M) — R, %wzﬁAf@wwwmm»

where v € P(M) is the unique pu-stationary measure (u* v = v).
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Theorem Statements

Furstenberg's Theorems (I1)

Theorem (Non-commutative Law of Large Numbers)

If M is a boundary of G, for every measure . € P(G) of class By,
every i.i.d. G-valued process {X,} with distribution p, every
cocycle p € Wg(M), and every x € M, with probability 1,

.1
lim = p(Xp—1--- X1 X0, x) = apulp) -

n—oo n
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Theorem Statements

Furstenberg's Context in our Linear Cocycles' Setting

Let G be a subgroup of SL(d,R), and iz € P(G) a measure of
class B;. Consider also X = GY and NN product measure in X,
T : GY — GY the shift map T(gn)nZO = (gn+1)nzo,

A: GN — G which "observes” the first matrix A(g,)n>0 = &0,

F = (u, T,A) a G-linear cocycle,

P9=1, which is a boundary of the group SL(d,R) ,

pE WSL(dR)(Pd_l) the norm-logarithm A-cocycle.

Then ay,(p) = largest Lyapunov exponent of F = (p, T, A).
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Theorem Statements

Irreducibility

Let G be a subgroup of SL(d,R).

Definition
A subspace V C R is said to be G-invariant iff gV = V for
every g € G.

Definition
The group G is said to be irreducible iff {0} and RY are the only
G-invariant subspaces of RY.
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Theorem Statements

Furstenberg's Theorems (I11)

Let G be a subgroup of SL(d,R).

Theorem

Given p € P(SL(d,R)) with compact support such that

[log|lgl|l du(g) < oo, let G be the closed subgroup generated by
the support of . If G is irreducible then for every, every i.i.d.
SL(d,R)-valued process {X,} with distribution 1, and every

x € P91, with probability 1,

o1
lim — log [|Xy—1 -+ X1 Xo x|| = a(p) ,
n—oo N

where o) = [ [pa—1log ||lg x|| dv(x) du(g) for every measure
v € P(PI71) such that p*v = v.
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Theorem Statements

A Trivial Example

A0
0 A1

The subgroup generated by supp(i), G={g" : n€Z}, is
reducible.

Consider g = < ) € SL(2,R) and p = d,.

If p1, po € P! correspond to the two eigen-directions of g then Opy
and &, are the only two p-stationary measures.

J¢ Jpa-1log|lg x| dv(x) du(g) takes the values log A and —log A
for v = dp, and v = 6p,.
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Theorem Statements

Furstenberg's Example

Consider the matrices g1 = < A0 ) o = ( 0 -1 ) in
0 At ) 1 0

SL(2,R) and let p = 1 54 + 1 6.

The subgroup G generated by supp(y) is irreducible, but it

contains the cyclic subgroup H C G generated by g1 with index

[G : H] = 2, which is reducible.

If p1, po € P! correspond to the eigen-directions of g; then
v= %(5,,1 + %5,)2 is the only p-stationary measure.

The largest Lyapunov exponent is zero,

aly) = /G > tog g | + ol pol )

1
=3 (log |lg1 p1|| + log [|g1 p2|| + log ||g2 p1]| + log ||g2 p2||) = 0
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Theorem Statements

Furstenberg's Theorems (1V)

In the next theorems G C SL(d,R) is assumed to be a
non-compact closed subgroup such that every subgroup of G with
finite index is irreducible.

Theorem
There is no measure v € P(P9~1) which is G-invariant, meaning
gv=uvforevery g € G.

Theorem

Given p € P(SL(d,R)) with compact support such that
[log|lgll du(g) < oo, if G is the closed subgroup generated by
the support of y then a(u) > 0.
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Fundamental Concepts

QR Decomposition

Given g € GL(d,R), there are unique matrices: k orthogonal and
u upper triangular with positive diagonal, such that g = k u. This
decomposition is obtained applying the Gram-Schmidt
orthogonalization process to the columns of g.

The matrix u can be factored as u = an, where a is a diagonal
matrix and n an upper triangular matrix with 1's on the diagonal.

u
The resulting decomposition, g = k “an’, was generalized to
semisimple Lie groups by Kenkichi lwasawa.
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Fundamental Concepts

Iwasawa Decomposition

Let G be a connected semisimple real Lie group.

Theorem

Then G has subgoups: K maximal compact , A abelian and N
nilpotent such that G = K- A- N. For each g € G, there is a
unique decomposition g = kan with k € K, a€ Aandnée N.

The Iwasawa decomposition G = K - A- N is not unique.

The subgroup S = A - N is solvable .
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Fundamental Concepts

lwasawa Decomposition of SL(d, R)

SL(d,R) is a connected semisimple real Lie group.

K =0(d,R) orthogonal matrices

A= D1ag+(d R) positive diagonal matrices

N =TUT;(d,R) upper triangular matrices with
1's on the diagonal

S$=UT4(d,R) upper triangular matrices with
positive diagonal
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Fundamental Concepts

lwasawa Decomposition of Sp(d,R)

Sp(d,R) is a connected semisimple real Lie group.

K =U(d,R) unitary (sympl. orthog.) matrices
A = Diag?(d,R) symplectic positive diagonal matrices
N =UT{(d,R) "upper triangular’ matrices < S u>_k-,- >

with v € UT1(d,R)
S =UT¥(d,R) "upper triangular’ matrices ( g u:kT )
with v € UT4(d,R)

Pedro Duarte Notes on Furstenberg’s paper " Noncommuting Random produc



Fundamental Concepts

G-spaces

Definition
We call G-space to any manifold M equipped with a transitive
action G x M — M.

For any subgroup H C G, the quotient G/H={gH : g€ G}is
a G-space with the left multiplication action of G. In particular, G
is itself a G-space.

P(M) denotes the space of probability measures in M with
compact support.
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Fundamental Concepts

Random Walks

Definition

A random walk on M is any weakly continuous map

w:M— P(M), x — py.

The continuity means that P;i(¢)(x) := [y, ¢(y) dux(y) is a
continuous function on M whenever ¢(x) is. The operator on
continuous functions P : C(M) — €(M) is the adjoint of the
Perron operator on measures, P, : P(M) — P(M) defined by
P.(v) = [¢ px dv(x).

A ji-process is any M-valued process {X,} such that

px(A) =P(X, € AlXp—1 = x), for every n > 1.

An M-valued process {X,} is called stationary iff all X, have the
same distribution probability v € P(M).
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Fundamental Concepts

Convolution of Measures

Let M be a compact G-space.
The convolution of measures is the operation
x: P(G) x P(M) — P(M) defined by

[ 6dusn) = [ [ olexdute) dvi)

Given measures p € P(G), v € P(M), and points g € G and
x € M, we shall write gv=20g+*v and px = p*dy
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Fundamental Concepts

Convolution and Stationary Measures

Assume M is a compact G-space and p € P(G).
1 determines the random walk x — px = p * dy.

Theorem

Consider an i.i.d. process {X,} where each X, takes values in G
with distribution p, and let Wy be an M-valued random variable
with distribution v € P(M). Then W, = X, --- Xo X1 Wy is a
p-process, and {W,} is stationary iff pxv =v.
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Fundamental Concepts

Boundaries of a Lie Group

Definition

A boundary of G is any compact G-space with the property that
for every m € P(M) there is a sequence g, € G such that g, 7
converges weakly to a point mass d,, with p € M.

Definition

Given boundaries M and M’ of G, M < M" iff M is the
epimorphic image of M’ by some G-equivariant epimorphism.
The relation =< is a partial order on the set of G-equivariant
equivalence classes of boundaries of G.

Up to G-equivariant equivalence, there is a unique maximal
boundary of G, w.r.t. =<, which is denoted by B = B(G).
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Fundamental Concepts

Geometry of a Boundary

Let M be a boundary of G.

The group K acts transitively on M, and there is a unique
K-invariant Riemannian structure on M, whose associated
normalized measure we denote by m.

Definition

We say that p € M is an attractive boundary point for g € G iff
the diffeo ¢, : M — M, pg(x) = g x, has p as its unique
attractive fixed point p = g p, and its basin of attraction has full
Riemannian measure, m(W?*(p)) = 1.
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Fundamental Concepts

Geometry of a Boundary

Assume p € M is an attractive boundary point for g € G, and
m € P(M) is a probability measure such that 7(W?(p)) = 1.
Then g" 1 converges weakly to the point mass ¢,.

If M is a boundary of G then every point p € M is an attractive
boundary point for some g € G.

Pedro Duarte Notes on Furstenberg’s paper " Noncommuting Random produc



Fundamental Concepts

B-sugroups of G

Definition

A subgroup H C G is called a B-subgroup iff G/H is a boundary
of G. Given B-subgroups H and H', H < H" iff H is conjugate
to a subgroup of H'.

The relation =< is a partial order on the set of conjugation classes
of B-subgroups

Up to conjugation, there is a unique minimal B-subgroup of G,
w.r.t. <, which is denoted by H = H(G).
Off course B(G) = G/H(G).
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Fundamental Concepts

Characterization of Boundaries and B-subgroups

Let G be a semisimple Lie group with finite center,
and L={ke K :ka=ak, Vac A} = Centralizer of Ain K.

Theorem
H=L-S is a minimal B-subroup and
B = G/H ~ K/L is a maximal boundary of G.

Theorem

Up to conjugacy, every B-subgroup of G has the form H' =L’ - S,
and up to equivariant equivalence every boundary of G has the
form M' = K /L', for some subgroup L C L' C K.
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Fundamental Concepts

Flag Manifolds

Take 1 < k < d. The space of k-flags is defined as
3~d7k:{V*:(V1,...,Vk) Vic...C VkC]Rd, dim\/,-:i}.
SL(d,R) acts transitively on k-flags: SL(d,R) x Fgx — Fqx by
g\/* = (gvlv'-'7gvk)-

Theorem

Each F4 x is a boundary of SL(d,R).
Fd.4 is the maximal boundary of SL(d,R).

Fork=1 Jg1= pa-1,
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Fundamental Concepts

Isotropic Flag Manifolds

Fix a linear symplectic structure on R24. A k-flag Vi € Fpqx is
called isotropic iff the subspace Vj is isotropic.

Let ., = submanifold of isotropic k-flags in Foq «-
Fy ) is invariant under Sp(d, R), and the symplectic group acts
transitively there.

Theorem
Each F, is a boundary of Sp(d,R).
Fy g is the maximal boundary of Sp(d, R).

For k=1, 3, =P
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Fundamental Concepts

Isotropy Groups of Flag Manifolds

From now on we assume G = SL(d,R).

Define ¢; := ith axis of R,
V*SI) = (61,€1@€2, ....,El@---EDE;)E?d,,-, '
H={geG:g v = V*(')} = isotropy group of Fy; at v,

Then H,C...C H; and ?d7;:G/H;, fori=1,...,d.
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Fundamental Concepts

Orthogonal Isotropy Groups of Flag Manifolds

Let L;:{kE K : kfj:@', for j = 1,...,i}.

L4 is the group of order 291 consisting of diagonal matrices with
units =1 on the diagonal. It is also the centralizer of A in K,
previously denoted by L. These groups satisfy Ly C ... C Lj.
Furthermore, H; = L; S, for every i =1,..., k.

Thus K/L,' = KS/(L,S) == G/H, :Sth,'.

In particular, K acts transitively on F4;, and

L; = isotropy group of this action at V*(i).
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Fundamental Concepts

Compact G-spaces

Theorem
If M is a compact G-space then K acts transitively on M.
In particular, M = K/¥ = G/(X S) for some subgroup ¥ C K.

Therefore, the maximal compact G-space is K = G/S.

Action of G on K = G/S
Given g € G and k € K, gxk := k', where gk = k' u is the QR
decomposition, with k' € K and u € S.
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Fundamental Concepts

K is not a boundary

Given g € G, the diffeomorphism ¢, : K — K is L-equivariant.

Thus, every weak-x limit measure v = lim,_o g 7, with
7 € P(K), must be L-invariant. Since point masses d, are not
L-invariant, K is not a boundary.

If k € K is an attractive fixed point of g then all points in L k are
also fixed points of ¢, with the same character as k. In particular,
the attractive fixed points of ¢z : K — K are never unique. The
typical limit measures will be convex linear combinations of Dirac
measures.
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Fundamental Concepts

Maximal Boundary and Minimal B-subgroup

The previous argument shows that given a subgroup ¥ C K,
if M = K/X is a boundary then L C .

Therefore,
Fa.d = K/Lg = K/L is the maximal boundary of G.

and
Hg is the minimal B-subgroup of G.
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Fundamental Concepts

Semisimple Groups

Definition
A non-commutative group G is called semisimple iff if it has no
connected normal solvable subgroup H C G.

The special linear group G = SL(d,R), and the symplectic group
G = Sp(d,R) are examples of semisimple groups.
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Fundamental Concepts

Solvable Groups

Definition

A group G is called solvable iff if there is a finite series of normal
subgroups {1} = Hy C Hy C -+ C Hpy = G such that H;/H;_1 is
commutative for every i =1,..., m.

The group G = UT(d, R) of upper triangular matrices is solvable.

It admits the series {1} C Hy C --- C Hy_1 = G, where H; is the

subgroup of upper triangular matrices whose restriction to the first
d — i+ 1 columns is diagonal.
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Fundamental Concepts

Nilpotent Groups

The lower central series of a group G is the descending series of
normal subgroups G = G; D G D ... D G, D ..., where

Gnt1 = [Gp, G] is the subgroup of G generated by all commutators
[x,y] =xty lxy with x € G, and y € G.

Definition

A group G is called nilpotent iff Gn, = {1} for some m > 1.

The group G = UT1(d, R) of upper triangular matrices with 1's on

the diagonal is nilpotent. Its lower central series terminates with
Gd+1 - {1}
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Fundamental Concepts

Center of a Group

Definition
The center of a group G is the normal subgroup
Z(G)={geG:gh=hg,Vhe G}.

The center of GL(d,R) is the group {al : a€ R}. The

semisimple groups G = SL(d,R) and G = Sp(d, R) have centers
equal to {—/,1}.

Pedro Duarte Notes on Furstenberg’s paper " Noncommuting Random produc



Fundamental Concepts

Maximal Compact subgroup

Definition
A maximal compact subgroup K of G is any compact subgroup of
G which is maximal amongst such subgroups.

Semisimple groups always have maximal compact subgroups. Any
compact subgroup H C SL(d,R) preserves some euclidean inner
product on RY. Therefore, the maximal compact subgroups of
SL(d,R) are the conjugates of the orthogonal group O(d, R).
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Fundamental Concepts

Equivariant maps

Let M and M’ be G-spaces.

Definition
A map f: M — M is said to be G-equivariant iff
f(gx) = gf(x), for every x e M and g € G.

A G-equivariant equivalence is any G-equivariant diffeomorphism.
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