Billiard dynamics

Gianluigi Del Magno

CEMAPRE Lisbon, Portugal

February 27, 2009

• Perron-Frobenius Operator

- *M* is a smooth manifold (M = I = [0, 1]),
- \mathcal{B} is a Borel σ -algebra of M,
- *m* is the Lebesgue measure on *M*,
- $f: M \rightarrow M$ is a measurable map,
- μ is an invariant probability on *M*.

Definition

The basin $B(\mu)$ of μ is the set of all $x \in M$ such that

$$\frac{1}{n}\sum_{k=0}^{n-1}\delta_{T^{k}(x)}\xrightarrow{\operatorname{weak}^{*}}\mu.$$

Definition

If $m(B(\mu)) > 0$, then μ is called a physical (or SRB) probability.

Example

Every ergodic and absolutely continuous μ is physical (Birkhoff Ergodic Theorem). **why?**

Definition

Let M = I = [0, 1]. Then *f* is piecewise expanding if there exists $S = \{a_0 = 0 < a_1, \dots, a_N = 1\} \subset I$ such that

- for each *i*, f_(a_{i-1},a_i) admits an extension f_i to [a_{i-1}, a_i] that is a C¹ diffeomorphism,
- 3 there exists c > 1 such that $|f'_i| \ge c$ for each *i*.

Example

- Uniform expanding maps,
- Markov maps,

•

- Look for acip's of f,
- acip's are fixed points of the Perron-Frobenius P operator of f.
- First strategy: *P* is a contraction, and so $\frac{1}{n} \sum_{k=0}^{n-1} P^k g$ may converge to a fixed point of *f*.
- Second strategy: show that 1 is an eigenvalue for *P*, and check that its eigenvectors are non-negative. These vectors are acip's of *f*.
- So Third strategy: show that *P* restricted to the cone of densities $\{g \ge 0\}$ is a strict contraction.

Definition

The Perron-Frobenius operator associated to a non-singular map $f: M \to M$ is the operator $P: L^1(m) \to L^1(m)$ given by

$$g\mapsto Pg=rac{d(f_*gm)}{dm}, \qquad f\in L^1(m).$$

Properties:

- P is linear, positive why? and bounded;
- **2** *P* is a contraction: $||Pg||_1 \le ||g||_1$;

P* : L[∞] → L[∞] is the Koopman operator:
$$\int h(x)Pg(x)dm(x) = \int h(f(x))g(x)dm(x)$$

acip's of f are fixed points of P.

Mean ergodic theorem