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Abstract 
 The discernment of relevant factors driving health care utilization 
constitutes one important research topic in Health Economics. This issue is 
frequently addressed through specification of regression models for health 
care use (y – often measured by number of doctor visits) including, among 
other covariates, a measure of self-assessed health (sah). However, the exo-
geneity of sah has been questioned, due to the possible presence of 
unobservables influencing y and sah, and because individuals’ health as-
sessments may depend on the quantity of medical care received.  

This paper circumvents the potential endogeneity of sah and its asso-
ciated consequences within conventional regression models (namely the need 
to find valid instruments) by adopting a full information approach, with 
specification of bivariate regression models for the discrete variables (sah,y). 
The approach is implemented with copula functions, which enable separate 
consideration of each variable margin and their dependence structure. Esti-
mation of these models is through maximum likelihood, with cross-section 
data from the Portuguese National Health Survey of 1998/99. Results indi-
cate that estimates of regression parameters do not vary much between 
different copula models. The dependence parameter estimate is negative 
across joint models, which suggests evidence of simultaneity of (sah,y) and 
casts doubt on the appropriateness of limited information approaches. 
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1. Introduction 

 

The area of health economics has witnessed a steady increase in research activity over 

the last decades. To some extent, this growing interest can be seen as a consequence 

of the volume and continuous rise of health care expenditures in most industrialized 

countries, Portugal included.( )1  Not surprisingly, one important ongoing research topic 

in this area has been the discernment of the relevant factors driving health care use by 

individuals. In the Portuguese context, the estimation of income-elasticities of utiliza-

tion, and the assessment of the effect of supplementary health insurance on 

individuals’ health care use provide well-known examples of applied work in this 

area, also relevant from a health policy perspective (Barros, 1999, Barros, Machado, 

Galdeano, 2005). 

 This type of concern is frequently addressed through specification of univari-

ate regression models for health care use (often represented by a count, y, measuring 

the number of doctor visits). The literature includes diversified examples of count 

data specifications, e.g., Poisson and negative binomial models, hurdle, zero-inflated 

and finite mixture regression models, to cite only the most usual. Applications can be 

found, among others, in Bago d'Uva (2006), Deb and Trivedi (1997, 2002), Gerdtham 

and Sundberg (1998), Lourenço, Quintal, Ferreira and Barros (2007), Sarma and 

Simpson (2006), Vera-Hernandez (1999), and Winkelmann (2004). 

 Most of the regression models discussed in the literature include, among other 

covariates, an indicator of self-assessed health (sah), which is usually found to be a 

relevant regressor for the dependent variable of interest. Frequently – and expectably 

– these models are estimated by use of methods that rely on the assumption of regres-

sors’ exogeneity, sah included. Some authors, however, have cast doubt on the 

exogeneity of sah within such models, due to the accepted fact that individuals’ health 

assessments are, to a significant extent, both subjective and determined by the quan-

tity of medical care recently received (see, e.g., Windmeijer and Santos Silva, 1997, 

Barros, 1999, and Van Ourti, 2004). 

 Frequently, the endogeneity issue is handled within a limited information ap-

proach, through specification of one or two moments of the conditional probability 

                                                 
( )1     In Portugal, according to the OECD Health Data (2006), the total expenditures on health, as share 
of GDP, increased from 7.3% in 1994 to 10.1% in 2004. 
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function (p.f.) of y given ( . As is well known (see, e.g. Cameron and Trivedi, 

1998, ch. 11) such an approach calls for estimation strategies, namely nonlinear in-

strumental variables (NLIV) or generalized method of moments (GMM), usually 

requiring valid instruments. When no such variables are available, researchers often 

face two options: either to exclude sah from the regression model, or to adopt a non-

robust method – usually nonlinear least squares (NLS) or conditional maximum 

likelihood (ML). Clearly, either choice involves a considerable risk of producing in-

consistent estimates. 

)xsah,

 This paper circumvents the possible endogeneity of sah and its associated con-

sequences by specifying the joint p.f. of ( )sahy, , conditional on a set of exogenous 

regressors (x). This full information approach can be implemented using copula func-

tions (Sklar, 1959). One advantage of copulas is that they enable separate 

consideration of the marginal distribution for each dependent variable, as well as their 

dependence structure. This flexibility makes it possible for researchers to capture the 

dependence structure of the data without knowing the exact form of the joint p.f., 

while, at the same time, preserving desirable characteristics of the chosen marginals 

for the response variables. 

 Here, the foregoing idea is applied to cross-sectional data taken from the Na-

tional Health Survey (NHS) of 1998/99. The main goal of the present application is to 

compare estimates of the impact of sah on health care use, obtained from different 

modelling approaches. The study compares these and other inference results from 

bivariate (copula-based and mixture) models for the p.f. of ( )sahy, , given x, as well 

as from conventional regression count models for the conditional p.f. of y given 

. ( )xsah,

 The paper is organized as follows. Section two details the main problem and 

surveys alternative econometric methodologies to deal with it. Section three presents 

the specification of models for the joint conditional p.f. of ( )sahy, , suggesting its es-

timation through ML. This section also includes a very brief account of copula theory, 

setting the general framework for the proposed specifications. Section four describes 

the empirical application and comments on its results. Finally, section five concludes 

the paper. 
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2. The Problem 

 

2.1 Endogeneity 

 

 The present paper addresses the possible endogeneity of sah variables in re-

gression models for health care utilization, a concern that poses relevant research 

issues. Formally, endogeneity (of sah) is referred to here according to the following, 

well established, definition (see Cameron and Trivedi, 1998, ch. 11): let the joint con-

ditional p.f. of ( )sahyz ,≡ , given x, be denoted as ( )θ;| xzf . The usual factorization 

has 

( ) ( ) ( )221 ;|;,|;| θθθ xsahfxsahygxzf = , 

where ( 21, )θθθ ≡  denotes a parameter vector. If the marginal p.f. of sah depends on 

1θ , estimating the parameters 1θ  by conditioning y on sah does not yield consistent 

estimates. In this case, sah is said to be endogenous. 

 Why can sah be endogenous? Two main arguments are usually invoked, that 

help explain the plausibility of this concern. The first reason is the possible existence 

of unobservables that condition individual self-assessments and, at the same time, in-

fluence the use of health care. Such factors as individual cultural background, 

personality characteristics or some dimensions of unmeasured health, like mental and 

social health (Jurges, 2007) are difficult to measure (hence, not included in the regres-

sion model) and likely to influence both the dependent variable and self-judgements. 

Take, for instance, the case of a hypochondriac individual (usually a characteristic not 

accounted for): by definition, such a person will tend to display negative feelings to-

wards his/her own health, probably rating it worse than it actually is. At the same 

time, he/she may also present a clear predisposition to visit the doctor often. In this 

case, the assumption of independence between sah and unobservables influencing y 

beyond the effect of observed covariates does not hold. 

 The endogeneity of sah may also be due to simultaneity of this variable and y. 

It is noted that, under the data collection scheme, individuals evaluate their own 

health state after visiting the doctor. Expectably, in these visits they acquire objective 

information that allows them to revise, thus update, their views about their own 
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health.( )2  Therefore, it is reasonable to suppose that individuals’ health assessments 

are, to some extent, determined by the quantity of medical care recently received, 

which gives rise to the simultaneity of sah and y in the classical demand equation. 

 

2.2 Econometric Choices 

 

 Some authors have mentioned the possible endogeneity of sah in models for 

health care use – see Windmeijer and Santos Silva, 1997, Barros, 1999, and Van 

Ourti, 2004. Each of these papers adopts a different methodological course to meet 

the issue. While in Barros (1999) sah is simply excluded from the regression model, 

the opposite is proposed in Van Ourti (2004), with sah included in the set of regres-

sors, alongside with remaining covariates. As previously mentioned, both approaches 

incur a serious risk of producing inconsistent estimates, due to the possible misspeci-

fication of the regression model for y given ( )xsah, . Windmeijer and Santos Silva 

(1997), in turn, do take into account the possible endogeneity of sah, resorting to 

GMM techniques to estimate a regression model for the number of visits to the doctor 

by individuals. 

 Addressing endogeneity within a limited information framework usually re-

quires the availability of instrumental variables. For instance, Windmeijer and Santos 

Silva (1997) suggest using as instruments variables that influence health in the long 

run, e.g., variables which reflect behavioural attitudes like smoking- and drinking-

related variables. Valid instruments are also required for the Hausman test of endoge-

neity, comparing NLIV to NLS or quasi-ML estimates (see, e.g., Grogger, 1990). 

 When no valid instruments are available, the above methods fail. Then, one 

alternative to the foregoing approaches is to adopt a full information strategy, specify-

ing  and estimating the resulting model through likelihood-based methods. 

This goal can be achieved using a particular class of cumulative distribution functions 

(c.d.f.’s) known as copulas. Essentially, a copula function is a joint c.d.f. whose mar-

ginals are uniform. In formal terms, the model for the joint conditional c.d.f. of 

 can be expressed as 

( xzf | )

)( sahy,

( ) ( ) ( )( )xxsahFxyFCxsahyF ||,||, 21= ,   (1) 

                                                 
( )2     This information is considered to be objective, because it is provided by the doctor, possibly based 
on diagnostic tests, like lab tests, x-rays, etc. 
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where C is the copula, and F, F1 and F2 denote, respectively, the joint and marginal 

c.d.f.’s. 

 The notion of copula has been well known for some time in statistics. It was 

introduced in the literature by Sklar (1959), although the main idea dates back to 

Hoeffding (1940). Its application to the study of economic problems is a recent but 

fast-growing field, namely in finance (see, e.g., Bouyé, Durrleman, Nikeghbali, Ri-

boulet and Roncalli, 2000). Lee (1983), in one early and seminal paper, was the first 

to use copulas in econometrics, introducing the “normal copula” as an alternative to 

Heckman’s (1976) two-step procedure of modelling selectivity. General surveys on 

copulas can be found in Joe (1997), Nelsen (2006) and Trivedi and Zimmer (2005). 

 As in other areas, the use of copulas in health economics is recent but fast 

growing. Smith (2003) applies the copula approach to specify models for health care 

data that may suffer from selectivity bias. Zimmer and Trivedi (2006) use trivariate 

copulas to specify a regression joint model for three discrete response variables. 

These are, respectively, two counted measures of health care use by spouses, and a 

binary variable of insurance status. Dancer, Rammohan and Smith (2007) adopt a 

similar methodology to assess the degree of dependence between infant mortality and 

child nutrition. Quinn (2007) addresses the simultaneous determination of mortality 

risk, health and lifestyles with a reduced-form system of equations, using a copula to 

define the corresponding multivariate distribution. Other examples in the area of 

health economics and econometrics are mentioned in the excellent survey by Quinn 

(2007). 

 Alternatively, one can use a bivariate mixture model for the specification of 

. For instance, the joint p.f. of sah and y can be obtained upon mixing statisti-

cal independence, conditional on unobserved heterogeneity. Formally, 

( xzf | )

( ) ( ) ( ) ( )∫= εεεε dxhxsahfxyfxsahyf |,|,||, 21 ,         (2) 

where f1 and f2 represent the marginal p.f.’s and ε  denotes unobserved heterogeneity, 

with density h. Except for some particular cases, one disadvantage associated with 

this approach is that it generally leads to criterion functions without analytical expres-

sions, which require simulation-based or numerical approximation methods of 

maximization. On the other hand, such a specification enables the control of rich het-

erogeneity structures. 
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 Actually, a mixture joint model can be given a copula interpretation, with the 

copula function implicitly defined by ( ) ( )∑ ∑≤ ≤
=

yi sahj
xjifxsahyF |,|, , and f as in 

(2). The next section presents the specification of a mixture model that is used in the 

present application and details its interpretation as a copula-based model. 

 

 

3. Model Specification 

 

 This section presents models for the joint conditional p.f. of (y,sah), given a 

set of regressors. The section begins with a brief presentation of bivariate copulas, 

setting the general framework for the proposed copula-based models and subsequent 

empirical application. 

 

3.1 Copulas 

 

 The main finding of copula theory is the fact that the joint c.d.f. of a set of 

real-valued random variables (r.v.’s) can be separated into its marginal c.d.f.’s and a 

copula, describing their dependence structure. More precisely, an l-variate copula (or 

l-copula) is defined as the c.d.f. of a random l-vector with uniform marginal c.d.f.’s. 

In the bivariate case, a 2-copula is a function [ ] [ ]1,01,0: 2C  that satisfies the fol-

lowing properties: 

i. For every , ( ) [ ]221 1,0, ∈≡ uuu

 , if at least one coordinate of u is zero; ( ) 0=uC

 ( ) ( ) [ ]1,0,1,,1 ∈== wwwCwC . 

ii. ( ) ( ) [ ] ( ) 0  ,2,1,  ,1,0,,, 1

1

2

2

2
2121 ≥ΔΔ=≤∈∀ vCjbabbaa b

a
b
ajj , where the two first-

order differences of the function C are defined, respectively, as 

( ) ( ) ( )2121 ,,1

1
vaCvbCvCb

a −≡Δ ,  ( ) ( ) ( )2121 ,,2

2
avCbvCvCb

a −≡Δ . 

Expression  is naturally interpreted as ( )uCb
a

b
a

1

1

2

2
ΔΔ ( )222111 ,Pr buabua ≤≤≤≤ . 

 If F is a bivariate c.d.f. with margins F1, F2, then, there exists a 2-copula C 

such that, for any random vector ( ) 2
21 , Rzzz ∈≡ , 

( ) ( ) ( )( )221121 ,, zFzFCzzF = . 
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If F1, F2 are continuous, then C is unique; otherwise C is uniquely determined on 

 (Ran G denotes the range of the function G). Conversely, if C is a 2-

copula and F

21 RanFRanF ×

1, F2 are c.d.f.’s, then the function F defined above is a bivariate c.d.f. 

with marginal c.d.f.’s F1, F2. 

 The above statement is the bivariate version of what is known as Sklar’s theo-

rem. It demonstrates the role of copulas as the link between multivariate distributions 

and their univariate margins. The result essentially follows from the probability inte-

gral transformation, under which, for a continuous random variable w with c.d.f. F, 

 is uniformly distributed over the range ( )wF ( )1,0 . The theorem enables the construc-

tion of a joint c.d.f., once the marginal c.d.f.’s and copula are available. 

 The copula is not unique if any of the marginal c.d.f.’s exhibits discontinuities 

– as is the case for discrete r.v.’s (see Joe, 1997, p. 14, for details). Nevertheless, as 

Zimmer and Trivedi (2006, p. 64) point out, the non-uniqueness of copula in such 

cases is a theoretical issue that does not hinder its use in empirical applications. Find-

ing a unique copula representation rests on full knowledge of the joint c.d.f.. Now, 

one of the reasons why researchers use copulas is precisely the fact that they ignore 

the true form of the joint c.d.f.. Thus, once the researcher decides which marginals to 

adopt, the issue, for him, is one of finding a copula that is able to reflect the depend-

ence structure of the data while preserving desirable features of those marginals. 

 Given the purpose of the present paper, conditional c.d.f.’s and copulas must 

be considered. A bivariate conditional copula is a function [ ] [ 1,01,0: 2C ] , such 

that, conditional on some set (name it H), C corresponds to the above definition of 

copula. Sklar’s theorem for conditional distributions leads to (see, e.g., Patton, 2005) 

( ) ( ) ( )( )HHzFHzFCHzF ||,|| 2211= . 

 As previously mentioned, the copula describes the dependence structure of 

r.v.’s with a given joint c.d.f.. One trivial but important case is the bivariate product 

copula, , that results in case of independence. The close relationship be-

tween copulas and dependence is also reflected by the Fréchet-Hoeffding bounds 

inequality: for every copula C and every 

( ) 21uuu ≡Π

[ ]21,0∈u , it can be shown that (see, e.g., 

Nelsen, 2006) 

( ) { } ( ) { } ( )uMuuCuuuW 2212 min0 , 1max ≡≤≤−+≡ . 
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Both bounds are themselves copulas in the bivariate case; the upper (lower) bound 

arises if and only if one r.v. is almost surely a strictly increasing (decreasing) trans-

formation of the other. Between the extremes of independence and monotone 

functional dependence many forms of dependence can be considered, that are de-

scribed by the properties of copulas. Besides the familiar notion of linear correlation, 

several dependence concepts and measures have been proposed in the literature (see 

Joe, 1997, for an extended survey). For present purposes it suffices to distinguish 

“positive” from “negative” bivariate dependence – with positive dependence express-

ing the idea that “large” (or “small”) values of both r.v.’s tend to occur together, and 

negative dependence expressing the notion that “large” values of one r.v. tend to be 

associated with “small” values of the other. 

 In practice, marginal c.d.f.’s can be specified conditional on a set of regres-

sors, leading to a conditional copula representation for the joint (conditional) c.d.f. of 

the dependent r.v.’s of interest. In addition, the copula can include one or more pa-

rameters intended to capture the dependence between the univariate margins – 

usually, in the bivariate case, a single dependence parameter is used. 

 Interpreting the dependence parameter of a copula in the discrete case is not as 

straightforward as for continuous r.v.’s. In the latter case, the dependence parameter is 

frequently converted into a concordance measure, such as Kendall’s tau or Spear-

man’s rho, both defined on the interval [ ]1 , 1−  and independent of the functional form 

of the margins. However, as shown by several authors (e.g. Marshall, 1996, Denuit 

and Lambert, 2005), this is not so with discrete data, for which these measures are no 

longer bounded on the above interval, and are sensitive to the choice of margins. Still, 

every copula defines a range of permissible values for its dependence parameter, 

thereby allowing for varying degrees of positive and/or negative dependence. Thus, a 

researcher should choose those families of copulas that best fit his intended applica-

tion, being able to capture the dependence pattern in the available data.   

 

3.2 Model Specification 

 

 This section presents several alternative specifications for the conditional c.d.f. 

, where ( xzF | ) )( sahyz ,≡ . Starting with copula-based models, the bivariate prob-

abilistic model can be generally expressed as in (1), 
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( ) ( ) ( )( )δθθδθ ;,|,;|,;| 222111 xsahFxyFCxzF = , 

where  represents the vector of conditioning variables (including inter-

cept terms in both x

( '',' 21 xxx ≡ )

1 and x2), ( )'',' 21 θθθ ≡  denotes the vector of the margins’ 

parameters, and δ  represents a dependence parameter. 

 In the present application, y is a count variable with unbounded support. Fol-

lowing common practice (see Cameron and Trivedi, 1998), the function ( )111 ;| θxyF  

is specified as the c.d.f. of a negative binomial p.f. with conditional mean 

( ) ( 111 'exp| )βμ xxyE y =≡  and variance ( ) 0,| 2
1 >+= ααμμ yyxyV . Formally, the 

marginal p.f. of y can be expressed as 

( ) ( )
( ) ( )

y

y

y

yy
yxyf ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++ΓΓ
+Γ

=
αμ

μ
αμ

α
α

αθ
α

1
;| 111 ,          (3) 

with ( ','11 )αβθ ≡ . As is well known, this functional form allows for overdispersion 

in the data, with reference to the Poisson p.f. (which results for 0=α ), thereby pro-

viding considerable modelling flexibility. 

 The second dependent r.v., sah, is a rank variable ranging from 1 to 5. Again 

following established literature, its marginal p.f. is specified as ordered probit, condi-

tional on x2 (see e.g., Maddala, 1983). Under this specification, 

( ) ( ) ( ) 5,,1  ,'';|Pr 2222122 …=−Φ−−Φ== + jxxxjsah jj βλβλθ ,         (4) 

with  denoting the standard normal c.d.f., ( )⋅Φ ( )'','22 λβθ ≡ , ( )',, 52 λλλ …≡ , 

−∞=1λ  and ∞=6λ . From this it follows 

( )
( ) (
( ) . 5,,1  , '

;|Pr;|Pr

;|

221

1 2222

222

…=−Φ

===≤

=

+

=∑
jx

xksahxjsah

xjF

j

j

k

βλ

θθ

θ

)  

As usual, identification requires a normalization, such as 0, for the intercept term in 

2β  or one of the ´sλ . 

 The next step towards full specification of the c.d.f. of z consists on the choice 

of copula. In the present context, y and sah may well tend to move in opposite direc-

tions, thereby producing negative dependence in the data. This suggests the 

convenience of choosing a copula that allows for both positive and negative depend-

ence. Among (few) others, two possible choices are the Frank copula (Frank, 1979) 
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and the Farlie-Gumbel-Morgenstern (FGM) copula, first proposed by Morgenstern 

(1956). The formal expressions for these copulas can be written, respectively, as 

 Frank Copula 

( )
( )( ) ( )( )

( )
⎪⎩

⎪
⎨
⎧

=

≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−−−
+

−
=

,0,

0
1exp

1exp1exp1log1
;,

21

21

21

δuu

,δ,
δ

δuδu
δuuC δ          (5) 

 FGM copula 

( ) ( )( )( ) 1    ,111;, 212121 ≤−−+= δδδ uuuuuuC .       (6) 

 Both functions nest the independence copula, which results for 0=δ . Positive 

and negative dependence occur with, respectively, 0>δ  and 0<δ . The Frank cop-

ula attains the Fréchet-Hoeffding upper and lower bounds, under, respectively,  

∞→δ  and −∞→δ . Despite its simplicity, the FGM copula is more restrictive, in 

that the dependence parameter is bounded on [ ]1 , 1−  and does not lead to either Fré-

chet-Hoeffding bound. 

 Let ( ) ( ) ( )( 221121 |,|, xsahFxyFuu = )
) )

. Then, F(z|x) immediately results by 

plugging  and  into (5) or (6). ( 11 | xyF ( 22 | xsahF

 The joint conditional p.f. of ( )sahy,  can also be obtained as a bivariate mix-

ture model. Conditional on x and unobserved heterogeneity, ( )21,εεε ≡ ,  are 

assumed independent, with the same conditional margins as before: 

( )sahy,

( 11,| )εxy  is dis-

tributed as in (3), but with ( ) ( )11111 'exp,| εβε += xxyE , and ( )222 ;,|Pr θεxjsah =  

( ) ( ) 5,,1  ,'' 2222221 …=−−Φ−−−Φ= + jxx jj εβλεβλ . Then, with ( )21,εε  assumed 

bivariate normal, independent of the regressors, with null mean vector, common vari-

ance, , and correlation coefficient 2σ δ , the model results as 

( )
( ) ( ) ( ) ,,;,|;,|

,,;|,

2121,22221111

2

2∫
=

εεεεφθεθε

δσθ

δσ
ddxsahfxyf

xsahyf
            (7) 

where δσ
φ ,2  denotes the bivariate normal density with parameters ( )δσ ,2 . 

 This formulation is naturally equivalent to a model with random intercepts in 

f1 and f2. The assumption of Gaussian heterogeneity is common in the literature (see, 

e.g., Train, 2003). Although estimation is computationally demanding, requiring 

simulation-based methods or numerical approximations, the specification leads to eas-

ily interpretable parameters, namely the dependence parameter, δ . Within this 
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framework, independence can easily be checked with the usual statistical tests. The 

assumptions of common variance and of independence from regressors do not seem 

unreasonable in the present context and add to computational convenience; other 

schemes can be considered, such as random coefficients (other than the intercepts), 

varying dispersion parameters and/or dependence with respect to regressors. How-

ever, the usefulness of such sophistications in the present context is questionable, 

namely in view of the added estimation difficulty they are bound to represent. In any 

case, it is noted that two correlated heterogeneity terms are allowed for, instead of a 

shared term in f1 and f2. In the present context, these terms can naturally be seen as 

correlated unobserved heterogeneity influencing both y and sah. The assumption is 

also useful because it enables the discernment of negative from positive dependence 

in the data (through the sign of δ ), not just whether or not there is dependence (as the 

case would be with just one term). 

 As previously mentioned, the mixture model can be given a copula interpreta-

tion. In this case, the function C in (1) is defined as 

( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) , ,,|,,|

,,|,||,

|,

2121,222111

2121,222111
0 1

2

2

∫

∫∑∑

Π

==

=

= =

εεεεφεε

εεεεφεε

δσ

δσ

ddxyFxyF

ddxsahFxyFxjif

xsahyF
y

i

sah

j

 

where Fk ,  now denote the marginal c.d.f.’s given ,2,1=k ( )kkx ε, , and Π  denotes 

the (conditional) independence copula. 

 

3.3 Estimation 

 

 Maximum likelihood (ML) estimation of the above models requires the joint 

p.f. of (y,sah), given x, . Under copula-based models for continuous response 

variables this is obtained as the second-order derivative of the copula, that is (condi-

tioning on x is omitted), 

( xzf | )

( ) ( ) ( ) ( ) ( )2211
21

21
2

21

21
2

21
,,, zfzf
uu

uuC
zz

zzFzzf
∂∂

∂
=

∂∂
∂

= , 

where ( ) . In the present case, involving discrete r.v.’s,  

is formed by taking differences. Formally, 

( ) (( 221121 ,, zFzFuu ≡ )) ( )xzf |
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( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) (( ). 1,11,,1,
1,11,,1,

,

2211221122112211

21212121

21

−−+−−−−
=−−+−−−−

=

zFzFCzFzFCzFzFCzFzFC
zzFzzFzzFzzF

zzf

)
 
 Then, upon the choice of copula, the individual contribution to the log-

likelihood is formed by taking the logarithm of this last expression. After simultane-

ous ML estimation of all the parameters, variances of the estimates are obtained 

through the robust sandwich formula. It is noted that, defined as above, both the Frank 

and FGM copulas are differentiable to order two at any particular value of δ , so in-

dependence can be assessed with the usual likelihood-based tests. 

 Estimation of model (7) requires either maximum simulated likelihood (MSL) 

or numerical approximation. The former is used here, with (7) being approximated by 

direct Monte Carlo (MC) integration, that is, 

( ) ( ) (∑
=

≈
S

s

ss xsahfxyf
S

xsahyf
1

22221111
2 ;,|;,|1,,;|, θεθεδσθ ),     (8) 

where ( )ss
21 ,εε , Ss ,,1…=  denote random draws from the bivariate normal, δσ

φ ,2 , 

and S is the number of draws. Gouriéroux and Monfort (1991) show that, under regu-

larity assumptions, the MSL estimator has the same asymptotic distribution as the 

ordinary ML estimator, provided that 0→Sn  as ∞→Sn,  (n denotes sample 

size). The number of draws used in the present application is selected ad hoc, mostly 

for reasons of computational convenience, on the basis of rough comparisons between 

results for various S values. 

 
 

4. Empirical Study 

 

 This section presents empirical results from the application of the described 

approach to cross-sectional data on ( )sahy,  and a set of regressors, x. The data are 

taken from the Portuguese National Health Survey (NHS) conducted in 1998/99.( )3  

The main goal of the study is to estimate, via this methodology, the impact of sah on 

y, comparing its inference results with those from the mainstream conditional count 

models for y, given . ( )xsah,
                                                 
( )3   Details about the survey can be consulted, among others, in Barros et. al (2005), and Ministério da 
Saúde - Instituto Nacional de Saúde (1999). 
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4.1 Data and Summary Statistics 

 

 Tables 1 and 2 present summary statistics for, respectively, y and sah, and the 

set of regressors, x. The sample contains 27,044 observations, obtained after deleting 

incomplete records on any of the variables used in the study. As previously men-

tioned, y denotes the number of visits to the doctor in the last three months before the 

survey interview. The variable sah is a rank variable, ranging from 1 (“very bad” self-

assessed health) to 5 (“excellent” self-assessed health). The covariates are described 

in table 2, being grouped under four headings: socioeconomic variables, health status 

variables, a variable measuring the supply of medical care services, and a binary vari-

able indicating health insurance status. As detailed in the table legend, the marginals 

of the joint model do not share all regressors ( )21 xx ≠ .( )4  The selection of covariates 

for each marginal follows well-established research developed by other authors 

(Grossman, 1972; Muurinen, 1982; Wagstaff, 1986; Barros, 2003). Besides economic 

and behavioural criteria, practical considerations, such as data availability and compu-

tational tractability, are also relevant for the choice of covariates. 

 
Table 1 – Dependent Variables 

 

y 
 

 

Rel. Freq. 
 

 

sah 
 

Rel. Freq. 
 

    
0 .413   
1 .247     1 (very bad) .045 
2 .138     2 (bad) .174 
3 .104     3 (fair) .379 
4 .038     4 (good) .363 
5 .022     5 (excellent) .039 
6 .018   
7 .005   
8 .004   
9 .001   

10 .004   
11 .0004   
12 .003   

> 12 .003   
    

 

sample size                 27,044 
 

 

average 
 

1.42 
 

average 
 

3.18 
variance 

 

4.33 variance .84 

                                                 
( )4   In any case, all x regressors are included in the regression models for y given (sah,x), to ensure that 
results from the two approaches are comparable. 
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Table 2 
Regressors – Definition and Summary Statistics 

 

Variable name 
 

 

Variable Definition 
  

average st.dev. min. max. 
 

Socioeconomic 
 

age Age, in years, divided by 10 4.26 2.49 0 9.50 

agesq (2) age squared 24.29 20.97 0 90.25 

apr = 1 if the individual lives in a rural area .18 .39 0 1 

educ Years of schooling. If child, years of schooling of the most edu-
cated adult in the household. 5.68 4.27 0 24 

fem = 1 if the individual is female .60 .49 0 1 

inc Monthly real income (unit: 100 euros) 3.63 2.77 .23 24.94 

married (1) = 1 if the individual is married .54 .50 0 1 

notw (1) = 1 if the individual did not work in the two weeks prior to taking 
the survey .67 .47 0 1 

ret = 1 if the individual is retired .23 .42 0 1 
 

Health Status 
 

lim = 1 if the individual has some physical handicap that prevents him 
from executing certain physical daily activities .04 .19 0 1 

nchrd Number of chronic conditions reported  .96 1.03 0 6 

nodent (2) = 1 if the individual has no dental hygiene habits   .06 .23 0 1 

noph (2) = 1 if the individual’s daily activities require no physical activity .58 .49 0 1 

smoke (2) = 1 if the individual smokes on a daily basis .11 .31 0 1 

srill = 1 if the individual reports being ill in the previous two weeks .37 .48 0 1 

stress = 1 if the individual took sleeping pills in the last two weeks .12 .33 0 1 
 

Supply Side 
 

ph1000 (1) Total number of licensed physicians per 1000 inhabitants 2.75 2.22 .58 9.15 
 

Insurance Status 
 

nhs = 1 if the individual is covered only through the NHS .84 .36 0 1 
 

(1)  Regressor in f1(y|x1) but not in f2(sah|x2).  (2)  Regressor in f2(sah|x2) but not in f1(y|x1). 
 

 

4.2 Estimation Results 

 

 Estimation results are presented in tables 3 and 4. The first table contains es-

timates for the parameters in , whereas the estimation results from joint 

models for  are included in table 4. All computations were performed us-

ing TSP 5.0 (Hall and Cummins, 2005). 

( xsahyg ,| )
)( xsahyf |,
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 In what concerns  estimation, a noticeable result, often found in 

the literature, is the clear rejection of the Poisson model in favour of the NB2 model 

(

( xsahyg ,| )

622.ˆ =α , statistically significant). This result can be taken as indication of overdis-

persion in the data, with reference to the more restrictive Poisson specification. Thus, 

even in the case of a correct ( )xsahyE ,|  under both models, NB2’s estimates are 

preferable  to those of the Poisson. 

 Expectably, the estimated coefficients of x1 are quite different in models NB2 

for  and for  within joint models. Actually they are not even 

comparable, as they do not refer to the same quantity: in the former case each coeffi-

cient estimates the relative change of the conditional mean of y, given ( ) , 

whereas, in the latter, each estimate refers to the relative change of the conditional 

mean of y marginal to sah. 

( xsahyg ,| ) )( 11 | xyf

xsah,

 With regard to full information approaches, it is noted that estimates from 

Frank and FGM models are almost identical – except for the dependence parameter 

(because of functional form differences between both copulas). The close resem-

blance to the results from the mixture model is also noticeable – with the exception of 

the dependence parameter and the overdispersion parameter, α  (possibly due to the 

presence of 1ε , capturing part of the effects of unobserved heterogeneity). This simi-

larity may be a consequence of the flexibility of copula functions, which are able to 

discern dependence from the marginals. Meanwhile, the (small) differences to the es-

timates from the mixture model may be due to the fact that the latter are not ML 

estimates, being obtained from maximization of an approximate the log-likelihood 

function. The MSL estimates for the mixture model are obtained using S = 100 draws 

of pseudo-random vectors from the bivariate normal. This number of draws is se-

lected for computational convenience and from rough comparisons with results for 

larger S (e.g., S = 250 leads to virtually the same estimates and standard errors). Re-

sults might be closer to those from Frank and FGM models with a significantly larger 

S but, no doubt, this would increase the computational burden. Here, instead of direct 

MC sampling, it may prove more efficient to use so-called “quasi-MC” methods (e.g., 

Halton sequences) to approximate the integrals in the likelihood and estimate the 

model.( )5

                                                 
( )5   According to previous studies (e.g., Bhat, 2001, Train, 2003), Halton draws can be computationally 
much more efficient than direct MC sampling. 
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 With regard to regressors’ coefficients in table 4, some estimates point to a 

varying degree of relevance of the corresponding covariates in the two margins: the 

variable inc (income) is irrelevant to explain health care use but it seems highly rele-

vant in ; the opposite occurs with respect to apr (residence in a rural 

area), which is relevant in  and irrelevant in 

( 22 | xsahf )
)( 11 | xyf ( )22 | xsahf . On the other hand, 

nhs (membership exclusively in the statutory public system) shows little relevance in 

both  and . ( 11 | xyf ) ( )22 | xsahf

 Overall, estimation results for the joint models are in line with the usual find-

ings in the literature. In general, worse-off individuals in terms of health status seek 

medical care more often (see the sign of covariates lim (+), nchrd (+), srill (+) and 

stress (+)) than those in better health. Nevertheless, higher income levels or education 

degrees are both linked to an increase in demand for health care. 

 

Table 3 – Estimation Results – ( )xsahyg ,|  
  

Poisson 
 

 

NB2 
 

 

Variable 
 

coefficient 
 

 

st. error 
 

coefficient 
 

st. error 

     
intercept .859 .077 .872 .065 

sah -.339 .014 -.352 .011 
age -.103 .022 -.147 .017 

agesq .007 .002 .012 .002 
apr       -.040* .022 -.055 .020 
educ .020 .003 .024 .003 
fem      -.009** .020        .022** .016 
inc .012 .003 .014 .003 
lim .087 .043        .065*      .036 

married .100 .023 .121 .019 
nchrd .128 .009 .151 .008 
nhs       -.050*      .027      -.042*      .023 

nodent -.094 .038 -.110 .033 
noph .085 .023 .089 .019 
notw .120 .025 .100 .021 

ph1000 .021 .004 .022 .003 
ret .066 .026 .075 .025 

smoke -.125 .034 -.110 .027 
srill .479 .018 .488       .016 

stress .275 .023 .292       .021 
     
α - - .619 .013 
     

Log-likelihood -45198.4 -41440.8 
SBIC 45300.5 41547.9 

     
 

*  Not significant at the .05 level. **  Not significant at the .10 level. 
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Table 4 
Estimation Results – ( )xsahyf |,  

 

Model 
 

 

Frank 
 

 

FGM 
 

Mixture 
 

Variable 
 

 

coefficient 
 

st. error 
 

coefficient 
 

st. error 
 

coefficient 
 

st. error 

       

f1(y|x1)       
intercept -.576 .039 -.573 .039 -.864 .045 

age -.009 .004 -.008* .004 -.011 .005 
fem .060 .014 .059 .014 .071 .016 

married .084 .015 .084 .015 .100 .017 
educ .013 .002 .014 .002 .013 .002 
ret .146 .022 .140 .022 .157 .024 

ph1000 .022 .003 .022 .003 .022 .004 
inc       .003** .003       .003** .003       .005** .004 

notw .139  .017 .146 .017 .166 .019 
apr -.048  .018 -.047 .018 -.057 .022 
srill .646  .014 .646 .014 .654 .016 
lim .233   .033 .232 .032 .196 .037 

nchrd .217 .008 .216 .008 .232 .008 
stress .375   .020 .373 .021 .398 .022 
nhs      -.021** .020      -.031** .021      -.036** .023 
α .684 .011 .683 .011 .158 .013 
       

f2(sah|x2)       
intercept 3.755 .041 3.753 .041 4.060 .052 

age -.254  .013 -.254 .013 -.263 .014 
agesq .014 .002 .014 .002 .013 .002 
fem -.107 .015 -.107 .015 -.121 .016 
educ .045 .002 .046 .002 .046 .003 
ret -.246 .022 -.245 .022 -.266 .024 
inc .043 .003 .042 .003 .055 .003 
apr       .004** .018       .004** .018       .013** .020 

noph -.093 .018 -.092 .018 -.112 .019 
nchrd -.326 .008 -.327 .008 -.365 .009 
stress -.354 .021 -.355 .022 -.395 .024 
nodent -.147 .028 -.149 .028 -.147 .032 

srill -.702 .015 -.704 .015 -.769 .017 
lim -.811 .036 -.812 .036 -.866 .042 

smoke       .042* .023       .042* .023 .055 .024 
nhs -.056 .022 -.051 .022      -.039* .021 
λ3 1.351 .017 1.355 .017 1.461 .021 
λ4 2.998 .020 3.003 .020 3.246 .030 
λ5 5.064 .025 5.071 .025 5.498 .044 
       
σ2 - - - - .682 .025 
δ -1.498  .048 -.697 .022 -.693 .022 
       

Log-likelihood -67666.2 -67684.9 -67571.9 
SBIC 67701.9 67705.3 67597.4 

       
 

* Not significant at the .05 level.  ** Not significant at the .10 level. 
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 The dependence parameter estimate is both negative and significant across the 

three joint models. As expected, all three models point to a negative dependence be-

tween y and sah, after conditioning on observed factors. The precision of the 

estimates suggests evidence of simultaneity of both variables, which, as previously 

mentioned, can cause endogeneity of sah within limited information approaches. 

 Negative dependence between y and sah also seems visible in the estimates 

for the average effects, included in table 5. The figures reported in the table refer to 

( xsahyÊ ,| ) , for the five different values of sah and the sample averages of x. The 

values in the table are computed, respectively, as ( )( )β̂',exp xsah  under the Poisson 

and NB2 models, and as ( ) ( )∑∑ ==

30

0

30

0
|,ˆ|,ˆ

yy
xsahyfxsahyfy  under the joint mod-

els, where  denotes evaluation of f at the estimated parameters (for y > 30 both 

summands in the fraction are negligible). Under the mixture model, 

f̂

( )xsahyf |,  is 

approximated by (8). Unreported results indicate that the table estimates are almost 

identical to estimates obtained for nhs = 0 and nhs = 1. This suggests that, for an “av-

erage” individual, being covered only by the NHS or not, has no bearing on the 

impact of his own sah on health care utilization. The various specifications produce 

somewhat different estimates of the average effects, in spite of the negative impact of 

sah, consistently obtained across models. Under full information models these differ-

ences are somewhat noteworthy, in view of the aforementioned similarity of 

estimation results these models produce. 

 
 

Table 5 
Average Effects – ( )xsahyE ,|  

  

Model 
 

 

sah 
 

 

Poisson 
 

NB2 
 

Frank 
 

FGM 
 

Mixture 
      

1 2.538 2.589 2.835 3.368 2.255 
2 1.809 1.820 2.758 3.238 1.606 
3 1.290 1.279 2.349 2.485 1.191 
4 .919 .899 1.891 1.494 .928 
5 .655 .632 1.749 1.124 .680 
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 Finally, it is interesting to see how the estimated models fit the data. To give 

an idea of the goodness of fit of the models, table 6 gives the true and fitted frequen-

cies of the number of visits to the doctor. The fitted frequencies distribution is 

obtained as the average over observations of the predicted probabilities fitted for each 

count. Formally, , for y = 0, 1, 2, …; under models of the joint 

p.f. of (  this is computed as 

(∑ =
− n

i ii xsahyfn
1 1

1 ,| )

)sahy, ( ) ( )( )∑ =
− n

i iiii xsahfxsahyfn
1 22

1 ||, . Both the 

joint models and the NB2 model fit the data relatively well, being particularly good at 

predicting the number of individuals with few visits (up to 2). For y = 3 these four 

models under-predict the actual frequency, while the reverse occurs for y > 3. 

 

Table 6 – Actual and Fitted Frequencies 
   

Model 
 

 

Visits 
 

 

Actual 
 

Poisson 
 

NB2 
 

Frank 
 

FGM 
 

Mixture 
       

0 .413 .313 .414 .413 .413 .412 
1 .247 .311 .256 .254 .254 .263 
2 .138 .189 .140 .140 .140 .139 
3 .104 .097 .076 .077 .078 .073 
4 .038 .047 .043 .044 .044 .041 

> 4 .060 .043 .071 .072 .071 .072 
       

 
 

 The statistical significance of the differences between actual and fitted fre-

quencies can be assessed using a test for the joint moment conditions 

( ) ( )( )
( ) ( )( )⎩

⎨
⎧

=>−

===−

,0,|4Pr

,4..., ,0  ,0,|Pr

5 xsahyydE

jxsahjyydE j  

with the binary variables dj defined as ( ) 1=yd j ,  if  y = j ,  j = 0, …, 4, and ,  

if  y > 4.

( ) 15 =yd
( )6  In order to try and reduce the effects of a large sample size on the outcome 

of the test, it is carried out with a sub-sample of about 25% of the initial size (6,436 

observations). For each specification, the results of the test, asymptotically distributed 

as a chi-squared distribution with 5 degrees of freedom, are the following: 

 
 

                                                 
( )6   For details on how to implement this type of tests and a simulation on their performance see Cam-
eron and Trivedi (1998). 
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Poisson NB2 Frank FGM Mixture
     

589.75 144.62 121.53 120.32 196.41 
 

 The null hypothesis is clearly rejected across all specifications, in spite of the 

reduced sample size. Nevertheless, the outcomes of the test suggest an ordering of the 

models, with the Poisson displaying a worse result than the remaining models, NB2 

included. In accordance with the results of table 6, the NB2 model competes well 

with joint models, performing even better than the mixture model. 

 

 

5. Conclusion 

 

 The study of the relevant factors influencing health care utilization constitutes 

one of the main research interests in health economics. In this context, the measure-

ment of the impact of self-assessed health on the demand for health care stands as an 

important issue that requires careful methodological approaches. In particular, the 

possible endogeneity of sah within regression models for health care utilization 

should be met with GMM-type methods, usually requiring available instruments. 

 Alternatively, this issue can be circumvented by specifying the joint p.f. of 

, conditional on a set of exogenous regressors (x). This full information ap-

proach is implemented here with copula functions, which enable separate 

consideration of the marginal distribution for each dependent variable, as well as their 

dependence structure. 

( sahy, )

 The results of the paper indicate that copula-based models, though fully para-

metric, appear considerably flexible, seemingly able to capture the dependence 

structure in the data. The precision with which the dependence parameter is estimated 

across the joint models used here reinforces the suspicion of simultaneity of (y,sah), 

casting founded doubts on the appropriateness of conventional (NLS or conditional 

ML) methods. Thus, one conclusion of the foregoing results is that, when estimating 

the impact of sah-type covariates on health care use, then, either GMM or full infor-

mation ML seems more trustworthy than conventional, limited information 

approaches. In any case, as the paper results also indicate, ML-based results for the 

NB2 model compete fairly well with the former methods. This finding, not unusual in 

the literature on count data, is a likely consequence of the presence of the overdisper-
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sion parameter in the NB2 model, greatly adding to its flexibility and potential good-

ness-of-fit, namely when compared to the more restrictive Poisson count model. If a 

researcher prefers to move along conventional lines, then a negative binomial specifi-

cation seems a wise enough choice, clearly preferable to the Poisson. Nevertheless, 

dependence should be checked, as it may be an indication of causes for the endogene-

ity of sah. One way to do this, which avoids estimation of the joint model, is to 

compute a score test for independence upon estimation of the marginal models for y 

and sah. 

 The present study suggests some ideas for future applied research. One of 

these consists on the extension of copula models to the trivariate case, in order to try 

to deal with the possibility of sample selection within the NHS dataset, apart from the 

present endogeneity issue. In this sense, the present study can constitute a first step in 

that direction, which, in itself a complex issue, may well benefit from some of the 

ideas and methods set forth in the present work. 
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