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Abstract
The main purpose of this paper is to perform a sensitivity analysis where

we quantify and analyse the e�ects on the mean of the pro�t on an Income
Protection policy and two risk measures of changing the values of the transi-
tion intensities. All the calculations carried out are based on a multiple state
model for Income Protection proposed in Continuous Mortality Investigation
Committee (Continuous Mortality Investigation Reports 1991; 12).

Within this model, we derive a formula for the mean of the pro�t which
enables to evaluate it more e�ciently. In order to calculate the two risk
measures we use the numerical algorithms for the calculation of the moments
of the pro�t proposed by Waters (Insurance: Mathematics and Economics
1990; 9: 101{113).
We carry out the sensitivity analysis considering two di�erent situations:

in the �rst situation, we update the premium rates, used to calculate the
moments of the pro�t, according to the changes in the values of the transition
intensities; in the second one, we do not update the premium rates. Both
these analyses are of practical interest to insurance companies selling Income
Protection policies.
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1 Introduction

Income Protection (IP for brevity) is a class of long-term and non-cancellable
sickness insurance which provides cover against the risk of loss of income due to
disability. In general terms, an IP policy entitles the policyholder to an income
during periods of disability longer than the deferred period speci�ed in the policy.
Bene�ts only start to be paid after the end of the deferred period.
There are several types of IP policy sold by UK insurance companies. However,

in this paper we are only interested in individual conventional policies with level
bene�ts. This type of policy entitles the policyholder to a regular level income
during periods of disability longer than the deferred period. In exchange for these
bene�ts the policyholder has to pay a regular level premium throughout the term of
the policy: from the time when he e�ects it, at which he is required to be healthy,
to his 60th or 65th birthday (usually, the age of his retirement). In general, the
premiums are waived whenever the policyholder is claiming. The most important
feature of this type of IP policy is that both the bene�ts and the premiums are �xed
when the policy is e�ected and they remain guaranteed throughout the term of the
policy.
For mathematical convenience we will assume throughout this paper that both

the bene�ts and the premiums are payable continuously: the bene�ts, whenever the
policyholder is sick with duration of sickness greater than the deferred period, at
a rate of 1 per annum; the premiums, whenever the policyholder is healthy or sick
with duration of sickness less than the deferred period. We will also assume that a
policy expires when the policyholder reaches age 65 or dies, whichever occurs �rst.
Finally, we will assume that each policy has one of the following deferred periods: 1
week, 4 weeks, 13 weeks or 26 weeks (for brevity, throughout the paper we will refer
to these deferred periods as D1, D4, D13 and D26, respectively).
A multiple state model for the analysis of data concerning individual IP policies

has been proposed in Continuous Mortality Investigation Committee [1] (for brevity
we will refer to this report as CMIC [1] throughout the paper). This model is a
continuous time semi-Markov process with three states: healthy, sick and dead. The
important quantities for the model are the transition intensities since their action
governs the movements of a policyholder between the three states. Also in CMIC
[1], these transition intensities have been estimated and, subsequently, graduated
by mathematical formulae, using a set of data from UK insurance companies: the
Standard Male Experience, 1975{78.
Based on the model mentioned above, Waters [2] has derived numerical algo-

rithms which can be used to calculate recursively the moments of the present value
of the pro�t on an IP policy.
The main purpose of this paper is to carry out a sensitivity analysis where we

quantify and analyse the e�ects on the mean of the pro�t and two risk measures
of changing the values of the transition intensities. In order to calculate the mean
of the pro�t we use a formula derived later in this paper. In order to calculate the
two risk measures (which are based on the second and third central moments of the
pro�t) we use the numerical algorithms proposed by Waters [2]. In both cases we
use the graduations of the transition intensities mentioned above.
We carry out the sensitivity analysis just mentioned considering two di�erent
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situations: in the �rst situation, we update the premium rates used to calculate
the moments of the pro�t according to the changes in the values of the transition
intensities; in the second one, we do not update the premium rates, i.e. we use the
premium rates calculated before changing the transition intensities.
Both these sensitivity analyses are of practical interest.
The former is useful since future experiences may not follow the experience of

1975{78, the period to which the graduations we use refer, and it has the added
advantage of providing greater insight into the stochastic model mentioned above.
The latter is even potentially more interesting. As we will see below, it is pos-

sible that, when setting the premium for an IP policy, an insurance company uses
graduations of the transition intensities which are not updated, without knowing it.
Even in the case where this does not happen, it is very likely that in the future the
graduations will become outdated, since the premium is set when the policyholder
e�ects the policy and it remains unchanged throughout the term of the policy (which
can be very long). In view of these facts, it is very likely that there are many cases
where an insurance company expects to have a given amount of pro�t on an IP
policy but, in fact, this amount will be very di�erent. Thus, it will be interesting to
compare the mean of the pro�t calculated with the changed values of the transition
intensities, but keeping the original premium, with the same mean calculated with
the original values of the transition intensities.
It is important to note that changes over time in di�erent factors, such as med-

ical technology and claims management techniques, imply changes in the transition
intensities. Evidence that transition intensities have been changing with time can
be found in the investigations carried out in successive Continuous Mortality Inves-
tigation Reports (CMIC [3,4,5,6]). These investigations try to identify trends in IP
claims data for successive quadrennia. Considering this fact and that the gradua-
tions of the transition intensities we use are for the period 1975{78, we can conclude
these graduations are outdated.
The ideal situation would be to work with graduations based on more recent data

but, unfortunately, the graduations we use in this paper are the only ones available
at the present time. On the other hand, since our main purpose is to perform a
sensitivity analysis of the moments of the pro�t, we believe that the conclusions of
such an analysis would be similar, if we used more recent graduations.
We should note that, in this paper, in order to change the values of the transition

intensities, we have multiplied these values by some constant factors: in general,
those used by Cordeiro [7], who carries out a sensitivity analysis in the same multiple
state model but, in this case, of the claim inception rates and the premium rates.
This paper is related directly to the investigations presented in CMIC [1], Cordeiro

[7] and Waters [2]. Other important references on the subject \multiple state mod-
els applied to life and disability insurance" are: Cordeiro [8,9,10], Haberman and
Pitacco [11], Hoem [12,13,14,15], Papachristou and Waters [16], Waters [17] and
Wolthuis [18].
In Section 2, we give formulae for the moments of the pro�t: in Section 2.1, we

describe briey the model proposed in CMIC [1], we present some of the conditional
probabilities which are needed for the calculations and, �nally, we give the formula
for the annual premium rate for an IP policy; in Section 2.2, we present the numerical
algorithms for the calculation of the moments of the pro�t proposed by Waters [2];
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and in Section 2.3, we derive an alternative formula for the mean of the pro�t
which enables to evaluate it more e�ciently. In Section 3, we present the results of
the sensitivity analysis of the moments of the pro�t: in Section 3.1, the results of
the analysis where we update the premiums and in Section 3.2, the results of the
analysis where we do not update the premiums. Finally, in Section 4, we describe
recent trends observed in the transition intensities and, in the light of the conclusions
presented in Section 3.2, we discuss their consequences for the companies selling IP
policies.

2 Formulae for the Moments of the Pro�t

2.1 Description of the Model

The model which is going to be the basis for our calculations has three states:
healthy (denoted by H), sick (denoted by S) and dead (denoted by D). The tran-
sition intensities for movements between these states are �x (associated with the
transitions from H to S), �x;z (associated with the transitions from S to H), �x;z
(associated with the transition from S to D) and �x (associated with the transition
from H to D).
The transition intensities �x and �x, which can be designated as sickness in-

tensity and mortality of the healthy intensity, respectively, depend only on x, the
policyholder's attained age. �x;z and �x;z, which can be designated as recovery in-
tensity and mortality of the sick intensity, respectively, depend on x and on z, the
duration of the policyholder's current sickness.
CMIC [1] has: presented the mathematical basis of the model and de�ned the

basic probabilities which are required for the calculation of more complex quantities
concerning IP business; presented formulae for the basic probabilities; and derived
numerical algorithms which make possible an e�cient evaluation of some of the basic
probabilities.
Some of the conditional probabilities which can be de�ned in the model and, later

in this paper, are needed for the calculation of premium rates are the following:

tp
HH
x � the probability that a policyholder, who is healthy at age x, will be

healthy at age (x+ t);

t;w�p
HS
x � the probability that a policyholder, who is healthy at age x, will be

sick at age (x+ t) with duration of sickness less than or equal to
w;

t;w+p
HS
x � the probability that a policyholder, who is healthy at age x, will be

sick at age (x+ t) with duration of sickness greater than w;

where x, t, w � 0.
For the remainder of this paper we will assume that the transition intensities �x,

�x, �x;z and �x;z are known functions of x or of (x; z).
Considering the assumptions we make, the annual net premium rate for a policy

with deferred period d (measured in years), e�ected by an individual aged x, is given
by:
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P x;d =

65�xR
t=0

e��t t;d+p
HS
x dt

65�xR
t=0

e��t (tpHHx + t;d�pHSx ) dt

(1)

where � is the force of interest per annum (see Bowers et al. [19] and Cordeiro [7]).
We recall that P x;d is such a premium rate that the expected value of the present
value of the future pro�t on the policy is zero.
Assuming the insurance company adopts the expected value principle to set its

premiums, the premium rate for the policy mentioned in the previous paragraph is
the following:

P
�
x;d = (1 + �)P x;d ; � > 0 (2)

where � is the loading factor (see Bowers et al. [19] or Kaas et al. [20]). Later in
this work, we will use this premium rate to calculate the moments of the pro�t on
an IP policy. We will calculate these premium rates using the numerical algorithms
for the evaluation of basic probabilities presented in CMIC [1].
As we have mentioned in Section 1, we will use the graduations of the transition

intensities obtained in CMIC [1] to calculate premium rates and the moments of the
pro�t. Therefore, it is convenient to describe the main features of the graduations
which are relevant to this work.
The graduations of �x, �x;z and �x;z are the same for all the deferred periods

we consider. As far as the sickness intensities are concerned, there is a di�erent
graduation for each deferred period. These graduations have very similar shapes
but di�erent levels: in general, the values of �x decrease as the deferred period
becomes longer. We should also note that both the graduations of �x;z and �x;z
depend only on x for durations of sickness, z, greater than �ve years.

2.2 Waters Algorithms for the Calculation of the Moments

of the Pro�t

In this section we present the numerical algorithms for the calculation of the
moments of the pro�t on an IP policy derived in Waters [2].
For the remainder of this paper we will assume that �x;z and �x;z depend only

on x for values of z greater than �ve years, i.e.

�x;z = �x;5 for all x and for z � 5
�x;z = �x;5 for all x and for z � 5: (3)

As we have seen in the previous section, this assumption is consistent with the
graduations obtained in CMIC [1].
Before presenting the algorithms, we need to introduce two more conditional

probabilities and their formulae.
The probability of a policyholder remaining sick until at least age (x+ t), given

that he falls sick at age x, is given by:

tp
SS
x = expf�

Z t

0
(�x+u;u + �x+u;u) dug (4)
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(4) is derived in CMIC [1]. Numerical values of tp
SS
x can be obtained using numerical

integration.
Let us denote by tp

SS
x;5+ the probability of a policyholder remaining sick until at

least age (x+ t), given that he is sick at age x with duration of sickness greater
than �ve years. Using the Markov property, formula (4) and assumption (3), we can

obtain the following formula for tp
SS
x;5+ :

tp
SS
x;5+ = expf�

Z t

0
(�x+u;5 + �x+u;5) dug

As we can see, tp
SS
x;5+ does not depend on the exact duration of the policyholder's

current sickness.
We also need to introduce the following approximate formula for the calculation

of values of hp
HH
x for small values of h:

hp
HH
x '

1� 1
2
h
�
�x + �x � hpSSx

�
�
�
1
2
h
�2
�x
�
�x;0 + hp

SS
x � �x+h;h

�
1 + 1

2
h (�x+h + �x+h)

:

The details about the derivation of this formula can be found in Waters [2]. We can
obtain values of hp

HH
x using this formula and formula (4).

Finally, let us de�ne the following functions:

f1 (t) = P at � where P is the annual premium rate,
is the present value of the premiums
payable between times 0 and t at force
of interest � p.a.;

f2 (t; u) = P at+w � e��(t+w)au�w � where d is the deferred period measured
in years and w = min fu; dg , is the
present value of the premiums minus the
bene�ts (at a rate of 1 p.a.) payable,
between times 0 and (t + u), at force
of interest � p.a., by a policyholder who
pays premiums from time 0 to time t,
falls sick at time t and remains sick at
least until time (t+ u) ;

E [y] � the expected value of the present value,
at force of interest � p.a., of the future
pro�t on an IP policy in respect of a pol-
icyholder currently aged y and healthy;

E2 [y] and E3 [y] � the corresponding second and third mo-
ments about zero, respectively;
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ES [y] � the expected value of the present value, at force of in-
terest � p.a., of the future pro�t on an IP policy in re-
spect of a policyholder aged y, who is sick and whose
current sickness has lasted at least for �ve years;

ES2 [y] and ES3 [y] � the corresponding second and third moments about
zero, respectively

(we recall that at denotes the actual value of an annuity payable continuously, at a
rate of 1 p.a., between times 0 and t, and we have:

at =
1� e��t
�

:)

Note that both E [y] and ES [y] (and also the corresponding higher moments)
depend only on y. In fact, E [y] does not depend also on how long the policyholder
has been healthy, since �x and �x depend only on x. ES [y] does not depend also
on the precise duration of the policyholder's current sickness due to assumption (3).
However, note that both E [y] and ES [y] depend on, among other factors, the
premium rate, P , and the force of interest, �.
Waters [2] derives a formula, from which E [y] can be calculated for any age

y � 65, by expressing E [y] in terms of E [x] and ES [x] for values of x > y. The
general method used is to choose a step size h � 0, less than the deferred period
and less than (65 � y), and then to develop a formula for E [y] by conditioning on
the state of the policyholder at age (y + h). The same method is used to derive
formulae for E2 [y] and E3 [y].
The formula for E [y] is the following:

E [y] = hp
HH
y �

n
f1 (h) + e

��hE [y + h]
o

(5)

+
Z h

t=0
tp
HH
y �y+tf1 (t) dt

+
Z h

t=0
tp
HH
y �y+t

Z h�t

u=0
up
SS
y+t �y+t+u;u f1 (t+ u) du dt

+
Z h

t=0
tp
HH
y �y+t � T�tpSSy+t �

n
f2 (t; T � t) + e��TES [y + 5 + h]

o
dt

+
Z h

t=0
tp
HH
y �y+t

Z T�t

u=h�t
up
SS
y+t �n

�y+t+u;u �
h
f2 (t; u) + e

��(t+u)E [y + t+ u]
i
+ �y+t+u;uf2 (t; u)

o
du dt

where T = min f65� y; 5 + hg.
The formulae for E2 [y] and E3 [y] are given by:

E2 [y] = k1 (y) + k2 (y)E [y + h] + k3 (y)E2 [y + h] (6)

+
Z T

r=h
k4 (y; r)E [y + r] dr +

Z T

r=h
k5 (y; r)E2 [y + r] dr

7



+k6 (y)ES [y + 5 + h] + k7 (y)ES2 [y + 5 + h]

E3 [y] = l1 (y) + l2 (y)E [y + h] + l3 (y)E2 [y + h] + l4 (y)E3 [y + h] (7)

+
Z T

r=h
l5 (y; r)E [y + r] dr +

Z T

r=h
l6 (y; r)E2 [y + r] dr

+
Z T

r=h
l7 (y; r)E3 [y + r] dr + l8 (y)ES [y + 5 + h]

+l9 (y)ES2 [y + 5 + h] + l10 (y)ES3 [y + 5 + h]

where the functions k1(y); : : : ; k7(y) and l1 (y) ; : : : ; l10 (y) can be evaluated directly
and, for conciseness, are de�ned in the Appendix.
Note that to be able to use (5) to evaluate E [y], we need to be able to evaluate

ES [y + 5 + h]. Waters [2] has derived formulae for ES [y], ES2 [y] and ES3 [y]
using a method similar to the one used to derive the formulae for E [y], E2 [y] and
E3 [y].
The formulae for ES[y], ES2[y] and ES3[y] are:

ES [y] = hp
SS
y;5+ �

n
�ah + e��hES [y + h]

o
(8)

+
Z h

t=0
tp
SS
y;5+ � �y+t;5 � f�at g dt

+
Z h

t=0
tp
SS
y;5+ � �y+t;5 �

n
�at + e��tE [y + t]

o
dt

ES2 [y] = hp
SS
y;5+ �

��
�ah

�2
� 2ah e��hES [y + h] + e�2�hES2 [y + h]

�
(9)

+
Z h

t=0
tp
SS
y;5+ � �y+t;5 (�at )

2 dt

+
Z h

t=0
tp
SS
y;5+ � �y+t;5 �n

(�at )
2 � 2at e��tE [y + t] + e�2�tE2 [y + t]

o
dt

ES3 [y] = hp
SS
y;5+ � f

�
�ah

�3
+ 3

�
�ah

�2
e��hES [y + h] (10)

+3
�
�ah

�
e�2�hES2 [y + h] + e�3�hES3 [y + h] g

+
Z h

t=0
tp
SS
y;5+ � �y+t;5 (�at )

3 dt

+
Z h

t=0
tp
SS
y;5+ � �y+t;5 � f (�at )

3 + 3 (�at )
2 e��tE [y + t]

+3 (�at ) e�2�tE2 [y + t] + e�3�tE3 [y + t] gdt:
Let us describe, in very general terms, how we can calculate recursively values

for E [y], E2 [y] and E3 [y], from the initial conditions

E [y] = E2 [y] = E3 [y] = ES [y] = ES2 [y] = ES3 [y] = 0 for y � 65;
using the algorithms presented above.
We describe the calculation of values of E [y] as an example. Note that, for a

given age y, (5) gives us an approximate expression for E [y] in terms of known func-
tions and of values of E [x] for x = y+ h; y+2h; : : : ; 65 (and also of ES [y + 5 + h]
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if y < 60). Thus, starting at age y = 65, we can then work back, calculating succes-
sively E [y] for y = 65� h; 65� 2h; 65� 3h; : : : until we reach the initial age of the
policyholder. In the case y < 60, we also need to have a value for ES [y + 5 + h],
which can be calculated recursively from (8) , using a similar technique, since it
depends only on known functions, the value of ES [y + 5 + 2h], and the values of
E [y + 5 + h] and E [y + 5 + 2h] (the latter two values having been calculated earlier
in the procedure).
The evaluation of E2 [y] and E3 [y] from (6) and (7), respectively, is similar to

the evaluation of E [y]. However, note that to calculate E2 [y], we need �rst to have
calculated E [y], and to calculate E3 [y], we need �rst to have calculated E [y] and
E2 [y].
Later in this work, in order to apply the algorithms presented above, we will

assume that there are exactly 52 weeks in a year and use a step size h = 1
156

(i.e.
one-third of a week). We will use the same step size in the calculation of premium

rates and of values of tp
SS
x (in the latter case, using the repeated trapezoidal rule).

The main reasons for our choice of h are the following: h must be less than the
deferred period (i.e. less than one week); h�1 must be an integer multiple of 52; in
CMIC [1], it is shown that the graduation of �x;z changes very quickly for small values
of the duration of sickness, z; and the computer time needed to do the calculations
with h = 1

156
is already considerable (thus, it is not convenient to use a smaller value

of h).

2.3 An Alternative Formula for the Calculation of the Mean

of the Pro�t

In the sensitivity analysis we will carry out, we will need to calculate E [y] a
great number of times. These calculations would be very time-consuming if we used
the algorithms presented in the previous section. We found out that, in the case
where the premium is determined by the expected value principle, a much simpler
formula for E [y] can be derived, which enables to evaluate it more e�ciently.
In practical terms, E [y] is given by the di�erence between the expected value of

the present value of the insurance company's future income and the expected value
of the present value of its future expenses (the policyholder's bene�ts). Thus, we
have:

E [y] = P
�

y;d �
65�yZ
t=0

e��t
�
tp
HH
y + t;d�p

HS
y

�
dt�

65�yZ
t=0

e��t t;d+p
HS
y dt

Assuming (2) and considering (1), we can re-arrange the previous formula to
obtain:

E [y] = �P y;d

65�yZ
t=0

e��t
�
tp
HH
y + t;d�p

HS
y

�
dt = �

65�yZ
t=0

e��t t;d+p
HS
y dt: (11)

We can conclude that, in this particular case, E [y] is proportional to the expected

policyholder's bene�ts. Note that, if P
�
y;d = P y;d (i.e. � = 0), then E [y] = 0, as we

would expect.
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In order to evaluate E [y] using formula (11), we can apply the repeated trape-
zoidal rule with the same step size h used in the algorithms for the evaluation of
basic probabilities in our model.
Comparing formula (11) with (5), we can see that the former is much simpler than

the latter. This means that, if we use (11) instead of (5) in our sensitivity analysis,
the computer time needed to do the calculations will be reduced considerably. On
the other hand, since (11) is much simpler and direct than (5), intuitively, we would
expect that, for a given value of h, the former formula gives better approximations
of E [y] than the latter (i.e. it produces smaller errors). Although we did not prove
it, some calculations and comparisons we have carried out suggest that, in fact, this
is true.
In view of the points made above, in the next sections, whenever we will need to

evaluate E [y], we will use formula (11). Since, unfortunately, there are not similar
alternative formulae for the second and third moments about zero of the pro�t, we
will have to evaluate these moments using the numerical algorithms presented in
Section 2.2.

3 Sensitivity Analysis of the Moments of the Pro�t

3.1 Sensitivity Analysis Where Premiums Are Updated

In this section we carry out a sensitivity analysis of the mean of the pro�t and
two risk measures where we update the premium rates according to the changes in
the values of the transition intensities.
The quantities we use to measure the degree of risk of a policy are the ratio of the

standard deviation of the present value of the pro�t to the annual premium (a higher
value of this ratio indicating a greater degree of risk) and the coe�cient of skewness
of the present value of the pro�t (a higher negative skewness indicating a greater
degree of risk). We use these two risk measures because they give information on two
di�erent features of the distribution of the pro�t: its variability and its skewness.
The constant factors by which we multiply the graduations of the transition

intensities are, in general, those used in Cordeiro [7]. The facts which provided the
motivation for choosing those constant factors are described below.
As far as the factors to multiply the graduations of �x and �x;z are concerned, it

was taken into account that the ratio of the values of the graduations of �x for D1
and D26 is about 3:1 and that, for D26, an increase in the graduation of �x;z by about
10% to 30% would be consistent with the observed numbers of claim inceptions.
The choice of the factors to multiply the graduations of �x and �x;z was based on

the comparison of the values of the graduation of the overall mortality in our model
(a weighted average of �x and the average mortality intensity of the sick weighted
by duration of sickness) with the values of the force of mortality for durations 2 and
over for Male Permanent Assurances 1979{82 (AM80 ultimate) at several attained
ages (see CMIC [1, Part E, Table E1]). The ratios of the former values to the latter
ones range between 1.11 and 1.82.
Below, for each change in the graduations of the transition intensities, we present

two tables: the �rst one, showing the values of E [y] and P
�
y;d obtained after changing
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the graduations and the ratios between these values and the corresponding values
calculated with the basic graduations for the 4 deferred periods we consider and
di�erent initial ages (30, 40, 50 and 60); the second, showing the values of the two
risk measures we consider after changing the graduations and the ratios between
these values and the corresponding values calculated with the basic graduations for
deferred periods D1 and D26 and initial ages 30 and 50 (in this case, we only show
values for two deferred periods and two initial ages due to the great amount of
computer time needed to do the calculations). We should note that, although we
are not interested in carrying out a sensitivity analysis of the premiums (the results
of such an analysis can be found in Cordeiro [7]), we also show values for these
quantities because the information on their changes is useful for our analysis. In all
the calculations we have considered � = 0:05 and � = 0:2.
As we can see from Table 1, when we multiply the graduation of �x by 2, E [y]

increases by a factor not much smaller than 2 for all the combinations of deferred
period and initial age considered. At �rst sight, we could think that an increase
in �x would lead to a decrease in the pro�t. However, we must not forget that,
here, the premiums are updated immediately and, therefore, that an increase in �x
by a factor of 2 implies also an increase in the premium rate (in this case, by a
factor slightly smaller than 2, as it can be con�rmed in Table 1). Furthermore, if
we consider (11), the increase in E [y] becomes clear: an increase in �x leads clearly
to an increase in the policyholder's future bene�ts.
Table 2 shows that an increase in �x by a factor of 2 implies a decrease of around

30% both in the ratio of the standard deviation to the premium rate and the absolute
value of the coe�cient of skewness. This result means that an increase in the level
of �x leads to a lower degree of risk.
We have also multiplied the graduations of �x by 3 and 4 and the results are

similar to those presented above. On the other hand, we have obtained also results
for the graduations of �x multiplied by some factors between 0 and 1, i.e. we have
decreased the levels of these graduations. As we would expect, the results are, in
general terms, the inverse of those obtained for the factors greater than 1.
Considering the results mentioned in the previous paragraphs, we could think

that an increase in �x would be welcome by companies selling IP policies. However,
this may not be true. Although in our work we do not study the demand side of the
IP market, it is obvious that if, for example, premium rates double, the demand for
IP policies will decrease substantially. Since the insurance company's total pro�t
depends not only on the pro�t on an individual policy but also on the number of
policies the company can sell, the overall e�ect of an increase of �x on the total
pro�t is not clear.
Let us now consider the e�ects of changes in �x;z.
From Table 3 we can see that, if we multiply the graduation of �x;z by 1.1, the

mean of the pro�t su�ers a decrease that ranges from 18% to 34% depending on the
combination of deferred period and initial age considered. We can also see that, for
a given initial age, E [y] falls more and more as the deferred period becomes longer
and, for a given deferred period, it falls less and less as the initial age increases. If
we consider formula (11), it is easy to explain some of the features just mentioned.
In fact, an increase in �x;z implies clearly a decrease in the policyholder's future
bene�ts and this decrease is more pronounced for longer deferred periods (since
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the policyholder will spend less time sick, the longer the deferred period, the less
opportunities he will have to make a claim).
Analysing Table 4, we can observe that, when we multiply �x;z by 1.1, both the

risk measures we consider increase (around 20%, in the case of the absolute value of
the coe�cient of skewness, and between 7% and 17%, in the case of the variability
measure).
We have also obtained results for the graduation of �x;z multiplied by 1.2 and

1.3. These results are similar to those presented above. The graduation of �x;z was
also multiplied by some factors between 0 and 1 (1=1:1, 1=1:2, 1=1:3) and, as we
expected, the results are, in general terms, the inverse of those obtained earlier.
Taking into consideration that, when the level of �x;z increases, the mean of the

pro�t diminishes and the degree of risk of a policy increases, we could think that
such a change in �x;z should be a matter of concern to companies selling IP policies.
However, as we can con�rm in Table 3, an increase in the level of �x;z also implies
a decrease in the premium rate (slightly higher than that in E [y]) and, therefore,
using arguments similar to those presented above, we can conclude that the e�ect
on the insurance company's total pro�t of such a change in �x;z is also not clear.
In order to analyse the e�ects of changing �x on the mean of the pro�t and the

two risk measures we consider, we have multiplied its graduation by 2. The results
obtained are the following: E [y] diminishes slightly for all the cases considered (the
decrease is never higher than 3%) and the e�ects on the two risk measures are even
less signi�cant. These results were expected since the values of the graduation of �x
are very small when compared with those of the graduations of �x and �x;z (as we
can con�rm in CMIC [1]). We have also multiplied the graduation of �x by 0.5 and,
in general terms, the results obtained are the inverse of the previous ones. Since, on
the whole, the results are almost negligible, we do not show them.
Finally, let us consider the e�ects of changes in �x;z.
From Table 5 we can observe that, when we multiply the graduation of �x;z by

2, E [y] decreases between 12% and 24% depending on the case considered. We can
also see that the premium rate also su�ers a decrease (slightly lower than that in
E [y]). The e�ects on E [y] are easily explained using again formula (11): the fact
that, on average, the policyholders will spend less time sick before dying implies a
decrease in their future bene�ts.
Table 6 shows that, when the graduation of �x;z is doubled, the e�ects on the

variability measure are of little signi�cance and the absolute value of the coe�cient
of skewness increases around 13%.
We have also obtained results for the graduation of �x;z multiplied by 0.5. In

general, these results are the inverse of those described above.
We can conclude that the e�ects on E [y] and the two risk measures of doubling

the graduation of �x;z are much more signi�cant than those of doubling the gradu-
ation of �x (although going in the same direction). Furthermore, the latter e�ects
are not even worth considering. However, companies selling IP policies should be
careful specially with changes in �x and �x;z because these are the changes which
lead to the most important e�ects on the mean of the pro�t and the degree of risk
of a policy.
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3.2 Sensitivity Analysis Where Premiums Are Not Updated

In the previous section we assumed that the premium rates were updated imme-
diately after the changes in the graduations of the transition intensities. However,
in practice, this does not happen in many situations. In fact, often, the transition
intensities change without the companies being aware of it, which means they set
premiums using outdated intensities. In other situations, the changes in the inten-
sities occur shortly after the premium being set and, therefore, even in the case
the company is aware of this fact, nothing can be done, since the premium remains
unchanged throughout the term of the policy.
In this section we carry out a sensitivity analysis similar to the one in the previous

section but where the premiums used in the calculation of E [y] and the two risk
measures, after the graduations are changed, are the original premiums, i.e. the
premiums obtained with the original graduations.
Firstly, let us analyse the e�ects of changing �x. In this case, we do not present

the results for the graduations of �x multiplied by 2, as we have done in Section
3.1, because these changes have such a strong impact that lead to negative values of
E [y] for all the combinations of deferred period and initial age considered (values
smaller than -3). Since these results would not be interpreted easily, we decided to
multiply the graduations of �x by 1.1 and 1=1:1.
From Table 7 we can see that, when we multiply the graduations of �x by 1.1,

E [y] decreases to around half of its original value. These results are not surprising.
In our model, an increase in the level of �x implies that more policyholders get sick
and, therefore, that more bene�ts are paid. Since, in this case, the additional costs
are not reected in the premiums, it is only natural that the mean of the pro�t on
each policy decreases.
We can also see that, for a given deferred period, the decrease in E [y] is an

increasing function of the entry age. This result is explained easily if we consider
that, when premiums are updated, they increase more and more as the initial age
increases (as we can con�rm in Table 1).
Analysing Table 8, we can observe that, if we multiply the graduations of �x

by 1.1, the ratio of the standard deviation of the pro�t to the premium increases
slightly, whereas the absolute value of the coe�cient of skewness diminishes slightly.
Thus, we can conclude that this change keeps the degree of risk of a policy almost
unchanged.
The results obtained for the graduations of �x multiplied by 1=1:1, in general,

are the inverse of those presented above.
The main conclusion we can draw is that companies selling IP policies should

be very cautious with an increase in the level of �x: as soon as they become aware
of it, they should update the premiums accordingly. Otherwise, they will obtain
pro�ts on individual policies much lower than they expected. Furthermore, as we
have seen, even a moderate increase in the level of �x can lead to a negative value
of E [y].
As we can see analyzing Table 9, a raise of 10% in the level of the graduation of

�x;z also has a strong impact on the mean of the pro�t: it increases between 97.5%
and 170% depending on the case considered. A raise in the level of �x;z means
that policyholders will spend less time sick before they recover and, thus, that there
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will be less claims and they will be shorter. Since the premiums are not reduced
accordingly, the mean of the pro�t on individual policies will increase.
We can also observe that, for a given deferred period, the increase in E [y] falls

as the initial age becomes higher and, for a given initial age, in general, the increase
in E [y] rises as the deferred period becomes longer. These results can be explained
easily using the results, concerning premium rates, in Table 3 and the argument
presented in the previous paragraph.
The e�ects on the two risk measures of a raise of 10% in the level of the graduation

of �x;z are much less signi�cant than those on E [y], as we can see from Table 10. In
fact, the variability measure decreases between 15% and 22%, whereas the absolute
value of the coe�cient of skewness increases between 10% and 17%.
We have also multiplied the graduation of �x;z by 1.2 and 1.3. In general, the

results obtained are similar to those presented above. On the other hand, we have
also obtained results for the graduation of �x;z multiplied by 1=1:1, 1=1:2 and 1=1:3.
As usual, in general terms, these results are the inverse of those described earlier.
However, we should mention that, for example, when the graduation of �x;z is mul-
tiplied by 1=1:1, the value of E [y] becomes negative for all the cases considered (in
some cases, the absolute value of E [y] is even higher than the original value).
For the same reasons mentioned when we were dealing with increases in the level

of �x, insurance companies should also be very careful with falls, even if moderate,
in the level of �x;z. As soon as they see signs of these changes, they should update
the premiums accordingly.
The e�ects on E [y] of multiplying the graduation of �x by 2 are very small:

E [y] increases slightly for initial ages 30 and 40, whereas it decreases also slightly
for initial ages 50 and 60. The e�ects on the two risk measures we consider of such a
change are even more insigni�cant. We have also obtained results for the graduation
of �x multiplied by 0.5. As we expected, in general, these results are the inverse of
those presented above. We do not show any of these results.
Although the e�ects on E [y] and the two risk measures of multiplying the grad-

uation of �x;z by 2 are less strong than those caused by an increase of 10% in the
level of the graduation of �x;z, they still are quite signi�cant. As we can see from
Table 11, E [y] increases between 54% and 116% depending on the case considered.
These increases have to do with the facts that policyholders spend less time sick
before they die and the premiums are not updated. On the other hand, from Table
12 we can observe that the variability measure decreases around 17%, whereas the
absolute value of the skewness coe�cient increases between 7% and 12%.
From Table 11 we can also see that, for a given initial age, the increase in E [y],

following the rise in the level of �x;z by a factor of 2, is an increasing function of the
length of the deferred period. This feature is explained by the fact that the increase
in the number of sick policyholders who do not even have the opportunity to claim
before they die is more pronounced for longer deferred periods.
In general, the results obtained for the graduation of �x;z multiplied by 0.5 are

the inverse of those presented above. However, we should note that this change
implies a decrease in E [y] that ranges between 32% and 75% depending on the case
considered. These results are not shown.
We can conclude that, although changes in the level of �x;z have much less impact

on E [y] than changes of the same size in the levels of �x and �x;z, companies should
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also take some care with falls in the level of �x;z because, if premiums are not raised
accordingly, they can mean pro�ts on individual policies much lower than those
expected by the companies.

4 Recent Trends in the Transition Intensities

As we have seen in Section 3.2, some changes in the transition intensities, even
if moderate, can bring serious problems to insurance companies, when they are
not detected, since they can lead to pro�ts on individual policies much lower than
those expected by the companies. On the other hand, although the graduations of
the transition intensities available (those used in this work) are for the quadrennium
1975{78, more recent trends in the intensities have been described in the Continuous
Mortality Investigation Reports mentioned in Section 1. In fact, these trends have
been identi�ed using data for the successive quadrennia following 1975{78 (the latest
of which is 1999{2002) and a methodology based on a comparison of actual versus
expected claim inceptions, recoveries and deaths. In view of these points, we think
it is interesting to present here the most recent of these trends and, in the light
of the conclusions presented in Section 3.2, to discuss their consequences for the
companies selling IP policies.
We should note that all the trends we describe below concern only male experi-

ence, in order to be consistent with the graduations used to perform the sensitivity
analysis presented in this work.
As we can see in CMIC [4,5,6] there is a clear trend of lighter claim inceptions

experiences: in the quadrennium 1991{94, the inception experience for D1 and D4 is
lighter than the previous quadrennium (being, generally, heavier for D13 and D26);
in the following quadrennium, the inception experience for all the deferred periods,
except D26, is again lighter than in 1991{94; and, �nally, in the quadrennium 1999{
2002, the inception experience for all the deferred periods we consider continues to
be lighter than in the previous quadrennium. This trend in the claim inceptions
experiences means repeated falls over time in the levels of the sickness intensities for
most of the deferred periods. As we have seen in Section 3.2, insurance companies
can only bene�t from a scenario of declining sickness intensities since, in this case,
the need for updating the premiums is not so urgent.
In the reports mentioned in the previous paragraph, we can also �nd evidence of

a general trend of declining recovery intensities (in this case, a continuous trend over
time since the quadrennium 1983{86). On the other hand, there is also evidence that
the mortality of the sick intensities have reduced between 1995{98 and 1999{2002.
Although the only complete set of graduations of the transition intensities avail-

able, which makes our model operational, is the one used in this work, the Income
Protection Sub-Committee [21] has obtained graduations of �x;z and �x;z using more
recent data: the Individual Income Protection Experience for 1991{98 of Males, Oc-
cupation Class 1 (unfortunately, this Committee did not �nish yet the estimation
and graduation of �x). It is interesting to note that the new graduations of �x;z
and �x;z, which, unlike the old graduations, are di�erent according to the deferred
period considered, con�rm the trends described in the previous paragraph: �xing
y (the policyholder's age at the beginning of sickness) and, therefore, viewing the
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graduations of �y+z;z as functions of z only, we can see that, in general, the new
graduations have values much lower than the corresponding ones of the old gradua-
tion (in special, the new graduations for D13 and D26); and, the values of the new
graduations of �y+z;z, in special those for D1, are also much lower than those of the
old graduation.
Unlike the trend observed in the sickness intensities, the pattern of declining

recovery intensities for at least two decades has certainly been (and, probably, still
is) very unfavourable to insurance companies selling IP policies. Furthermore, this
negative trend has been reinforced by a similar trend in the mortality of the sick
intensities. Another source of concern to the companies is the fact that the new
graduations of �x;z and �x;z are di�erent according to the deferred period considered.
In fact, this means it is possible that companies have to deal with reductions in the
levels of �x;z and �x;z which vary with the length of the deferred period and, therefore,
that the problem they have to face it is much more complex than before.

Appendix: De�nition of the Functions k1(y); : : : ; k7(y)
and l1 (y) ; : : : ; l10 (y)

Here, we de�ne the functions k1(y); : : : ; k7(y), which appear in the formula for
E2 [y] (formula (6)), and the functions l1 (y) ; : : : ; l10 (y), which appear in the formula
for E3 [y] (formula (7)):
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Table 1: Mean of the pro�t on an IP policy and premium rate with � = 0:2.
Graduations of �x multiplied by 2. � = 0:05.
Initial Deferred period, d
age D1 D4 D13 D26
y P

0;2
y;d Ratio P

0;2
y;d Ratio P

0;2
y;d Ratio P

0;2
y;d Ratio

30 0.051141 1,936 0.030897 1.937 0.018537 1.953 0.012528 1.959
40 0.079864 1.952 0.050481 1.951 0.030398 1.964 0.021358 1.969
50 0.122917 1.980 0.080544 1.972 0.047563 1.978 0.034558 1.981
60 0.143286 2.006 0.098697 1.992 0.051029 1.988 0.033619 1.988

E [y] Ratio E [y] Ratio E [y] Ratio E [y] Ratio
30 0.129355 1.872 0.080028 1.894 0.048746 1.923 0.033263 1.939
40 0.168385 1.861 0.109931 1.889 0.067739 1.922 0.048162 1.938
50 0.183803 1.854 0.125623 1.884 0.076775 1.921 0.056580 1.937
60 0.090568 1.877 0.064798 1.899 0.034999 1.935 0.023441 1.950

Table 2: Ratio of the standard deviation of the pro�t to the premium rate and

skewness coe�cient of the pro�t, calculated with P
0:2
y;d. Graduations of �x multiplied

by 2. � = 0:05.

Initial St. deviation / Skewness
age premium Ratio coe�cient Ratio

Deferred period D1
30 24.591022 0.718 -4.386437 0.689
50 14.843808 0.703 -2.632494 0.644

Deferred period D26
30 59.188199 0.716 -7.661670 0.703
50 32.023197 0.708 -4.870899 0.688

Table 3: Mean of the pro�t on an IP policy and premium rate with � = 0:2.
Graduation of �x;z multiplied by 1:1. � = 0:05.
Initial Deferred period, d
age D1 D4 D13 D26
y P

0;2

y;d Ratio P
0;2

y;d Ratio P
0;2

y;d Ratio P
0;2

y;d Ratio

30 0.019161 0.725 0.011017 0.691 0.006286 0.662 0.004231 0.662
40 0.030075 0.735 0.018344 0.709 0.010604 0.685 0.007386 0.681
50 0.047088 0.758 0.030163 0.739 0.017278 0.719 0.012417 0.712
60 0.057856 0.810 0.039107 0.789 0.019762 0.770 0.012902 0.763

E [y] Ratio E [y] Ratio E [y] Ratio E [y] Ratio
30 0.050591 0.732 0.029374 0.695 0.016862 0.665 0.011390 0.664
40 0.067362 0.745 0.041642 0.716 0.024295 0.689 0.016998 0.684
50 0.076407 0.771 0.049826 0.747 0.028947 0.724 0.020919 0.716
60 0.039591 0.820 0.027218 0.797 0.014012 0.775 0.009210 0.766
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Table 4: Ratio of the standard deviation of the pro�t to the premium rate and

skewness coe�cient of the pro�t, calculated with P
0:2
y;d. Graduation of �x;z multiplied

by 1:1. � = 0:05.

Initial St. deviation / Skewness
age premium Ratio coe�cient Ratio

Deferred period D1
30 36.723581 1.073 -7.594319 1.192
50 23.260187 1.101 -4.909832 1.202

Deferred period D26
30 96.602143 1.169 -13.023982 1.195
50 52.830123 1.168 -8.436185 1.191

Table 5: Mean of the pro�t on an IP policy and premium rate with � = 0:2.
Graduation of �x;z multiplied by 2. � = 0:05.
Initial Deferred period, d
age D1 D4 D13 D26
y P

0;2

y;d Ratio P
0;2

y;d Ratio P
0;2

y;d Ratio P
0;2

y;d Ratio

30 0.022490 0.851 0.013105 0.822 0.007474 0.787 0.004905 0.767
40 0.034402 0.841 0.021143 0.817 0.012168 0.786 0.008323 0.767
50 0.052345 0.843 0.033647 0.824 0.019105 0.795 0.013524 0.775
60 0.063543 0.890 0.043194 0.872 0.021580 0.841 0.013818 0.817

E [y] Ratio E [y] Ratio E [y] Ratio E [y] Ratio
30 0.058232 0.843 0.034452 0.815 0.019842 0.783 0.013111 0.764
40 0.075223 0.832 0.047169 0.811 0.027536 0.781 0.018979 0.764
50 0.082680 0.834 0.054488 0.817 0.031572 0.790 0.022535 0.771
60 0.042683 0.884 0.029620 0.868 0.015159 0.838 0.009793 0.815

Table 6: Ratio of the standard deviation of the pro�t to the premium rate and

skewness coe�cient of the pro�t, calculated with P
0:2
y;d. Graduation of �x;z multiplied

by 2. � = 0:05.

Initial St. deviation / Skewness
age premium Ratio coe�cient Ratio

Deferred period D1
30 32.869556 0.960 -7.068221 1.110
50 20.933705 0.991 -4.627664 1.133

Deferred period D26
30 87.396934 1.058 -12.232688 1.122
50 48.411305 1.070 -8.086626 1.142
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Table 7: Mean of the pro�t on an IP policy, calculated with the original P
0:2

y;d.
Graduations of �x multiplied by 1:1. � = 0:05.

Initial Deferred period, d
age D1 D4 D13 D26
y E [y] Ratio E [y] Ratio E [y] Ratio E [y] Ratio
30 0.035712 0.517 0.021838 0.517 0.012988 0.512 0.008765 0.511
40 0.046224 0.511 0.029797 0.512 0.017937 0.509 0.012625 0.508
50 0.049785 0.502 0.033689 0.505 0.020161 0.504 0.014727 0.504
60 0.023881 0.495 0.017048 0.500 0.009076 0.502 0.006039 0.502

Table 8: Ratio of the standard deviation of the pro�t to the premium rate and

skewness coe�cient of the pro�t, calculated with the original P
0:2

y;d. Graduations of
�x multiplied by 1:1. � = 0:05.

Inital St. deviation / Skewness
age premium Ratio coe�cient Ratio

Deferred period D1
30 35.747043 1.044 -6.186348 0.971
50 21.988177 1.041 -3.993607 0.978

Deferred period D26
30 86.529613 1.047 -10.442019 0.958
50 47.313426 1.046 -6.798612 0.960

Table 9: Mean of the pro�t on an IP policy, calculated with the original P
0:2
y;d.

Graduation of �x;z multiplied by 1:1. � = 0:05.

Initial Deferred period, d
age D1 D4 D13 D26
y E [y] Ratio E [y] Ratio E [y] Ratio E [y] Ratio
30 0.165560 2.395 0.108312 2.563 0.068439 2.700 0.046318 2.699
40 0.212881 2.353 0.144134 2.477 0.091291 2.590 0.064823 2.608
50 0.222426 2.243 0.155608 2.334 0.096927 2.425 0.071740 2.456
60 0.095336 1.975 0.070766 2.073 0.039120 2.163 0.026384 2.195
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Table 10: Ratio of the standard deviation of the pro�t to the premium rate and

skewness coe�cient of the pro�t, calculated with the original P
0:2
y;d. Graduation of

�x;z multiplied by 1:1. � = 0:05.

Initial St. deviation / Skewness
age premium Ratio coe�cient Ratio

Deferred period D1
30 26.843344 0.784 -7.082269 1.112
50 17.913169 0.848 -4.487615 1.099

Deferred period D26
30 64.078375 0.776 -12.762072 1.171
50 37.801598 0.836 -8.194392 1.157

Table 11: Mean of the pro�t on an IP policy, calculated with the original P
0:2
y;d.

Graduation of �x;z multiplied by 2. � = 0:05.

Initial Deferred period, d
age D1 D4 D13 D26
y E [y] Ratio E [y] Ratio E [y] Ratio E [y] Ratio
30 0.119278 1.726 0.079354 1.878 0.051969 2.050 0.036977 2.155
40 0.160528 1.775 0.110418 1.897 0.072468 2.056 0.053536 2.154
50 0.174992 1.765 0.124338 1.865 0.080515 2.015 0.061738 2.113
60 0.074483 1.543 0.055709 1.632 0.032370 1.790 0.022950 1.909

Table 12: Ratio of the standard deviation of the pro�t to the premium rate and

skewness coe�cient of the pro�t, calculated with the original P
0:2
y;d. Graduation of

�x;z multiplied by 2. � = 0:05.

Initial St. deviation / Skewness
age premium Ratio coe�cient Ratio

Deferred period D1
30 28.114122 0.821 -6.803413 1.068
50 17.840162 0.844 -4.350380 1.065

Deferred period D26
30 67.172893 0.813 -12.059409 1.106
50 37.694716 0.833 -7.895139 1.115
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