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Abstract

This paper presents a hurdle-type regression model for panel count

data. Several speci�c features of the data generating process require a

modelling approach that di¤ers from some commonly used count data

models. The suggested model is intended for count data with excess

zeros, relative to simple Poisson generated data, and bounded support.

This kind of data may occur, e.g., in the context of consumer credit

or behavioural scoring, with reference to the repayment of loans in a

pre-determined number of �xed installments. At each repayment date a

debtor faces a known number of missed installments which depends on his

previous repayment decisions and is bounded by the age of the contract.

In any case, as most clients repay their debts on time, the number of

missed installments at each date is expected to display more zero values

than would be the case if this variable were to follow, e.g., the Poisson

distribution.

Throughout the paper a random sample of observations on time series

of counts and some set of covariates is supposed to be available to the re-

searcher. The dependence structure within each time series is addressed

through the use of the "binomial thinning" operator (Steutel and Van-

Harn, 1979). As detailed in the text, this operator provides a �exible way
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to model the dependence between consecutive counts, within a Markov

chain-type modelling approach.

Estimation of the model through conditional least squares and maxi-

mum likelihood is illustrated on the basis of di¤erent simulated data sets

of independent individual time sequences of counts. The performance of

both methods appears somewhat similar, with slight expectable e¢ ciency

advantages of maximum likelihood in cases of correct model speci�cation.

The proposed speci�cation can be used, for instance, as a model of re-

payment behaviour, to be employed in a context of credit or behavioural

scoring. In this sense it may provide better estimates of default probabil-

ity than, e.g., simple cross-section models of the total number of missed

installments. Meanwhile, with some adjustments, the approach is rich

enough to encompass such situations as early repayment or redemption of

loans, as well as loan contracts with variable installments.

JEL classi�cation: C23, C25

Key Words: panel count data; hurdle model; conditional least squares;

maximum likelihood.



1 Introduction

This paper introduces a hurdle-type regression model for panel count data. Sev-

eral speci�c features of the data generating process require a modelling approach

that di¤ers from some commonly used count data models. The proposed speci-

�cation is intended for count data with excess zeros, relative to simple Poisson

generated data, and bounded support. Such data may occur, for instance, in

the context of consumer credit or behavioural scoring, with reference to the

repayment of loans in a pre-determined number of �xed installments: at each

repayment date a debtor faces a known number of missed installments, which

depends on his previous repayment decisions and is bounded by the age of the

contract. In any case, as most clients repay their debts on time, the number of

missed installments at each date is expected to display more zero values than

would be the case if this variable were to follow, e.g., the Poisson distribution.

Throughout the text a random sample of observations on time series of

counts and some set of covariates is supposed to be available to the researcher.

For each statistical unit at each observation period the possibility of excess zeros,

relative to the simple Poisson, is dealt with through a hurdle-type speci�cation

(Cragg, 1971, Mullahy, 1986). In addition, the inherently bounded support of

the dependent count variable also excludes the Poisson or negative binomial,

among others, from the set of candidate models to be selected. In the present

context the binomial distribution or a binomial-based mixture seem clearly more

appropriate than functions with unbounded support.

The speci�cation proposed here is designed to model time series of counts,

one for each statistical unit. The literature proposes many possible ways to

model time series of discrete variables. Integer-valued autoregressive, moving

average (INARMA) models constitute a prominent, well established example,

including INAR models as a special case. The latter specify the realized value

of the variable of interest at period t, yt, as the sum of an integer function of

past outcomes and the realization of an independent integer random variable.

These models have the same serial correlation structure as linear ARMA models

for continuous data, a clearly attractive feature. Di¤erent choices for the distri-

bution of the innovation term (e.g. Poisson) lead to di¤erent marginal p.f:�s for

yt. Within the pure time series case, the Poisson INAR(1) was �rst proposed
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by McKenzie (1985) and further discussed, along with other INARMA models,

by Al-Osh and Alzaid (1987) and McKenzie (1988). Brännäs (1995) was the

�rst to extend these models to the regression case. Several other approaches

are discussed in the literature on discrete variables time series analysis: surveys

can be found in Cameron and Trivedi (1998), ch. 7, and McKenzie (2003).

The dependence structure within each time series is addressed in the present

case through the use of the "binomial thinning" operator (Steutel and VanHarn,

1979). This operator provides a �exible way to model the dependence between

counts, with the observation for one period de�ning the support bound of the

count variable for the following period. As detailed below, this feature seems

quite adapt to the type of data the proposed model is intended for.

The paper is organized as follows. After speci�cation of the general model

in section 2, section 3 presents its estimation through conditional least squares

(CLS) and maximum likelihood (ML). The performance of these methods is

assessed in section 4 on the basis of di¤erent simulated data sets. Algebraic

derivations and proofs are included in the �nal appendix.

2 Model Speci�cation

Consider a sample of observations on n time series of counts, yit, where t =

1; :::; Ti, and i = 1; :::; n denote, respectively, time and individual observational

indices. In what follows a model for each individual time sequence of counts is

presented, enabling the speci�cation of a panel count data model. Estimation

and inference issues are discussed in the next section.

The proposed speci�cation starts with the following structural assumption

about the triplet (yit,yi;t�1,dit) (individual index, i, omitted):

yt = dt (yt�1 + 1) + (1� dt) (p1 � yt�1) ; (1)

yt 2 f0; 1; :::; tg ; t = 1; :::; T;

where y0 (� yi0) � 0, dt (� dit) 2 f0; 1g denotes a Bernoulli random variable

with Pr (dt = 1) = p, and the parameter p1 is such that 0 � p1 � 1. The

symbol "�" denotes the binomial thinning operator, de�ned as follows. If y rep-

resents a positive integer, then p1�y �
Py

j=1 bj (p1), where fbj (p1) , j = 1; :::; yg
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denotes a set of i.i.d: Bernoulli random variables independent of y, for which

Pr (bj (p1) = 1) = p1. That is, conditional on y, p1 � y is a binomial random

variable, the number of successes in y independent trials in each of which the

probability of success is p1.

Thus, conditional on yt�1, the support of yt is f0; 1; :::; yt�1 + 1g. If dt = 1,

then yt = yt�1 + 1; on the contrary, if dt = 0, then yt conditional on yt�1

follows a binomial p.f. with parameters yt�1 and p1. The probabilistic model

for yitjyi;t�1 is thus speci�ed as a two-part, or hurdle, model: the �rst part is

a binary outcome model and the second part is a count model with bounded

support.

Unless p = 0 (corresponding to the trivial case yt � 0, 8t), the sequence fytg

is not stationary. This can be seen by considering the sequence of unconditional

�rst moments of yt,

E (yt) = p
�
1 + r + r2 + � � �+ rt�1

�
;

where r � p+ p1 (1� p).(1 ) The covariance function is given by

COV (yt; yt�k) = r
kV AR (yt�k) ;

a similar result to the expression for the covariance function in linear AR models

for continuous data. It follows that the autocorrelation function,

rk
p
V AR (yt�k) =V AR (yt);

depends, not only on lag (k), but also on t (as V AR (yj) involves j).(2 )

For each individual the proposed model can be cast within the general frame-

work of a �rst-order Markov chain. For each individual time sequence of Ti
1 For the trivial case pi = 1 (, ri = 1), one obtains

E (yitjyi;t�1) = yi;t�1 + 1 = t; V AR (yitjyi;t�1) = 0:

2 The formula for E
�
y2t
�
can be obtained as the solution to the di¤erence equation

E
�
y2t+1

�
=
�
p+ (r � p)2 = (1� p)

�
E
�
y2t
�

+(1� r) (r � p) p
�
1 + r + � � �+ rt�1

�
= (1� p) + p;

t = 2; :::; l;

with initial condition E
�
y21
�
= p. Obviously, the expression for V AR (yt) involves t.
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count variables, fyit; t = 1; :::; Tig, one can formally write the following recur-

rence formula for Pr (yit) (individual index and possible conditioning covariates

omitted):

Pr (yt = y) =
tX

j=maxf1;yg

Pr (yt = yjyt�1 = j � 1)Pr (yt�1 = j � 1) ;

0 � y � t; 1 � t � T;

with transition probabilities, Pr (yt = yjyt�1 = j � 1), obtained from (1) and

Pr (y0 = 0) = 1.

For each t, the last recurrence formula can be written in matrix form as

�t =M�t�1 =M
t�0;

with

�0
(T+1)�1

=

26666664
1

0
...

0

37777775 ; �t
(T+1)�1

=

26666666666666664

Pr (yt = 0)

Pr (yt = 1)
...

Pr (yt = t)

0
...

0

37777777777777775
; t = 1; :::; T;

and transition matrix

M
(T+1)�(T+1)

=

26666666666664

m11 m12 m13 � � � m1T 0

m21 m22 m23 � � � m2T 0

0 m32 m33 � � � m3T 0

0 0 m43 � � � m4T 0
...

...
...

...
...

0 0 0 � � � mT+1;T 0

37777777777775
;

where mjk � Pr (yt = j � 1jyt�1 = k � 1), 1 � k � T , 1 � j � k + 1.

For each individual the present model can also be viewed as a panel data,

nonstationary version of the DAR(1) model, proposed by Jacobs and Lewis

(1978). The latter can be expressed as

yt = dtyt�1 + (1� dt) zt;
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where fdtg are i.i.d: binary and fztg are i.i.d: with given distribution. If y0 is also

sampled from this distribution, then this model de�nes a stationary process with

that same marginal distribution. In model (1) not only stationarity is absent

(because of the term yt�1 + 1) but also the variable replacing zt (p1 � yt�1) is

not i.i.d:. In addition, the assumption of independence between dt and p1 � yt�1
is to be relaxed below.

If one thinks of the individuals in the sample as borrowers repaying their

loans through �xed periodic installments, with yit denoting the number of

missed installments by individual i at the end of period t, then the probabilistic

model for yitjyi;t�1 can be seen as a model of repayment behaviour. dt is de�ned

to be zero if the client decides to pay at period t (that is, "success" refers to a

nonpayment choice, with probability denoted by p). If the client chooses to pay

(dt = 0), he then decides how many installments to pay, ranging from just one

(p1 � yt�1 = yt�1) to all the installments he has missed that far plus the one for

the present period (p1 � yt�1 = 0). That is, under the present framework each

borrower is supposed to make a twofold decision at every repayment date. First,

he decides whether to pay or not altogether at that date. Then, if he chooses to

pay and more than one installment are due, he decides how much (how many

installments) to pay.

The above example illustrates the possible meaning of several limiting (even

if unlikely) cases concerning di¤erent values of p and p1. First, p = 0 (dt

degenerate at zero, 8t), means that the borrower always decides to pay, one

installment at least. From y0 � 0 it follows that y1 � d1 = 0; as yt = p1 � yt�1
and the individual always pays, yt�1 = 0 = yt, 8t, so p1 is not identi�ed. On

the other hand, p = 1 means that the client always decides not to pay; then

dt = 1, 8t, so yt = yt�1 + 1 = t and p1 is again not identi�ed.

Now consider the case p1 = 0. Then, once the client decides to pay (dt = 0)

he pays all the missed payments at that time (the bj are degenerate at zero, j =

1; :::; t� 1), in addition to that period installment. That is, at each repayment

date a client either pays all the installments he missed that far, plus the one

for that period, or he pays none. On the other hand, p1 = 1 means that when

the client decides to pay (dt = 0) he only pays one installment (bj degenerate

at one, j = 1; :::; t � 1). That is, with p1 = 1 the client�s balance of missed
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payments never decreases �at best it remains at the level it rose to, the last

time the client chose not to pay.

Naturally, some of the above limiting cases may be unlikely �namely the

case with p = 1. Also, even for those (presumably many) clients who regularly

meet their obligations, p can be positive due to the possible occurrence of ran-

dom unexpected (and undesirable) events, a¤ecting their �nancial capacity and

hindering their plans to pay one installment after the other during the life of the

contract. In any case, a well known advantage of the hurdle speci�cation is that

it enables di¤erentiated treatment of zero and positive values of the dependent

variable. In the present example, with most individuals expected to regularly

meet their �nancial obligations, this feature seems clearly attractive.(3 )

It may be more appropriate to consider p and p1 individual-speci�c, rather

than constant across di¤erent individuals (pi and p1i in (1), instead of p and

p1). Also, a pure time series model may not lead to very useful conclusions.(4 ).

In order to account for this individual heterogeneity one obvious possibility is to

introduce regressors in the model (e.g : in p and p1). Nevertheless, even within

a regression approach unobserved individual and/or time e¤ects may still be at

play here, requiring a more sophisticated approach concerning model estimation.

If this is the case, the obvious decision regards the choice between a �xed e¤ects

approach or a random e¤ects approach, marginal to unobserved individual or

time e¤ects. As usual, the appropriate choice depends on the objective of the

analysis. For instance, a random e¤ects approach seems more adapt for credit

scoring, usually involving a large number of individual loan contracts.

The assumption of independence about the joint probabilistic behavior of

(dt; b1; :::; bt�1; yt�1) may be inappropriate or unrealistic. On the other hand,

analysis and estimation of the model is considerably eased with such an assump-

tion. A simplifying way out of this dilemma is to assume that dt and yt�1 are

independent conditionally on p. Also, bj , j = 1; :::; t � 1 and yt�1 can be as-

sumed conditionally independent, given p1. Then, the independence assumption

of these variables can be relaxed with the introduction of regressors (possibly

3An extended survey on credit and behavioural scoring techniques and applications can be

found, for instance, in Thomas, Edelman and Crook (2002).
4For instance, credit or behavioural scoring purposes may require the classi�cation of

debtors on the basis of contracts and customers characteristics.
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including lagged values of the dependent variable) and/or unobservable e¤ects

in the model, through p and p1. For instance, p and p1 can be speci�ed as logits:

with time-invariant regressor vectors xi and zi, pi and p1i can be expressed as

pi � (1 + exp (�x0i�))
�1
; (2)

p1i � (1 + exp (�z0i
))
�1
;

where � and 
 denote regressor vectors. Obviously, time-varying regressors can

also be introduced �then one would naturally use pit and p1it, instead. Unob-

served heterogeneity can also be accounted for but, as expected, this concern

can actually lead to increased di¢ culty in what regards model estimation.

3 Estimation and Inference

The present section discusses estimation and testing of the panel count data

model introduced above. Two estimation methods are considered in what fol-

lows: CLS and ML. Use of both methods in the context of the stationary Poisson

INAR is studied by Al-Osh and Alzaid (1987), Jin-Guan and Yuan (1991) and

Ronning and Jung (1992). Brännäs (1994) introduces GMM and extends its

use to a panel data generalized Poisson INAR(1). Brännas (1995) proposes

a Poisson INAR(1) regression model and studies its estimation through CLS

and GMM. A very recent account of estimating methods for panel count data,

namely GMM, can be found in Windmeijer (2006).

3.1 Conditional Least Squares

Under the assumptions of the model and in view of the de�nition of the binomial

thinning operator, the conditional mean of yit can be written as

E (yitjyi;t�1) = E (dit (yi;t�1 + 1) + (1� dit) (p1i � yi;t�1))

= pi + riyi;t�1; t = 1; :::; Ti; (3)

where yi0 � 0 and ri � pi + p1i (1� pi). Consider, for now, a pure time

series framework, with p and p1 assumed constant and a panel of n independent

individual time series, fyi1; :::; yiTig, i = 1; :::; n, (yit independent of yju, 8i 6=
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j; 8t; u). Then, the CLS estimator of the parameters p and p1 minimizes the

criterion function
nX
i=1

TiX
t=1

(yit � p� ryi;t�1)2 .

This objective function is the one associated with nonlinear least squares

(NLS) estimation of the pooled regression model

yit = p+ ryi;t�1 + uit; (4)

t = 1; :::; Ti, i = 1; :::; n;

so the corresponding estimators are easily obtained with common economet-

ric packages. For n ! 1, these estimators are consistent,
p
n-asymptotically

normal with the usual covariance matrix associated with (heteroskedastic) NLS

estimation.

The CLS procedure assumes homoskedastic errors, which is not so by con-

struction. Under correct speci�cation of V AR (yitjyi;t�1) an alternative estima-

tor, more e¢ cient than CLS is conditional weighted least squares (CWLS), with

the weighting functions obtained from

V AR (uitjyi;t�1) = V AR (yitjyi;t�1)

= y2i;t�1p (1� p) (1� p1)
2
+ yi;t�1 (1� p) (1� p1) (2p+ p1) + p (1� p) ; (5)

replacing p and p1 with its CLS estimates. As the true form of heteroskedasticity

may be unknown, the robust "sandwich" covariance estimator should also be

used for inference purposes (either with CLS or CWLS).

As previously mentioned, the assumption of constant parameters, p and p1,

8i, can be rather restrictive. This assumption can be relaxed, even within a

pure time series context.(5 ) Within a regression framework one can specify pi
5 The assumption can be relaxed within a pure time series context by adopting individual-

speci�c parameters, pi and p1i. Then,

yit = pi + riyi;t�1 + uit;

uit = (dit � pi) (yi;t�1 + 1) + (1� dit) (p1i � yi;t�1) + (1� pi) (p1iyi;t�1) ;

where E (ditjpi) = pi, ri � pi + p1i (1� pi) and p1i � yi;t�1 �
Pyi;t�1
j=1 bij , with E (bij jp1i) =

p1i. The model parameters can be estimated through separate CLS regressions (one for

each individual with Ti > 2), or a single regression with individual dummies � the resulting

estimators are consistent with Ti ! 1. The precision of individual estimates of this �xed
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and p1i, for instance, as in (2). Accordingly, the CLS estimator of � �
�
�0; 
0

�0
can be de�ned as

�̂CLS = argmin
�

nX
i=1

TiX
t=1

(yit � pi � riyi;t�1)2 :

This estimator is also relatively straightforward to implement, given access to a

software package including NLS estimation, although reported standard errors

may wrongly assume homoskedastic errors. CWLS is a more e¢ cient method,

for which the weighting functions can be obtained from (3) and (5), with ex-

pectations now conditional on xi and yi;t�1. Again, if the true form of het-

eroskedasticity is unknown, the robust "sandwich" covariance matrix estimator

should also be used for inference purposes.

Accounting for unobserved individual heterogeneity can be di¢ cult in a re-

gression context if the form of this heterogeneity is left unspeci�ed. A fea-

sible approach introduces unobservables in the model only through pi and

p1i. One presumably useful simpli�cation considers individual-speci�c, time-

invariant random intercepts in both pi and p1i, leading to the formal de�nitions(6 )

pi � (1 + exp (�x0i� � "i))
�1
; (6)

p1i � (1 + exp (�z0i
 � "i))
�1
:

Then, for each individual the model for the conditional �rst moment of yit

becomes

E (yitjyi;t�1; xi) = qi + riyt�1; (7)

qi �
Z
pif" (") d";

ri �
Z
(pi + p1i (1� pi)) f" (") d"

where " � "i, i = 1; :::; n, denote i.i.d: random variables with zero mean and

some speci�ed density f". It is noted that, conditional on observed regressors,

e¤ects approach can be poor for individuals with low Ti. Still, it can be useful as a �rst step

in CWLS estimation or as a means to test the hypothesis of parameter constancy �with, e.g.,

a standard F test of model (4) against the latter speci�cation. Alternatively, a random e¤ects

approach can be adopted, with estimation of the relevant parameters of the distributions of

the random variables pi and p1i over di¤erent individuals.
6 Obviously, unobserved individual heterogeneity can be dealt with in this same way within

a pure time series approach �the only di¤erence being the absence of observable regressors.

9



pi and p1i are no longer independent.(7 ) The parameters of the model (�, 


and parameters in f") can be estimated through nonlinear CLS, provided in-

tervening integrals are conveniently computed (with quadrature or simulation

approximation methods, if necessary).(8 )

Accounting for unobservables in this panel data regression model has now led

to full speci�cation of the conditional distribution of the sequence fyt; t = 1; :::; Tg

given x. Though easy to implement, the CLS approach does not make use of all

the information this full speci�cation provides. One obvious alternative, possi-

bly more e¢ cient, is provided by the ML method, to be addressed in the next

section.

3.2 Maximum Likelihood

Under the assumption of independent individual time sequences ML estimation

requires full speci�cation of the joint probabilistic model for the Markov chain

fyt; t = 1; :::; Tg. This model is already implicit in previous assumptions �(1)
7 In general, accounting for unobserved individual heterogeneity a¤ects the Markov nature

of each individual sequence fyt; t = 1; :::; Tg . For simplicity, let "it = "i, 8t. If, conditional

on x and ", the sequence constitutes a Markov chain, that is,

f (y1; :::; yT j") = f (y1j")
TY
t=2

f (ytjyt�1; ")

(conditioning on x, and function indices omitted), the same is not true when " is integrated

out from this joint density. Formally,

f (y1; :::; yT ) =

Z
f (y1j")

TY
t=2

f (ytjyt�1; ") f" (") d"

6=
Z
f (y1j") f" (") d"

TY
t=2

Z
f (ytjyt�1; ") f" (") d"

= f (y1)

TY
t=2

f (ytjyt�1) :

Nevertheless, the formal inclusion of " in the model (through p and p1) causes yt to be

dependent on other elements of the chain only through yt�1 and ". This leads to consideration

of the conditional �rst moment of yt as in (7), thereby enabling CLS estimation analogously

as before.
8 Other schemes could be adopted for the inclusion of unobservables, such as random �

and/or 
 coe¢ cients (other than the intercepts), time-varying individual e¤ects and/or di¤er-

ent (correlated) disturbances in p and p1. Presumably, the usefulness of such sophistications

should be weighted against the added estimation di¢ culty they are bound to represent.
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and (2) (or (7) with speci�cation of f"). Here, this full speci�cation is made

explicit in order to implement ML.

In the present context y0 � 0, so y1 � d1 and Pr (y1) = py1 (1� p)1�y1 ,

with y1 2 f0; 1g. Assumption (1) leads to the following model of transition

probabilities (individual indices omitted, so T � Ti):

Pr (ytjyt�1) = p1(yt=yt�1+1)
�
(1� p)

�
yt�1
yt

�
pyt1 (1� p1)

yt�1�yt
�1(yt�yt�1)

;

where 1 (�) denotes the usual indicator function. Then, the joint conditional

density of each individual sequence fyt; t = 1; :::; Tg can be written as

fy (y1; :::; yT jp; p1)

=
TY
t=1

 
p1(yt=yt�1+1)

�
(1� p)

�
yt�1
yt

�
pyt1 (1� p1)

yt�1�yt
�1(yt�yt�1)!

=

TY
t=1

 �
p

1� p

�1(yt=yt�1+1)
(1� p) (8)

�
��
yt�1
yt

��
p1

1� p1

�yt
(1� p1)yt�1

�1(yt�yt�1)!

/
�

p

1� p

�PT
t=1 1(yt=yt�1+1)

(1� p)T

�
 �

p1
1� p1

�PT
t=2 1(yt�yt�1)yt

(1� p1)
PT

t=2 1(yt�yt�1)yt�1

!1(T�2)
;

exhibiting, as expected, the usual split of hurdle models into two separate com-

ponents: the �rst, involving p, refers to the binary process that splits individual

sequences into �success�(periods for which yt = yt�1 +1), and �failure�(periods

for which yt � yt�1); the second, involving p1, refers to the binomial part of the

model for periods with yt � yt�1.

ML estimates can be obtained on the basis of an individual contribution to

the log-likelihood of the form,

LLi = const:+

TiX
t=1

1 (yit = yi;t�1 + 1) log
p

1� p + Ti log (1� p)

+1 (Ti � 2)
 

TiX
t=2

1 (yit � yi;t�1)
�
yit log

p1
1� p1

+ yi;t�1 log (1� p1)
�!

:

It is readily seen that estimation of the �rst component of the hurdle (p es-

timation) uses all observations in the sample. Estimation of the second com-

ponent (involving p1) disregards data on the �rst period for every individual
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(consequently disregarding individuals with only one observation), as well as

observations for periods with dit = 1, so yit = yi;t�1 + 1.

If one wants to analyze a regression model, covariates can be introduced

through parameters p and p1, speci�ed, for instance, as logits.(9 ) Unobserved

individual heterogeneity can also be dealt with, analogously as in the previous

section. However, if such heterogeneity is present in both p and p1, ML esti-

mation is bound to become more di¢ cult because, in general, the likelihood no

longer factors into two functionally independent terms.(10 ) In addition, as the

likelihood may involve complex integrals with no known analytical expressions,

simulation or quadrature approximation techniques may be required to estimate

the model.

4 Simulation Results

4.1 Monte Carlo Design

This section illustrates the performance of the CLS and ML estimators of the

panel data hurdle model on the basis of a simulated panel data set. This panel

contains information on each individual time series of counts up to the sampling

date, as well as on a set of covariates.

As before, the value of the dependent variable for individual i at period

t is denoted by yit, where 1 � t � Ti, and Ti represents the length of the

i-th series up to the observation date (for instance, Ti can be measured in

months). Two samples were generated: the �rst with n = 360 individual time

sequences and the second with n = 5400 sequences. In each sample 1 � Ti � 36,

with the same number of individuals for each di¤erent Ti value. That is, the

9 The above expressions hold with time-invariant regressors. If time-varying covariates are

introduced, notation must be altered accordingly.
10 This is in line with the approach of Winkelmann (2004). In this case the individual

contribution to the likelihood can be written as

L =

Z Z
A (p)B (p1) dF (p; p1) ;

where A and B denote, respectively, the �rst and second parts of the hurdle likelihood, and

F (p; p1) denotes the joint distribution of p and p1 (possible conditioning on observed regressors

omitted). Only with independent p and p1 can this expression be written as a product of two

functionally independent terms.

12



smaller sample contains 10 (= 360=36) individuals per each Ti, whereas the

larger sample contains 150 (= 5400=36) individuals per each Ti.

Individual time sequences are drawn independently (independence across i);

each individual sequence fyit; t = 1; :::; Tig is drawn from the joint (conditional)

p.f: de�ned in (8) with p and p1 speci�ed as logits. These include the following

regressors from the corresponding marginals: x1 � 1 (intercept term), x2 �

Bernoulli (:25), x3 � N (0; 2:25), and x4 a rank variable generated by

x4 =

8>>>>>>>>><>>>>>>>>>:

1; 0 < w < 2;

2; 2 � w < 4;

3; 4 � w < 6;

4; 6 � w < 8;

5; w � 8;

with w a chi-squared variable with three degrees of freedom. Covariates are

assumed time-invariant (xkit � xki, k = 2; 3; 4) with p and p1 speci�ed as

pit � (1 + exp (�x0i� � �yi;t�1 � "i))
�1
;

p1i � (1 + exp (�x0i
 � "i))
�1
;

with xi � (1; x2i; x3i; x4i)0, � � (:85;�:75; :2;�1:5)0, 
 � (1;�:5; :5;�:5)0, � is

a parameter and "i � N
�
0; �2"

�
, 8i, denotes an unobserved individual e¤ect.

For each of the two sample sizes various DGP�s are considered, according to

di¤erent values of � and �2". Respectively, � 2 f0;�:3g and �2" 2 f0; 1g. For in-

stance,
�
�; �2"

�
= (0; 0) means that the sample is generated without unobserved

individual heterogeneity and with the assumption that, at each date, individual

decisions are independent of the previous value of the count variable (yi;t�1).

Alternatively a negative value is chosen for �, under which pit is lower the higher

yi;t�1. The following table labels these DGP�s:

Data Generating Processes

DGP1 DGP2 DGP3 DGP4

� 0 �:3 0 �:3

�2" 0 0 1 1
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These simulated data sets can be thought of as samples of loan repayment

histories in �xed installments. Each individual represents a di¤erent contract

aged Ti months at the sampling date. The assumption of time-invariant regres-

sors may re�ect the frequent fact that contracts and clients characteristics are

recorded at the time of loan applications and remain subsequently unchanged

over the repayment period. A negative value for � (pit decreasing in yi;t�1) is

naturally interpreted as a decrease in the probability not to pay, in response to

an increase in the number of previously missed installments.

In the simulation experiment model (1) is denoted, respectively, as PHL

and PH, according to whether it is speci�ed with or without lagged dependent

variable in p. The performance of CLS and ML estimation methods is assessed

on the basis of 2000 replications of the described samples with regressors newly

drawn at each replica. All computations were performed using TSP 5.0 (Hall

and Cummins, 2005).

4.2 Monte Carlo Results
Estimation results for models PH and PHL are displayed in tables 1.1 through

4.2, corresponding to the four DGP�s and two di¤erent sample sizes. The tables

contain estimates averages and standard errors for parameters in p (�1 through

�4, and � for model PHL) and in p1 (
1 through 
4). ML estimates and standard

errors for the 
 parameters are the same under models PH and PHL because

the second part of the log-likelihood (involving p1) is identical in both models

(see (8)). Obviously, this is not the case for the CLS estimates of 
.

The estimation results suggest some remarks. First, under DGP1 both mod-

els are correctly speci�ed. Accordingly, � estimates from both models are rel-

atively similar. Both CLS and ML seem to work slightly better (with lower

standard errors) under model PH than with PHL, which is expectable because

the former assumes the true value for �, while it is estimated in the latter. For

CLS this �nding extends to p1 parameters as well. Understandably, the advan-

tage of model PH over PHL is reduced as the sample size increases. Meanwhile,

under DGP1 ML standard errors are invariably lower than CLS, a consequence

of the former method full usage of the available information.

Under DGP2 only model PHL is correctly speci�ed. Nevertheless, model

PH seems to produce reasonable CLS � estimates with both sample sizes, quite
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better than ML and close to PHL � estimates. Actually this pattern can be

deceiveing as it appears to be associated with a relatively low absolute value of

�, bringing models PH and PHL close to one another. Unreported simulation

results for model PH do indicate a strong sensitivity of both � and 
 CLS

estimates to the true value of �. Meanwhile, for the reason already mentioned,

ML estimates of 
 coincide with those from model PHL and are, therefore,

obtained from consistent estimators. Given the functional separability of the

likelihood function, ML 
 estimates are immune to the misspeci�cation of p.

Under DGP3 and DGP4 no model is correctly speci�ed, as none of them

allows for unobserved individual heterogeneity. The consequences of such mis-

speci�cation appear somewhat widespread, a¤ecting both p and p1 parameters

estimates (tables 3.1 through 4.2). These e¤ects are particularly severe for the

CLS estimates of the intercept term in p1 but, overall, results are not trustwor-

thy under neglected individual heterogeneity.

5 Conclusion
This paper presents a hurdle model for panel count data with excess zeros and

bounded support, suggesting its estimation through CLS and ML. The use and

behaviour of both methods is illustrated with simulated data sets of independent

individual time sequences of counts.

The performance of CLS and ML appears somewhat similar under the con-

sidered DGP�s, with a slight and expectable advantage of the latter in cases of

correct model speci�cation. Naturally, e¢ ciency advantages of ML should be

weighted against the considerably easier coding of CLS estimation.

The proposed speci�cation can be used, for instance, as a model of repay-

ment behaviour to be employed in a context of credit or behavioural scoring.

In this sense it may provide better estimates of default probability than, e.g.,

simple cross-section models of the total number of missed installments. Mean-

while, with some adjustments, the approach is rich enough to encompass such

situations as early repayment or redemption of loans, as well as loan contracts

with variable installments. Naturally, these examples can provide the ground

for future work.
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Estimation Results - DGP1

Table 1.1 - Sample: 360 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 .876 .184 .851 .096 .902 .180 .790 .112

�2 -.753 .150 -.752 .093 -.764 .151 -.732 .094

�3 .207 .047 .201 .024 .213 .049 .190 .026

�4 -1.513 .115 -1.502 .067 -1.531 .117 -1.477 .070

� � � -.051 .103 .028 .026


1 .949 .338 1.004 .129 1.161 .555 1.004 .129


2 -.519 .291 -.506 .128 -.578 .322 -.506 .128


3 .497 .098 .501 .034 .523 .113 .501 .034


4 -.488 .191 -.507 .096 -.575 .262 -.507 .096

Table 1.2 - Sample: 5400 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 .852 .047 .849 .025 .854 .045 .779 .029

�2 -.751 .038 -.751 .024 -.752 .038 -.728 .024

�3 .200 .012 .200 .006 .201 .012 .188 .007

�4 -1.501 .029 -1.499 .018 -1.502 .029 -1.471 .018

� � � -.003 .021 .032 .006


1 .995 .085 1.000 .033 1.011 .142 1.000 .033


2 -.501 .076 -.500 .032 -.505 .082 -.500 .032


3 .501 .024 .500 .009 .503 .029 .500 .009


4 -.499 .048 -.500 .025 -.505 .067 -.500 .025
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Estimation Results - DGP2

Table 2.1 - Sample: 360 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 .838 .152 .433 .087 .899 .156 .742 .114

�2 -.741 .133 -.629 .090 -.766 .140 -.721 .099

�3 .199 .036 .133 .023 .208 .040 .183 .027

�4 -1.468 .098 -1.341 .062 -1.521 .104 -1.459 .071

� � � -.298 .184 -.214 .042


1 -.238 .299 1.005 .137 .842 .588 1.005 .137


2 -.199 .259 -.506 .134 -.476 .273 -.506 .134


3 .413 .074 .503 .036 .495 .085 .503 .036


4 -.024 .163 -.507 .102 -.444 .257 -.507 .102

Table 2.2 - Sample: 5400 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 .817 .037 .431 .022 .853 .041 .733 .028

�2 -.734 .033 -.624 .022 -.750 .035 -.714 .023

�3 .195 .009 .132 .006 .200 .010 .181 .007

�4 -1.456 .024 -1.340 .016 -1.501 .027 -1.454 .018

� � � -.301 .061 -.209 .010


1 -.190 .073 1.001 .035 .989 .176 1.001 .035


2 -.188 .066 -.500 .034 -.498 .074 -.500 .034


3 .412 .018 .500 .009 .500 .022 .500 .009


4 -.037 .040 -.500 .026 -.496 .073 -.500 .026
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Estimation Results - DGP3

Table 3.1 - Sample: 360 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 -.359 .362 .798 .170 -.344 .335 .149 .147

�2 -.546 .363 -.658 .177 -.451 .306 -.499 .133

�3 .212 .124 .174 .048 .064 .100 .091 .035

�4 -1.189 .264 -1.330 .101 -1.009 .216 -1.108 .083

� � � .179 .190 .214 .024


1 7.011 5.059 1.134 .209 2.306 1.999 1.134 .209


2 -1.730 4.297 -.282 .219 -.350 .939 -.282 .219


3 1.184 .996 .386 .059 .516 .468 .386 .059


4 -1.546 1.571 -.144 .142 -.202 .832 -.144 .142

Table 3.2 - Sample: 5400 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 -.443 .102 .790 .044 -.407 .081 .137 .038

�2 -.635 .117 -.645 .046 -.411 .074 -.487 .034

�3 .263 .032 .172 .012 .056 .022 .089 .009

�4 -1.184 .074 -1.323 .026 -.904 .046 -1.101 .021

� � � .235 .014 .215 .006


1 6.184 .544 1.123 .054 1.464 .257 1.123 .054


2 -1.070 .529 -.260 .056 -.094 .155 -.260 .056


3 .803 .143 .381 .015 .299 .051 .381 .015


4 -1.444 .247 -.130 .036 .061 .130 -.130 .036
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Estimation Results - DGP4

Table 4.1 - Sample: 360 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 -.415 .280 .266 .125 -.164 .259 .079 .142

�2 -.424 .281 -.534 .139 -.463 .246 -.487 .131

�3 .059 .090 .102 .036 .047 .080 .078 .035

�4 -1.017 .172 -1.170 .080 -1.041 .159 -1.107 .081

� � � .120 .436 .095 .030


1 2.536 .698 1.309 .231 .930 1.123 1.309 .231


2 -.506 .659 -.347 .240 -.125 .549 -.347 .240


3 .504 .232 .406 .065 .351 .216 .406 .065


4 -.451 .417 -.228 .148 .109 .478 -.228 .148

Table 4.2 - Sample: 5400 individuals

Model PH PHL

Est. Meth. CLS ML CLS ML

est. s.d. est. s.d. est. s.d. est. s.d.

�1 -.512 .075 .255 .031 -.262 .061 .062 .036

�2 -.434 .079 -.528 .036 -.421 .057 -.480 .033

�3 .079 .023 .102 .009 .041 .017 .076 .009

�4 -.963 .045 -1.160 .020 -.958 .037 -1.096 .020

� � � .251 .013 .097 .008


1 2.598 .167 1.300 .060 .557 .166 1.300 .060


2 -.424 .171 -.322 .061 .006 .108 -.322 .061


3 .426 .054 .404 .017 .270 .035 .404 .017


4 -.465 .102 -.216 .039 .246 .091 -.216 .039
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Appendix

This appendix presents algebraic derivations of expressions for relevant mo-

ments of the marginal, joint and conditional distributions involved in the se-

quence fyt; t = 1; :::; Tg. Also included is a brief statement of asymptotic prop-

erties of the CLS estimator, with n!1.

Section 2 � E (yt) = p
�
1 + r + :::+ rt�1

�
.

Proof. Under the de�nition of the model in (1) and subsequent assumptions,

E (y1) = E (d1) = p. That is, the proposed formula is valid for t = 1. Supposing

that E (yt) = p
�
1 + r + :::+ rt�1

�
, it follows that

E (yt+1) = E (E (yt+1jyt)) = E (p+ ryt)

= p+ r
�
p
�
1 + r + :::+ rt�1

��
= p

�
1 + r + :::+ rt

�
;

which con�rms the generality of the proposed result, for any positive integer t.

Section 2 � COV (yt; yt�k) = r
kV AR (yt�k).

Proof. i. The formula is derived on the basis of the following preliminary

result for the conditional �rst moment of yt, given yt�k:

E (ytjyt�k) = p
�
1 + r + :::+ rk�1

�
+ rkyt�k: (9)

This can be shown by mathematical induction as well. It is �rst noted that,

given the Markov nature of the sequence fytg, one can write

E (ytjyt�k�1) = E (E (ytjyt�k) jyt�k�1) . (10)

Now, for k = 1, (9) is veri�ed, because E (ytjyt�1) = p + ryt�1. Then, (9)

and (10) lead to the required result

E (ytjyt�k�1) = E (E (ytjyt�k) jyt�k�1)

= p
�
1 + r + :::+ rk�1

�
+ rkE (yt�kjyt�k�1)

= p
�
1 + r + :::+ rk�1

�
+ rk (p+ ryt�k�1)

= p
�
1 + r + :::+ rk

�
+ rk+1yt�(k+1):
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ii. From

COV (yt; yt�k)

= E (yt (yt�k � E (yt�k))) = E (E (ytjyt�k) (yt�k � E (yt�k))) ;

and from i., it follows that

COV (yt; yt�k) = E
��
p
�
1 + r + :::+ rk�1

�
+ rkyt�k

�
(yt�k � E (yt�k))

�
= rkE (yt�k (yt�k � E (yt�k))) = rkV AR (yt�k) :

Section 3.1 � Consistency and
p
n-asymptotic normality of the CLS esti-

mator of (p; p1)
0 (bounded Ti, 8i).

Proof. Asymptotic properties are stated with respect to (p; r)0 for the case

n!1. From these the desired properties of the CLS estimator of (p; p1)0 follow

immediately, with the asymptotic covariance matrix of the (p; p1)
0 estimator

obtained through the delta method.

Let � � (p; r)0 and �̂ denote its CLS estimator. Then, one can write

�̂ = � +

 
1

n

nX
i=1

TiX
t=1

zitz
0
it

!�1 
1

n

nX
i=1

TiX
t=1

zituit

!
;

with zit � (1; yi;t�1)0, yi0 � 0 and uit � yit�p�p1yi;t�1. Suppose, for simplicity,

that p1 < 1 (the case p1 = 1 does not a¤ect asymptotic properties for �xed Ti,

8i). With �xed Ti,
PTi

t=1 zitz
0
it is necessarily bounded, so

Pn
i=1

PTi
t=1 zitz

0
it is

Op (n). Also, p limn!1
1
n

Pn
i=1

PTi
t=1 zituit = 0, because of the following readily

established results: E (uit) = 0; E (uityi;t�1) = 0; and

lim
n!1

24 V AR
�
1
n

Pn
i=1

PTi
t=1 uit

�
V AR

�
1
n

Pn
i=1

PTi
t=1 yi;t�1uit

�
35

= lim
n!1

1

n2

nX
i=1

24 PTi
t=1 V AR (uit)PTi

t=1 V AR (yi;t�1uit)

35 ;
because cross-product terms are null in V AR

�PTi
t=1 zituit

�
, given the fact that

V AR

 
TiX
t=1

uit

!
=

TiX
t=1

V AR (uit)
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and

V AR

 
TiX
t=1

yi;t�1uit

!
=

TiX
t=1

V AR (yi;t�1uit) ;

as yit and yi;t�k are independent, conditionally on yi;t�1. Then, the last expres-

sion is equal to

lim
n!1

1

n2

nX
i=1

24 Ti (p (1� p) + pp1)�
�
1� pTi1

�
= (1� p1)

p (1� p)E
�
y2i;t�1

�
+ p1 (1� p1)E

�
y3i;t�1

�
35 = 0;

because E
�
y3it
�
is necessarily bounded for �xed Ti.(11 )

Therefore, the CLS estimator of (p; r)0 is consistent. Asymptotic normal-

ity of
p
n (�̂ � �) follows immediately from the fact that both elements ofPTi

t=1 zituit (
PTi

t=1 uit and
PTi

t=1 yi;t�1uit) have zero mean and bounded vari-

ance for bounded Ti, enabling application of a central limit theorem to the

sequence
nPTi

t=1 zituit

o
. In matrix notation one can write

p
n (�̂ � �) =

�
1

n
Z 0Z

��1
1p
n
Z 0u;

where

Z
(
P
Ti�2)

�

26664
Z1
...

Zn

37775 ; Zi
(Ti�2)

�

26666664
1 0

1 yi1

� � � � � �

1 yi;Ti�1

37777775 ;

and u denotes the column (
P
Ti)� vector of residuals, yit � (p+ ryi;t�1), t =

1; :::; Ti, i = 1; :::; n. Thus,

p
n (�̂ � �) _�N (0; V ) ;

11 Speci�cally,

E
�
y2it
�
= p

1� pt1
1� p1

� p2
1� p2t1
1� p21

+ p2
�
1� pt1
1� p1

�2
;

and

E
�
y3itjyi;t�1

�
= p31y

3
i;t�1 +

�
3p21p� 3p31 + 3p2

�
yi;t�1

+
�
6p1p� 3p21p� 3p21 + 2p31 + p1

�
yi;t�1 + p;

as can be obtained, for instance, from the conditional moment generating function of yt, given

yt�1,

E (exp (syt) jyt�1) = (1� p+ pes) (1� p1 + p1es)yt�1 ;

(the expression for the unconditional moment, E
�
y3it
�
is quite cumbersome to obtain).
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where

V �
�
p lim
n!1

1

n
Z 0Z

��1�
p lim
n!1

1

n
Z 0uu0Z

��
p lim
n!1

1

n
Z 0Z

��1
:

(The formal expression for this variance involves the unconditional variances of

yit, t = 1; :::; Ti).

Section 3.1 � CWLS estimation, expression (5):

V AR (yitjyi;t�1)

= y2i;t�1p (1� p) (1� p1)
2
+ yi;t�1 (1� p) (1� p1) (2p+ p1) + p (1� p) :

Proof. The model assumptions lead to

E
�
y2t jyt�1

�
= pE

�
y2t jyt�1; dt = 1

�
+ (1� p)E

�
y2t jyt�1; dt = 0

�
= p (yt�1 + 1)

2
+ (1� p)

�
V (p1 � yt�1) + E2 (p1 � yt�1)

�
= p (yt�1 + 1)

2
+ (1� p)

�
yt�1p1 (1� p1) + y2t�1p21

�
:

Then, expression (5) follows from the equality

V AR (ytjyt�1) = E
�
y2t jyt�1

�
� E2 (ytjyt�1) ;

with E (ytjyt�1) = p+ (p+ p1 (1� p)) yt�1.
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