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Abstract

This paper investigates the impact of duration response measurement error

using small parameter asymptotics. The probability limit of GMM type esti-

mators that ignore its presence is derived and illustrated for single spell models

with right censored observations, and two a spells lagged duration dependence

model. The results suggest an easy-to-estimate adjusted GMM estimator that

does not require specification of the measurement error distribution. Identifi-

cation is achieved by using the moment condition that defines the specification

score test sensitive to measurement error. The results are applied to mod-

elling unemployment durations from the BHPS, allowing for heteroskedastic

measurement error related to a measure of recall effort.
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INTRODUCTION

The issue of measurement error has become an increasingly important issue for

researchers in all areas of econometrics and in particular outside the linear regression

model. The problem arises because the mapping between the theoretical constructs

and the observational data is not perfect. Many collected duration data suffer from

this limitation. In particular, when event histories are constructed from recall data,

the distribution of observed durations often differs from the distribution of the true

durations due to contamination with measurement error. This error may assume

several forms of which the most common are rounding, heaping or just continuous

measurement error. In any case, it leads to a distortion in the properties of duration

distributions, for example typically having higher variance, differently shaped density

and distorted hazard duration dependence.

This paper considers problems in which measurement error and error free durations

are independently distributed. This may occur when spell lenght is collected from

information on entry and exit dates from a state, such as unemployment. The aim of

the paper is twofold: First to study and understand how this contamination distorts

duration distributions. In particular it is investigated how measurement error changes

the form of duration dependence in the hazard function and, how this form of duration

dependence determines the extent of the impact of the measurement error. The

relevance of this analysis comes from the fact that economic theory or previous studies

may be informative on the form of the hazard function duration dependence, and that

knowledge can be used by practitioners to assess if duration measurement error may or

not be a serious threat. Secondly, this paper provides an easy to implement estimator

that accounts for the measurement error in duration data, without having to specify

its distribution, and applicable when no multiple observations on the same spell are

available (often needed to make inference on some features of the distribution of the
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errors). The importance of developing semiparametric estimators is, in the similar

context of uncontrolled heterogeneity, outlined in Lancaster and Nickell (1980) and

Heckman and Singer (1984). They alert to the possible missperception in the form

of duration dependence induced by misspecification of the distribution of the random

term.

Few attempts have been made to develop statistical procedures concerned with

correcting for this type of measurement error. Romeo (1997) uses a functional error-

in-variables model and Bayesian techniques to estimate the true unobserved durations

from multiple observations, which are used in a second stage as input to estimate the

parameters of a Weibull model. Abrevaya and Hausman (1999) use the monotone

rank estimator of Cavanagh and Sherman (1998) to produce consistent estimates of

the covariate coefficients up-to-scale; this estimator does not require specification of a

measurement error model but does not provide an estimator for parameters associated

with duration dependence. Skinner and Humphreys (1999) derive an exact result for

the Weibull model assuming a fully known parametric model for the measurement

error distribution and study its bias properties using small variance approximations.

These contributions taken individually suffer from limitations that a practiotioner

often finds, namely, the need for multiple observations, the unavaibility of estimates

for the shape of the hazard function and the need to specify the error distribution for

which economic theory is uninformative.

The approach developed here aims at facing all these difficulties and is used in

Chesher, Dumangane and Smith (2002) as means to construct a specification test

sensitive to measurement error. This is achieved by considering an approximation to

the error contaminated model that incorporates into a known error free distribution

measurement error with an unspecified distribution.

In this paper these approximations are used in two ways; to perform specifica-

tion analysis and to derive a measurement error adjusted GMM estimator. In the
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first case the effect of duration response measurement error on the probability limit of

GMM-estimators constructed ignoring its presence is investigated and illustrated. For

particular parametric models, this measure gives important quantitative and quali-

tative information on the impact of measurement error on parameter estimates. The

particular cases of the Log—logisitc, Weibull and a two-spell Exponential model with

lagged-duration-dependence are studied. In the first two cases measurement error

produces always attenuation bias on all parameter estimates, and its extent is shown

to depend on the shape parameter and the proportion of censored observations. The

third example shows that when measurement is correlated across spells, attenuation

bias is just one of the possible outcomes. In a regression context this corresponds

to a situation where dependent variable and covariate are both mismeasured with

correlated errors. The second contribution of the paper suggests a measurement error

adjusted GMM estimator of the parameters of the error free distribution and variance

of the measurement error, similar to Chesher (2000) for covariate measurement error.

The general idea is that if a model is characterized by a set of moment conditions that

are not satisfied under certain misspecification (like measurement error), it is possible

to find functions of the data that involve the unknown parameters that correct the

bias in the original moment conditions up to a term that is asymptotically negligible

without specifying the distribution of the errors1.

This approach relates to the correcting estimation equations literature used in

the context of covariate measurement error, where the errors are assumed normally

distributed. Examples of this approach are the conditional score method of Stefanski

and Carroll (1987) applied to generalized linear models (see McCullagh and Nelder,

1989), the method of corrected score equations of Stefanski (1989) and Nakamura

(1990) extended in Buzas and Stefanski (1995) for certain generalized linear models,

and Bounaccorsi (1996).

1The asymptotics here is with respect to the variance of the measurement error.
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An important feature of the estimation procedure proposed here is that it does

not require auxiliary data, often needed to identify the relevant parameters of the

measurement error distribution. These are jointly estimated with the parameters of

the error-free distribution by considering a GMM-estimator based on an extended

score vector. This additional moment condition defines the score type test sensitive

to measurement error in Chesher, Dumangane and Smith (2002) and Dumangane’s

(2000) extension for multiple-spells-single-destination (MSSD) models. An interesting

consequence of this procedure is that score tests are rehabilitated from their major

disavantage, namely that they give no constructive information on the structure of

the model under the alternative.

In the presence of measurement error, the estimator proposed here is approxi-

mately consistent, in the sense that the difference between its probability limit and

the true parameter is only (sigma) asymptotically zero. When compared with the

MLE that ignores measurement error, it is shown that the measurement error ad-

justed estimator reduces the sigma order of the bias as confirmed by Monte Carlo

(see Dumangane, 2006). Examples of other estimators with similar properties are:

Chesher (1998, 1999), Wolter and Fuller (1982) and Carroll and Stefanski (1990) for

the error-in-variables linear regression, Chesher and Santos Silva (2002) for the het-

erogeneity adjusted logit model, and Skinner and Humphreys (1999) Weibull model

with duration measurement error when the proposed distribution is misspecified. The

main pourpose of this estimator is to give practioners that have no information on the

distribution of the error (as auxiliary data), and are not willing to make parametric

assumptions, a quick and easy way of assessing the impact of duration measurement

error on parameter estimates. Ofecourse if the amount of measurement error is not

excessive the approximate model can itself be adequate.

As pointed out in Chesher, Dumangane and Smith (2002), when the true duration

distribution belongs to the scale-parameter family, multiplicative measurement error
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is statistically equivalent to scale parameter heterogeneity. As such, this estimator

also allows for any unaccounted stochastic variation coming from the scale parameter.

Therefore this estimator is an alternative to the parametric method proposed by

Lancaster (1979) for the Weibull model, which assumes a Gamma distributed random

term in the scale parameter, and to Heckman and Singer (1984) and Honoré (1990)

estimators for proportional hazards with unspecified unobserved heterogeneity, which

assume a known parametric form for the baseline hazard.

Since identification in this model requires a parametric assumption on the distrib-

ution of the error-free duration, the procedure proposed here is presented mainly as

a mean to provide sensitivity analysis in the following sense: if the error free dura-

tion were as hypothesized and if there were measurement error, what would be the

values of the parameters of the error free distribution and of the measurement error

variance?2. The identification issue is illustrated in the application where two para-

metric specifications to model unemployment durations from the BHPS survey are

considered. In this case it is shown that misspecifying the distribution of the error

free duration produces a conflict in the measurement error corrected GMM estimates

of the parameters of error free model and the variance of the measurement error. To

take into account that duration measurement error may depend on the recall effort

individuals make, inducing some form of heteroskedasticity, its variance is made to

dependent on an observed measure of recall effort. This specification also permits to

test to what extent the excessive scale variantion can indeed be attributed to mea-

surement error. The results show how biased the analysis can be if the errors are not

taken into account and therefore the usefulness of this estimator.
2The issue of identification is not pursued in this study. In the related literature of neglected

heterogeneity this issue is discussed in Lancaster (1979), Lancaster and Nickell (1980), Heckman

and Singer (1984), Heckman (1991), and Elbers and Ridder (1982). Heckman and Taber (1994) list

identification proofs for mixed proportionate hazard models.
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The remainder of the paper is organized as follows. Section 2 presents the assump-

tions of the measurement error model, recalls briefly the small parameter asymptotic

approximations for single spell distributions derived in Chesher, Dumangane and

Smith (2002), and presents an extension for a favourable case of multiple-spell-single-

destination model. Section 3 derives the probability limit of the inconsistent estimator

and presents some examples. Section 4 derives the measurement error adjusted GMM

estimator. Section 5 applies the estimator to mismeasured unemployment duration

from the BHPS survey. Section 6 concludes.

THE EFFECT OF MEASUREMENT ERROR

Single spell single destination

Let T be a scalar, non-negative-valued random variable, taken to represent the

time to exit from a given state, with density function fT (·) and survival function
F̄T (·). These functions may depend upon a vector of observed covariates, X, but this
dependence is not made explicit at present. Let the error-contaminated duration be

S = T × V where V ∈ [0,∞) is a multiplicative measurement error continuously
distributed independently of T with density function fV (v)

3.

Under this conditions, Chesher, Dumangane and Smith (2002) demonstrate that

the small parameter asymptotic approximations for the density and survival functions

of S are4

fS(s) ' fT (s) +
σ2

2

¡
fT (s) + 3sf

0
T (s) + s2f 00T (s)

¢
(1)

F̄S (s) ' F̄T (s) +
σ2

2

¡
sF̄ 0

T (s) + s2F̄ 00
T (s)

¢
. (2)

where the second results from integration of (1). Here and later “'” denotes an
3Since T is non-negative, multiplicative measurement error is the leading case of interest. The

independence assumption is of course restrictive but also generates a leading case of interest.
4Here and later 0, 00 etc., indicate derivatives of functions in the sense that f 00T (s) = ∇ttfT (t)|t=s.
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approximation error of order o(σ2) where limσ→0
o(σ2)
σ2

= 0. Sufficient conditions for

these approximations to hold are that (a) V has bounded third absolute moment

and (b) T is continuously distributed with a density function which has finite and

uniformly bounded derivatives up to order 3. This approximations show the local

effect on the distribution of duration of this form of measurement error while not

depending on the form of the distribution of the errors. In Dumangane (2006) these

are used to characterize the impact on the form of duration dependence on the hazard

function in a generic setting.

Multiple spell single destination models

Consider now a multiple-spell-single-destination process. A leading example is an

individual that goes through a sequence of unemployment spells. The process can

be described by a sequence of calendar dates at which entry and exit to the states

occurred. Let the sequence of R true durations in the state, possibly derived from

those calendar dates be represented by the R-vector T = (T1, T2, ..., TR). Assume the

distribution of the error-free process has joint density function fT (t) , given by the

product of the R conditional densities

fT (t) =
RQ
j=1

fTj |Tj−1(tj|tj−1), fT1|T0(t1|t0) = fT1(t1) (3)

Let U =(U1,U2, ..., UR) be the measurement error vector distributed independently

of T, with joint continuous density fU(U), satisfying E(Uj) = 0, V ar(Uj) = 1

and E(UjUl) = ρjl, j, l = 1, ..., R. Let S = (S1, S2, ..., SR) be the R-vector of er-

ror contaminated durations generated according to the measurement error model

logSj = log Tj + σjUj
5. This error model is not valid when

PR
k=1 Tk =

PR
k=1 Sk,

5A more realistic version of the measurement error model would allow for heteroscedasticity in

the measurement error variance by specifying σij = σjm(ij) where m(ij) is a decreasing function

of j, as the recall effort is bigger for earlier spells. The individual subscript i is needed as different
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i.e., the age process is known or the spells are contigous as it imposes a specific form

of correlation between the error terms and between these and the true sequence of

durations6. Under this conditions the density of S is the R−folded integral
R ··· R RQ

j=1

fT (a) fU(u)du1...duR, (4)

where a is a R vector with elements aj = sj exp(−σjuj). Let Σ be the (R×R) matrix

with element σkl if k 6= l and σ2k if k = l. An approximation to the joint density of

S can be deduced, by Taylor series expansion of (4) around (σ1, σ2,...,σR) = 0, and

upon collecting terms using the assumptions made on U to obtain,

fS(s) ' fT(t) +

(Ã
1
2

RX
k=1

σ2k +
R−1X
k=1

RX
l=k+1

σkl

!
fT(s) +

3
2

RX
k=1

σ2kskf
(k)
T (s)+ (5)

+
RX
k=1

RX
l 6=k

σklskf
(k)
T (s) + 1

2

RX
k=1

σ2ks
2
kf

(kk)
T (s) +

R−1X
k=1

RX
l=k+1

σklskslf
(kl)
T (s)

)

where f (k)T (s) = ∂fT (s) /∂tk and f
(kl)
T (s) = ∂2fT (s) /∂tk∂tl.

This expression is a generalization of (1) that accounts for correlated measurement

error. Again it depends on the curvature properties of the error-free joint density

function through its first and second partial derivatives and does not depend on the

form of the measurement error joint distribution.

APPROXIMATE PROBABILITY LIMIT

Consider the class of single spell single destination models with right censored

observations. Let t∗i be the true lenght of time in the state of an individual. For a

random draw from the population, if there was no measurement error the observed

data would be ti = min{t∗i , ci}, i = 1, ..., n where ci is the censoring time for individual
stages of the process might have happen in different points in time demanding a different recall effort

for each individual.
6Dumangane (2000) Chapter 2 illustrates this problem for the simple two spell case.
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i . Let also di = 1(t∗i < ci) be the censoring indicator. If di = 1, ci is the potential

censoring time (see Kalbfleisch and Prentice, 1980). Assume an independent random

censoring (see Lawless 1982). Here and thereafter ET [·|φ = φ] denotes expectations

taken with respect to the error-free distribution at the parameter vector φ. Let the

error free model be characterized by the set of moment conditions

ET [g (T, φ0) |φ = φ0] = 0, g (t, φ) = d · g1(t, φ) + (1− d) · g0(t, φ) (6)

where g1(t, φ) ≡ g(t, φ|d = 1) and g0(t, φ) ≡ g(t, φ|d = 0) are (q × 1) vectors of
functions, with q > p, depending on φ0 the (p × 1) true parameter vector7. What
follows is valid when all observations are uncensored, by letting ci go to infinity.

Single spell models

Under the presence of measurement error, the observed data is si = min{s∗i , zi},
i = 1, ..., n, where zi is the error contaminated censoring time and di is assumed

to remain unaffected by measurement error. Note that since the distribution of the

observed censoring times is non-informative about the parameter vector φ, this implies

that the n-dimensional statistic {zi}ni=1 is partially distribution constant for φ. By
the partial conditionality principle (see Pace and Salvan, 1997), inference on the

parameter vector θ = {φ, σ2} should still treat the observed censoring times Zi = zi

as ancillary statistics on which inference should still be conditioned.

Let the density of S∗i be fS(s, θ0) where θ0 is the true parameter vector. Except

when g(t, φ) are linear functions of log T, measurement error changes the distribution

of the data in such a way that the original moment conditions (6) are no longer

satisfied8.
7In a parametric model those functions are respectively g1(t, φ) = ∇φ log fT (t, x, φ) and g0(t, φ) =

∇φ log F̄T (t, x, φ).
8The Exponential distribution is a case where multiplicative measurement error does not affect

the moment condition.
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The GMM estimator φ̂n that ignores the presence of measurement error is defined

by

argmax
φ

Q̂n (φ) = −ĝn (φ)0 Ŵ ĝn (φ) (7)

where ĝn(φ) = n−1
Pn

i=1 dig1(si, φ) + n−1
Pn

i=1(1 − di)g0(si, φ), and Ŵ is a (q × q)

positive semi-definite weighting matrix. By Lemma 2.3 in Newey and MacFadden

(1994),the probability limit of φ̂n, denoted by eφ(θ0), is the implicit solution of the
(q × 1) system of equations

ES[g(S, eφ(θ0)|θ = θ0] = 0 (8)

If σ20 = 0 this gives us (6) evaluated at φ0. If σ
2
0 6= 0, even if the measurement error

distribution was specified, an explicit solution for eφ(θ0) is not trivial to find. Instead
an approximation to eφ(θ0) correct up to a O(σ3) term can be constructed by first

order Taylor series expansion around σ20 = 0. First write (8) in the integral formZ z

0

g1(s, eφ(θ0))fS(s, θ0)ds+ g0(z, eφ(θ0))F̄S(z, θ0) = 0 (9)

Secondly, following the general approach of Kiefer and Skoog (1984) and upon re-

placing fS(s, θ0) and F̄S(z, θ0) by its O(σ2) approximations, the term ∂eφ(θ0)/∂σ2 at
σ2 = 0 in the expansion for eφ(θ0) is found by total differentiation of equation (9) with
respect to σ20 and eφ(θ0). DefineG0 ≡ G (φ0) as the (q×p)matrix of expectations of the
Hessian, i.e. G0 = ET [∇φg(S, φ0)|φ = φ0], let mT (s, θ) and MT (s, θ), be respectively

the O(σ2) terms in approximations (1) and (2), and let also b(θ0) = ba(θ0) + o(σ20)

where

ba(θ) =

Z z

0

g1(s, φ)mT (s, θ)ds+ g0(z, φ)MT (z, θ) (10)

The (q × 1) vector function defined above is the approximate bias function in the
moment conditions induced by measurement error, which satisfies ba(φ0, 0) = 0.

It follows that the GMM-estimator has probability limit given by

eφ(θ0) ' φ0 − (G0
0WG0)

−1
G0
0W ba(θ0) (11)
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Expression (11) shows that, up to a term of order O(σ3), the probability limit

of φ̂n is a linear combination of the bias in the moment conditions induced by

measurement error. This is not surprising since GMM estimators have an influ-

ence function representation. The usual particular cases apply here, namely (i)

when q = p, the matrix G0 is square and expression (11) can be further simpli-

fied to yield, eφ(θ0) ' φ0 − G−10 b(θ0), (ii) if the model is parametric then eφ(θ0) is
the approximate probability limit of the Maximum Likelihood Estimator (MLE),

G(φ0) = −ET [∇φφ log fT (T, φ0)|φ = φ0] is the Information Matrix, and ba(θ0) is the

approximate bias of the score vector.

Under standard regularity conditions (see for example Newey and McFadden, 1994)

the naive estimator has a well defined limiting distribution

√
n(φ̂n − φ̃(θ0)) = N

h
0, ( eG0

θW eGθ)
−1 eG0

θW Ω̃θ W
0 eGθ( eG0

θW eGθ)
−1
i
+ op(1) (12)

where Ω̃θ = ES[g(S, φ̃(θ0))g(S, φ̃(θ0))
0|θ = θ0] is the asymptotic variance of the

moment conditions evaluated at φ̃(θ0), Gθ(φ) = ES[∇φg(S, φ)|θ = θ0], and eGθ ≡
Gθ(φ̃(θ0)).

Multiple spell

Consider now the class of MSSD models for complete observations only. Let the

functions of T that define the moment conditions under the error-free model be

g(t,φ), and define σ as the ((R+R(R− 1)/2)× 1) vector with the distinct elements
of Σ. The approximate probability limit of the naive estimator φ̃(θ0), will now be of

the form

φ̃(θ0) = φ0 +
RX
k=1

dφ

dσ2k

¯̄̄̄
σ=0

σ2k +
R−1X
k=1

RX
l=k+1

dφ

dσkl

¯̄̄̄
σ=0

σkl + o(||σ||) (13)

Let φ̃(θ0) be the parameter vector that solves the implicit set of equations now

defined by ES[g(S, φ̃(θ0))|θ = θ0] = 0. Using the approximation to the multiple spell
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joint density, the O(||σ||) probability limit of the inconsistent GMM estimator for this

class of models is given by an expression similar to (11), where the approximate bias

function is replaced by ba(φ0,σ) =
PR

k=1 σ
2
kb

k(φ0) +
PR−1

k=1

PR
l=k+1 σklb

kl(φ0). The

terms in the summations are respectively given by

bk(φ0) =

Z ∞

0

. . .

Z ∞

0

g(s,φ0)∇σ2k
faS(s,φ0)dsR . . . ds1 (14)

bkl(φ0) =

Z ∞

0

. . .

Z ∞

0

g(s,φ0)∇σklf
a
S(s,φ0)dsR . . . ds1

and G(φ0) =
R∞
0

. . .
R∞
0
∇φg(s,φ0)fT(s,φ0)dsR . . . ds1.

These results are now applied to some popular parametric models to see how infor-

mative the approximate probability limit of the MLE can be in describing the impact

of measurement error.

Example 1 : Flow-sample right-censored Weibull and Log-logistic hazard

Consider the conditional Weibull and Log-logistic hazard functions,

hWT (t, x, α, β) = α exp{β0x}tα−1, α > 0 (15)

hLLT (t, x, α, β) =
α exp{β0x}tα−1
1 + exp{β0x}tα , α > 0

Let in both cases the parameter β be partitioned in β = (β0 β
0
1) and redefine β0 so

that x may be taken to have population mean zero and covariance matrix Σx.

Consider maximum likelihood estimation of the parameter vectors φ = {α, β},
allowing for the presence of independent right censoring. Except for the intercept in

the Weibull model, in both specifications φ̃(θ0) ' kjφ0 with j =W,LL.

Figure 1 plots the approximate proportional bias kj, against the conditional cen-

soring proportion Pr(d = 0|c). Here c was made to vary to produce censoring pro-
portions within the range of [0, 0.8]. The plots are entirely determined by the ratio
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V ar(log T )/V ar(logS), and are invariant to β. Except when there is no censoring,

direct application of expression (11) for the approximate probability limit does not

have a closed form, and therefore numerical integration was needed.

(Figure 1 around here)

It is clear that in both models duration response measurement error always dampnes

the form of the duration dependence and attenuates the impact of covariates in the

hazard function. For the Weibull model the inconsistency is a decreasing function of

the censoring proportion, whereas in the Log-logistic the relation is non-monotonic.

The figure intercept corresponds to absence of censoring. In this case direct ap-

plication of (11) yields expressions that are up to a term of order O(σ3) equivalent

to

kW =
ψ0(1)

ψ0(1) + α20σ
2
0

(16)

kLL =
1 + 2ψ0(1)

1 + 2ψ0(1) + 3α20σ
2
0/4

where ψ0(a) is the digamma function, and ψ0(1) = π2/6. From (16) it is easy to see

that the attenuation effect on the slope of the hazard function is determined by both

σ2 and α (the degree of log-convexity of the Weibull density). For the Weibull hazard

the right hand side of (16) is just V ar(log T )/V ar(logS). This is similar to the result

in Lancaster (1990) for the approximate proportional bias of the MLE under the

presence of proportionate hazard heterogeneity, with σ2H = α2σ2 - the variance of the

random term9. A similar result can also be found in Skinner and Humphreys (1999),

since there measurement error is implicitly treated as neglected heterogeneity.

9As noted in Chesher, Dumangane and Smith (2002), if the distribution of T belongs to the scale

parameter family of distributions, multiplicative measurement error is equivalent to scale parameter

heterogeneity, and in the special case of the Weibull distribution it is also equivalent to proportionate

hazard heterogeneity.
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By comparing both expressions in (16), it can easily be seen that when there is no

censoring the Log-logistic10 specification is more robust than the Weibull, in the sense

that the same relative amount of measurement error induces a smaller proportional

bias in its parameter estimates, but as the proportion of censoring increases the

opposite hapens.

In both cases the impact of measurement error is scaled by the form of duration

dependence of the hazard function.

Example 2 Two-spell Exponential lagged duration dependence

Consider R = 2 and a lagged duration dependence model with Exponentially dis-

tributed spells, with scale parameters

log λ1 = γ01 + γ011x, log λ2 = γ02 + γ012x+ δ log t1 (17)

The lagged duration coefficient is such that Cov(logT1, log T2) = −δψ0(1). If δ = 0
this is an occurrence dependence model.

Assume that complete observations on {T1, T2}, from the flow of entrants in the

first stage were used to compute maximum likelihood estimates of γk = {γ0k,γ01k}, for
k = 1, 2 and δ. Define m1 = γ02−ψ(1) and k1 = δ2σ21+σ22− 2δσ12. The approximate
probability limit of the MLE is,

γ̃01(θ0)

γ̃11(θ0)

γ̃02(θ0)

γ̃12(θ0)

δ̃(θ0)


'



γ01 − σ21
2

γ11

γ02 − k1 −m1
δ0σ21+σ12
ψ0(1)

γ12 − γ11
δ0σ21+σ12
ψ0(1)

δ0 − δ0σ21+σ12
ψ0(1)


(18)

The following points are of interest:

10For this model V ar(log T ) = 2ψ0 (1) /α2.
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1. Since there is no form of duration dependence in the first spell the regressor

coefficients are still consistently estimated11.

2. In this specification, the correlation between the measurement errors may lead

to a missperception of the lagged duration coefficient sign. Consider the o(||σ||)
equivalent expression for the approximate proportional bias of δ

δ̃(θ0)

δ0
=

ψ0(1)
ψ0(1) + σ21 + σ12/δ0

(19)

Whenever the covariance between the log durations has the same sign of the

covariance between the measurement errors, the result will be an attenuation

effect, otherwise the inconsistency may lead to a sign change.

3. In the simple case of δ = 0, estimated duration dependence might be the con-

sequence of correlated measurement error and therefore totally spurious.

4. Only the coefficients associated with covariates that appear in the first spell are

affected by measurement error.

5. The extent of the inconsistency in the covariate coefficient is determined by the

extent of the inconsistency in the lagged duration coefficient weighted by the

covariate coefficient in the first spell.

6. If the same set of covariates affect the two duration distributions in the same

fashion, then the proportionate bias will be as before, equal to the proportionate

bias in the lagged duration coefficient.

7. All that was said about the misperception of lagged duration dependence applies

to the covariate coefficients with the additional complication introduced by the

coefficient γ11. The potential misperception of the sign of the second spell

coefficients is a possible consequence of measurement error.
11This is because the score for this parameter is a linear function of log T1.
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The result from these first two sections show how GMM estimators are inconsis-

tent when the dependent variable is contaminated with measurement error. The

inconsistency arises because the moment conditions that define the error free model

are not satisfied under the contamination. The next section uses this to derive an

measurement error adjusted GMM estimator.

BIAS CORRECTED GMM ESTIMATOR

Single spell models

Let the model for T be characterized by the set of moment conditions defined in (6).

The estimator proposed here is based on the principle that the moment conditions

can be approximately corrected by functions of the observed data, and then used to

construct a GMM estimator.

From the previous section it follows that ES[g(S, φ)− ba(θ)|θ = θ] ' 0. Write this
moment condition asZ z

0

(g1(s, φ)− ba1(s, θ))fS(s, θ)ds− r1(z, θ) + (g0(z, φ)− ba0(z, θ))F̄S(s, θ) ' 0 (20)

Because of the order of the approximation considered here, terms of order O(σm)

with m > 2 can be omitted. It follows from (10) that

ba0(z, θ) = g0(z, φ)MT (z, θ)F̄
−1
T (s, φ)

As for ba1(s, θ) and r1(z, θ), they solve the equation that equals the integral in (10) toZ z

0

ba1(s, θ)fT (s, φ)ds+ r1(z, θ) (21)

In the appendix it is shown that under independent random censoring the following

expressions hold,

ba1 (s, θ) = σ2

2
[sg01(s, φ) + s2g001(s, φ)] (22)

r1(z, θ) = σ2

2
{[zg1(z, φ)− z2g01(z, φ)]fT (z, φ) + z2g1(z, φ)f

0
T (z, φ)}
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Then, the approximate structural bias function, ba (s, z, θ), i.e. the vector function of

the data that corrects the bias in the moment conditions, is given by

ba (s, z, θ) = d ba1 (s, θ) + (1− d) ba0(z, θ) + r1(z, θ) (23)

Under standard tail conditions for the density of T, the function r1(z, θ) vanishes

as z →∞, leading to the result for complete spell models. In this case knowledge of

the distribution of T is not needed to correct the moment conditions.

It follows from (23) that the bias corrected moment conditions are

ES[g
c(S, z, θ)|θ = θ] ' 0, gc(s, z, θ) = g(s, z, φ)− ba (s, z, θ) (24)

where gc(s, z, θ) ' gS(s, z, θ), andES[gS(S, z, θ)|θ = θ] = 0, defines the exact unbiased

moment conditions for the error contaminated model.

Multiple spell models

Consider now the multiple spell model in Section 2. In the appendix the structural

bias function is shown to be

ba (s, θ) = 1
2
tr(Σdiag(s)diag(G(1)

T )) +
1
2
ι0Σ⊗ (s0s)⊗G(2)

T ι (25)

where G(1)
T = ∂g(t)/∂t and G(2)

T = ∂2g(t)/∂t∂t0. When R = 1 and there is no

censoring this leads to (23).

Identification and estimation

The measurement adjusted estimator can now be defined given a conditional density

for T , fT (t, φ), and a sample of i.i.d. observations on {si, zi, di}ni=1. Let g1(t, φ) =
∇φ log fT (t, φ) and g0(t, φ) = ∇φ log F̄T (t, φ).

If σ2 is unknown, an additional moment condition is necessary to identify θ. Con-

siderDσ2(t, c, φ), the score vector for the variance of the measurement error at σ2 = 0,
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which satisfies ET [Dσ2(T, c, φ0)|φ = φ0] = 0. Let D1,σ2(t, φ) and D0,σ2(t, φ) denote its

contributions for, respectively, complete and censored observations, derived from (1).

In Chesher, Dumangane and Smith (2002) this moment condition was the basis to

construct a measurement error specification test for H0 : σ
2 = 0. Define now the

(q + 1× 1) extended score vector ge(t, c, φ)0 = (ge(t, c, φ)0 Dσ2(t, c, φ)).

The proposed estimator is based on the (q + 1) set of moment conditions

ES[g
c
e(S, z, θ0)|θ = θ0] ' 0 (26)

where gce(s, z, θ) is the bias corrected extended score vector. Let the sample coun-

terparts of the moment conditions be ĝce,n(θ) = n−1
Pn

i=1 g
c
e(si, zi, θ). Under suitable

regularity conditions that ensure existence and uniqueness (see for example Newey and

McFadden 1994), the proposed GMM estimator θ̂
c

n, is defined as argmax Q̂
c
e,n(θ) =

−ĝce,n(θ)0ĝce,n, with first order asymptotic distribution

√
n(θ̂

c

n − θa) = N
£
0, (Ga

e)
−1 Ωa

e (G
a
e)
−10¤+ op(1) (27)

where θa = P lim θ̂
c

n , Ω
a
e = ES[g

c
e(S, θ

a)gce(S, θ
a)0|θ = θ0] is the asymptotic covariance

matrix of the approximate bias corrected extended moment conditions evaluated at

θa, and Ga
e = ES[∇θg

c
e(S, θ

a)|θ = θ0].

Since the estimator is derived from an objective function that omits terms of order

O(σ3) in the moment conditions, unless σ2 = 0, θa is not in general equal to θ0, but

as is shown in the appendix, θa = θ0 + O(σ3), so that θ̂
c

n has a smaller asymptotic

bias than the inconsistent GMM-Estimator.

(Figures (2) and (3) around here)

Figures (2) and (3) show the exact expectation of the uncorrected and approxi-

mate bias corrected extended score vector at the true parameter values as a function

of the proportion of variance in the log duration due to measurement error. Two
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measurement error distributions were used, the Lognormal and the two parameter

Gamma, to contaminate the Weibull and Log-logistic distributions. In all left panels

there is 20% of censoring and in all right panels 50%. Except for the scale parameter

with 50% censoring, the lines closer to the horizontal line always correspond to the

bias corrected scores. In the plot for the shape parameter the bias in the uncorrected

scores is an increasing function of the shape parameter. Despite that the quality of

the correction is independent of α.

These plots suggest that, whenever the model is identified, the proposed estimator

will be a considerable improvement on the maximum likelihood estimator that ignore

measurement error12.

Heteroskedastic measurement error

Being a memory, problem it is reasonable to assume that the distribution of mea-

surement error should depend on some measure of "recall effort" that varies across

individuals. A simple and intuitive way of incorporating this idea is to specify a

measurement error variance function that depends on the recall effort. Let the W

be such a measure, observable and independent of T. Then σ2i = m(wi, π) for some

positive valued function m(.).

Because W is assumed to be independent of T, the results on sections 2 and 3 are

still valid with σ2 replaced by m(w, π). Two approaches are suggested for estimation.

Known variance function.–

The first approach requires the specification of the variance function. Letm(wi, π) =

m(π0 + π01wi) be a positive valued differentiable function with, m(0) = σ2 and

finite m0(0). A natural candidate for m(.) is the exponential function. In any

case if baσ (s, z, θ) denotes the approximate structural bias function associated with

12The performance of this estimator is investigated via Monte Carlo in Dumangane (2006).
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Dσ2(t, c, φ), then estimation of π0 = (π0, π01) requires the additional estimating equa-

tions:

n−1
nX
i=1

Dc
σ2(si, zi, θ) = 0

n−1
nX
i=1

Dc
σ2(si, zi, θ)w

0
i = 0

where Dc
σ2(s, z, θ) = Dσ2(s, z, φ)−baσ (s, z, θ) . As usual consistency requires correct

specification of m(.). The second approach tries to correct for this shortcome.

Unknown variance function.–

In this approach all that is required is that m(w) be a monotonic function of w.

Consider the thresholds for values of the recall effort variable {w0, w1, ..., wp} where
the lower and upper limit may be infinity. Let dji = 1(wj−1i < wi < wji), j = 1, ..., p;

then a semiparametric specification for then variance function is σ2i =
Pp

j=1 σ
2
jdji.

The p additional estimating equations will now be n−1
Pn

i=1D
c
σ2(si, θ)dji = 0, j =

1, ..., p. Of course, results may be sensitive to the specification of the intervals but

still independent from parametric assumptions.

ERROR CONTAMINATED UNEMPLOYMENT DURATIONS

Several studies using the British Household Panel Survey (BHPS) have examined

recall error in unemployment durations, see for example Paull (1996), Elias (1996),

Dex and McCulloch (1997) and Brendan (1997). In this application data from the

BHPS collected at wave 1 is used. In this cohort , 25% of the population started the

spell of unemployment in the six months before the data of interview, 37.5% between

6 months and one year, and the remaining 37.5% more than one year before the date

of interview. Thus the potential for error contaminated duration is high13.
13In fact some of this individuals could not recall accurately the dates at which unemployment

occurred, and for those only the month and year is recorded, being the date considered the 15th of
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The sample includes all male individuals that reported having experienced unem-

ployment between 9/90 and the date of interview at first wave, which spanned till

12/91. For each individual, information on the start and exit dates of the reported

unemployment spell is collected. For those who experienced multiple spells of un-

employment in that reference period only the latest (closer to the interview date)

is considered. Wave 1 also reports information about the individual characteristics,

including income variables.

The model

Interest lies on estimation of the parameters of the reduced form conditional haz-

ard function of time to leaving unemployment. Early examples of this approach

are Lancaster (1979) and Nickell (1979 a,b) whereas Narendranathan, Nickell and

Stern (1985) provide an excellent discussion on the effect of unemployment benefits

in unemployment duration. This later work was the basis for choosing the economic

specification. The conditional distribution of time to leaving unemployment will be

a function of the following set of exogenous variables in table 1

(Table 1 around here)

Table 2 shows descriptive statistics of the data before being transformed. As

expected, those who never had any form of unemployment benefit are on average

younger, more educated and experienced smaller spells of unemployment.

(Table 2 around here)

This sample considers individuals that experienced unemployment between 9/90

and the date of interview, that extended until 31/9 - the reference period for the

wave 1 survey. As such, two distinct populations are sampled: those belonging to the

the reported month.
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stock of the unemployed at the calendar time T0, the start of the reference period, and

those who flow into unemployment after T0. From both, at time TI the i-ith individual

date of interview, a complete or censored duration is recorded from retrospective

information on the entry and exit dates from unemployment, TE and TX respectively.

In Dumangane (2000) the likelihood of the resulting sample of 510 male individuals

(of which 60% were still unemployed at the date of interview) is shown to be,

f∗T (t, x, φ) =
tfT (t, x, φ) +E[4T ]fT (t, x, φ)

E[T ] +E[4T ]
(28)

It is a weighted average of the likelihood of a stock sample and a flow sample14.

The size of E[T ] (the unemployment rate) relatively to E[4T ] (the average length

of the reference period for this survey) determines the weight assigned to each sub-

population. If the unemployment rate is high, than the sample scheme will be closer

to a stock sample. A simplifying assumption on the form of the density (28) will be

made, namely f∗T (t, x, φ) will be assumed to belong to a known parametric family.

The censoring rule for each individual is such that the study ends at the date of

interview TIi, which is independent across individuals, and independent of the spell

length. As such the censoring and potential censoring times are Z = TI − TE.

Two alternative parametric hazard specifications will be considered, the two-parameter

Weibull and the Log-logistic. The first can be used to test whether unemployment

duration is a time dependent process, and is expected to produce a decreasing hazard

rate. The second allows for non-monotonic concave hazard functions, representing an

unemployment process in which the risk of leaving unemployment reaches a peak, and

becomes persistent as time goes by. Since one of these models has to be misspecified

the aim is to see how the GMM estimator behaves in such a case.

First the maximum likelihood estimates are presented together with a specification

analysis.
14I am in debt to Andrew Chesher for deriving this sampling distribution.
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Maximum likelihood estimates

Table 3 reports maximum likelihood estimates ignoring the presence of measure-

ment error and its adjusted GMM counterparts for both specifications15.

(Table 3 around here)

The MLE estimate of the Weibull shape parameter suggests a decreasing hazard

for leaving unemployment and the constant hazard rate model is rejected. The Log-

logistic MLE estimate identifies a non-monotonic hazard, being the hypothesis of a

monotonic decreasing hazard rate rejected. An empirical researcher’s next step would

be to perform specification analysis of both models. Two procedures were used, a

general one and one specific to detect duration response measurement error. Firstly,

residual analyses as a means to investigate the general quality of the fit of the MLE

estimates is performed. The principle is that under the null hypothesis of homogene-

ity, the integrated hazard vector are n realizations of a mean-one Exponential variate

(see Lancaster and Chesher, 1985).

(Figure 4 around here)

It is clear from Figure 4 that the plot for the Log-logistic specification falls every-

where closer to the 45 degree line, suggesting that this model is a better approximation

to this data, even if error contaminated, than the Weibull.

Secondly, the eficient version of the measurement error sensitive specification test

in Chesher, Dumangane and Smith (2002) is reported in the bottom of Table (3)16.

15Bootstrap standard errors, taking into account that one of the regressors is estimated, were

computed using 1000 bootstrap replications. The null hypothesis for α is H0 : α = 1. As the

hypothesis H0 : σ
2 = 0 lies on the boundary of the parameter space, the test is based on t2 and the

asymptotic 5% critical level c∗0.05 solves, Pr(χ2(1) < c0.45 ) + 0.5 = 0.95 (see Godfrey, 1988).
16The second order properties of the test showed that this version of the test provides a reliable way

of doing inference in the sense that the first order asymptotic distribution is a good approximation
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At a 0.05 nominal level, the null hypothesis is clearly rejected in the Weibull model,

suggesting the presence of measurement error or, indeed other misspecifications as

incorrect hazard specification or uncontrolled heterogeneity, but it is not rejected for

the Log-logistic model17.

The measurement error adjusted estimates

The Weibull GMM estimates illustrate what happens if the error free distribution

is uncorrectly specified. Despite the estimate of α being now bigger, as it should

be if measurement error was present, the estimate of the variance of measurement

error is not consistent with it. Clearly this contradiction arises because in this case

the unknown probability limit of the GMM estimator will surely depend on how

far the assumed error free distribution is from the true. If the hazard is indeed

nonmonotonic, as suggested by the Log-logistic, such functional form that can never

be captured by a Weibull specification. This is a favourable case in the sense that

hazard misspecification can not be captured by response error.

The specification analysis shows that the data is well approximated by the Log-

logistic model, nevertheless the need for the GMM estimator in this data set can

be easily motivated by the presence of duration measurement error. Recall that

this procedure adjusts for any type of misspecification that induces excessive scale

variation. That is clearly an advantage for an applied researcher whose interest are the

parameters of the error free duration distribution, but imposes an obvious limitation in

the interpretation of the parameter σ2. Bearing this in mind, the results interpretation

will take that parameter to be the variance of measurement error, assumption that

to the distribution of the test statistic. Also Monte Carlo experimentation showed that this version

is more powerful than the Outer-Product-of-the-Grafient (OPG) version.
17This may indicate correct specification or lack of power of the measurement error specification

for the characteristics of this data (sample size and censoring proportion).
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will be tested in the next section by making it a function of a measurement error

related variable

The adjusted GMM estimate of α is consistent with the effect and amount of

measurement error in this parameter as predicted in the analysis of section 3:

1. The correction has the right sign, and according to the estimate σ2 15% of the

observed variation in the log durations is attributed to response error.

2. For these estimate of σ2 and α, and proportion of censored observations the

approximate proportional bias of the maximum likelihood estimator of α is

0.92, which equals the observed proportional bias, defined as the ratio of the

maximum likelihood estimate to the GMM estimate of α.

3. In general , the covariate coefficients corrections are, as predicted, equal to

correction in the shape parameter. The observed proportional bias for the

statistically significant coefficients varies from 0.90 to 0.95.

The influence of covariates is such that a positive coefficient accelerates the time to

leaving unemployment, whereas a negative coefficient has the opposite effect. Apart

from Age and Income in work, all coefficients are statistically significant at a 0.05

nominal level. The estimate results suggest three comments: First, being the pres-

ence of dependent children in the household highly correlated with the level of benefits

received from the government, it acts as a disincentive to return to the labour force.

Secondly, the higher the level of income in unemployment the lower the risk of exit18.

18Traditional search theory postulates that this variable should have a positive effect on the

probability of leaving unemployment. However, if the rate of job offers is a function of the mean

wage, such that it is higher in segments of the labour market for which the mean wage is lower,

than this variable could have a negative effect on the hazard rate. It may also capture the fact that

high profile jobs have a greater competition for, therefore being more difficult for individuals in this

cohort to exit unemployment.
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Thirdly were the income in work variable statistically significant, the negative coeffi-

cient would indicate that those looking for jobs in higher wage jobs spend more time

in unemployment, perhaps because the rate of job offers is a negative function of the

mean wage.19.

An important feature of the GMM estimates is the little loss of efficiency compar-

atively to the MLE. Being a semiparametric estimator, there is always a trade-off

between precision and flexibility. In this application the bootstrap standard devia-

tions of both set of estimates have the same order of magnitude.

(Figure 5 around here)

Figure 5 shows the estimated hazard functions for the two set of estimates, con-

ditional on two cohorts characterized by whether the individual receives any type of

income support. The covariates are evaluated at the sample means of each cohort.

As predicted by the approximations (see Dumangane 2006), the correction initially

raises the hazard function above the MLE hazard such that the duration at which the

risk of exiting reaches its maximum is now smaller20. Since from the point of view

of efficacy, unemployment policies should target individuals on the increasing part

of the hazard, policies based on error contaminated durations are sub-optimal. Note

that this issue is particularly relevant for beneficiaries, where the duration at which

the MLE hazard reaches its maximum is nearly 50% larger.
19In a previous version of the model, the expected wage at the job the individual is looking for was

used, and for those who exit the state their current wages was assumed to be a realisation of that

expectation. When this variable is used, the coefficient is significant and negative. Not only this is

a strong assumption, but also there is an endogeneity problem as this variable is clearly correlated

with the reservation wage (see Nickell, 1979). On the other hand as noted in Lancaster and Chesher

(1983) it is not straightforward to interpret thit variable as the mean wage or the conditional on

being bigger than the reservation wage mean wage.
20The duration at which the Log-logistic hazard attains its maximum is given by t(max) = [(α −

1) exp(−x̄β)]1/α, here evaluated at the GMM estimates and at the mean individual.
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These results assume that measurement error is homogenous. The next section

estimates the Log-logistic model allowing for heteroskedastic measurement error, re-

flecting the fact that spells occurring in different time periods being likely to be

contaminated with different amounts of measurement error.

Heteroskedastic measurement error

The variance of the measurement error distribution is now defined to be a function

of the recall effort individuals undergo. With this specification it is possible to test

if the excessive scale parameter variation is, at least partially, indeed due to mea-

surement error or if it is just a consequence of functional form misspecification or

uncontrolled heterogeneity.

Since durations are constructed from the entry and exit dates in the state, an

appropriated measure of the recall effort w, is the logarithm of the sum of, the time

between the start of the spell and the date of interview, with the time between the

end of the spell and the date of interview. It is independent of the spell lenght

(required for the validity of the approximation results), as for example a short spell

that happened a long time ago may have a larger recall effort than a large spell that

just ended.

Four specifications for the skedastic function are considered: the linear specifica-

tion, which can be thought of as a first order local approximation to the true; the

exponential specification, which is always a natural candidate for skedastic functions;

and two picewise linear skedastic functions. In the first the threshold is the .75th

quantile of w, and in the second the thresholds are the .25th and .75th quantiles of

the distribution of w.

Table 4 shows the results for these specifications for the Log-logistic model21. The

only specification that clearly rejects the skedastic function is the exponential. Its

21The null hypothesis H0 : πj = 0 has a one sided alternative.

28



intercept estimates a measurement error variance of 0.303, which is very close to the

homoskedastic model. The linear specification is not rejected at a 10% level, but

when compared with the two picewise linear specifications is clearly rejected.

(Table 4 around here)

The preferred model is the picewise linear with two slopes. The correction on

the shape parameter is now bigger, which shows that this model further identifies

spurious variation on the log durations, but on the other hand the estimates are less

precise. The first slope is not significant, so up to the 75th quantile of the distribution

of recall effort the measurement error variance is constant at 0.348, a value that is

not to distant from the homoskedastic variance. After this quantile a 1% variation

on the recall effort induces an increase of the measurement error variance of 0,007.

This suggests that at least after some point the excessive scale variation is indeed

measurement related.

CONCLUSION

The impact of duration response measurement error on parameter estimates was

studied by deriving the probability limit of GMM estimators. For single spell models,

generally measurement error dampens the form of duration dependence of the hazard

function. This effect differs from neglected uncontrolled heterogeneity, because the

extent of the distortion is a function of the shape characteristics of the error-free

distribution. In the cases here considered measurement error changes the way co-

variates affect the duration distribution, in the same fashion as it does for the shape

parameters. It was shown that allowing for right censoring has different implications

in different parametric specifications. In the Weibull model, right censoring offsets

in an increasing way the impact of measurement error in the probability limit of the

MLE, while in the Log-logistic it is a nonlinear function of the proportion of censored
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observations.

The seriousness of the implications of this misspecification problem are well il-

lustrated in the two-spell-lagged-duration-dependence Exponential model. For this

specification, estimated lagged duration dependence can be totally spurious. Depend-

ing on the sign of the correlation between the measurement errors, the magnitude and

even the sign of this coefficient can be totally misperceived due to error-contamination.

The measurement error adjusted GMM estimator corrects (approximately) the bias

in the moment conditions that define the error-free model. Whenever the error free

distribution is known, the moment condition that defines the measurement error

specification score test, was shown to provide valuable information about the true

parameters. As such under this estimating procedure score tests can be constructive.

The main advantage of this estimator is that it does not require any prior information

on the measurement error distribution, whose parameters are estimated jointly with

the parameters of the error free distribution. Given the small sigma nature of the

approximations, when there is evidence of a large amount of measurement error it is

worthile considering a procedure that specifies parametrically the distribution of the

error. In this case the adjusted estimator can give an idea of the need to find such

alternative procedures. If the contamination is only small, estimates obtained from

this procedure may be adequate.

Though motivated by measurement error this estimator may identify a non-zero

variance if other forms of misspecification are present in the data. Namely, uncon-

trolled heterogeneity whenever the error free distribution belongs to the scale para-

meter family, or if the error free model is misspecified. In the last case the estimate

of the variance will not have a structural interpretation, but it can in some cases still

be useful, as it can be interpreted as the cost of choosing a parametric model for the

durations. Note that in the application it was shown that misspecifying the error free

distribution does not always produce a non-zero estimate of the variance.
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The results were applied to a sample of unemployment durations retrospectively

collected in the BHPS. TheWeibull analysis suggests that parametric misspecification

can give conflicting results between the MLE and the GMM estimates of the extended

shape parameter vector. For the Log-logistic there was a very strong agreement

between the MLE, and the GMM estimates. Clearly this is a case when interpretation

of the variance may be dubious since the model is expected to be misspecified because

of uncontrolled heterogeneity or even functional form misspecification. Because of

that the variance of the measurement error was made to depend on a measure of recall

effort. This specific form of heteroskedasticity is specific to this specification problem

and allows to conclude that in this data recall error is indeed present. Distinguishing

duration response measurement form uncontrolled heterogeneity may be possible if

multiple observations on the same spell are available, but for the applied researcher

what really matters is to known the parameters of the error free distribution. If

that is the pourpose the GMM estimator provided is a quick and unexpensive way of

assessing excessive scale variation.

THE WAGE OFFER EQUATION

In this appendix the mean of the wage distribution used as an explanatory variable

in the specification of the unemployment duration model is estimated. The aim is

to find a measure of the wage in the segment of the labour market in which the

individual is searching for a job22.

22Other measures for this variable have been considered in this literature. Some authors use net

earnings in previous job and others expected earnings at work. There are several reasons for not

using those variables in the economic specification. The first is a practical one concerned with the

size of the available sample: both the above variables are only available for a fraction of the sample

considered in this study. The second reason is that, as noted in Nickell (1979), there is a potential

endogeneity bias from using previous earnings, as those who are most likely to be selective about

accepting jobs may have had higher than average earnings in their previous job. As for expected
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The wage offer equation is estimated using a standard Heckitt procedure like in

Heckman (1979) which takes into account selection bias induced by observing wages

only for employed people.

(Table 5 around here)

The data used was the sample of 3620 male individuals that were either employed

or unemployed at time of interview of wave one.

In addition to the variables Children, Married and the educational dummies, the

participation equation included a vector of explanatory variables measuring labour

market experience (see Lambert, 1993 for a discussion on measures of labour market

experience). The variable Experience is defined as the logarithim of the number

of years since leaving full time education. The square of Experience was included to

capture nonlinearities in the equation. The log wage equation included as explanatory

variables, the educational dummies, the same experience measures and interactions

with Age and the local unemployment rate.

Table 5 gives the sample descriptive statistics. Both employed and unemployed

populations have very similar individual characteristics. However the latter seems to

be younger, less experienced, less prone to being married but with more children.

Table 6 shows the results for both equations.

(Table 6 around here)

Non statistically significant variables were deleted from the equations as it was to

be used for prediction.

earnings, this variable is closely correlated with the reservation wage and with on job earnings.
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THE APPROXIMATE STRUCTURAL BIAS FUNCTION FOR RIGHT

CENSORED SINGLE SPELL MODELS

The approximate structural bias function for single spell models with right censored

observations is now derived.

The aim is to find the functions ba1(s, θ) and r1(z, θ), that solve the equationZ z

0

g1(s, φ)mT (s, θ)ds =

Z z

0

ba1(s, θ)fT (s, φ)ds+ r1(z, θ) (29)

Using the definition of mT (s, θ) the left hand side of (29) can be written as

σ2

2

µZ z

0

g1(s, φ)fT (s, φ) ds+ 3

Z z

0

g1(s, φ)sf
0
T (s, φ) ds+

Z z

0

g1(s, φ)s
2f 00T (s, φ) ds

¶
(30)

Integrating the second term once by parts and the third term twice by parts, assuming

the following tail conditions for the density and its partial derivatives, necessary to

assure convergence of those integrals

A.B.1 limsk→0 g1(s, φ)sfT (s, φ) = 0

A.B.2 limsk→0 g1(s, φ)s
2f 0T (s, φ) = 0

A.B.3 limsk→0 g
0
1(s, φ)s

2fT (s, φ) = 0

(31)

leads to the desired result.

THE STRUCTURAL BIAS FUNCTION FOR MULTIPLE SPELLS

SINGLE DESTINATION MODELS

In this appendix the structural bias function for MSSD models is derived which

incorporates the single spell single destination case when R = 1.

Computation of ES[g(S,φ)|θ = θ], up to o(||σ||) requires the approximation (5)
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to the multiple spell joint density leadint to calculation of three integrals,

1.
R∞
0

. . .
R∞
0
g (s,φ) skf

(k)
T (s) dsR . . . ds1 = −(Eφ[g(S,φ)] +Eφ[Skg

(k)(S,φ)])

2.
R∞
0

. . .
R∞
0
g (s,φ) s2kf

(kk)
T (s) dsR . . . ds1 = 2Eφ[g(S,φ)] + 4Eφ[Skg

(k)(S,φ)]+

+Eφ[S
2
kg

(kk)(S,φ)]

3.
R∞
0

. . .
R∞
0
g (s,φ) skslf

(kl)
T (s) dsR . . . ds1 = −(Eφ[g(S,φ)] +Eφ[Skg

(k)(S,φ)]+

+Eφ[Slg
(l)(S,φ)] +Eφ[SkSlg

(kl)(S,φ)])

(32)

Computation of those integrals required multiple integration by parts, and assump-

tion of the following conditions related to the tail behaviour of the density and its

partial derivatives,

A.C.1 limsk→0 g(s,φ)skfT (s) = limsk→∞ g(s,φ)skfT (s) = 0

A.C.2 limsk→0 g(s,φ)s
2
kf

(k)
T (s) = limsk→∞ g(s,φ)s

2
kf

(k)
T (s) = 0

A.C.3 limsk→0 g(s,φ)skslf
(l)
T (s) = limsk→∞ g(s,φ)skslf

(l)
T (s) = 0

A.C.4 limsl→0 g
(k)(s,φ)skslfT (s) = limsl→∞ g

(k)(s,φ)skslfT (s) = 0

(33)

The approximate required expectation can now be written as

ES[g(S,φ)|θ = θ] ' a1(σ)ET[g(S,φ)|φ = φ] + a2(σ)ET[Skg
(k)(S,φ)|φ = φ]

+a3(σ)ET[S
2
kg

(kk)(S,φ)|φ = φ] + a4(σ)ET[SkSlg
(kl)(S,φ)|φ = φ] (34)

where aj(σ), j = 1, ..., 4 are polynomial functions of the vector σ.

1. The coefficient of ET[g(S,φ)|φ = φ] is

a1(σ) = −3
2

RX
k=1

σ2k −
RX
k=1

RX
l 6=k

σkl +
RX
k=1

σ2k +
1

2

RX
k=1

σ2k + 2
R−1X
k=1

RX
l=k+1

σkl(35)

= −
RX
k=1

RX
l 6=k

σkl + 2
R−1X
k=1

RX
l=k+1

σkl = 0
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2. The coefficient of ET[skg(k)(s,φ)|φ = φ] ≡ w̄k(φ) is

a2(σ) = −3
2

RX
k=1

σ2kw̄k(φ)−
RX
k=1

RX
l 6=k

σklw̄k(φ) + 2
RX
k=1

σ2kw̄k(φ) + (36)

+
R−1X
k=1

RX
l=k+1

σklw̄k(φ) +
R−1X
k=1

RX
l=k+1

σklw̄l(φ)

Noting that

RX
k=1

RX
l 6=k

σklw̄k(φ) =
R−1X
k=1

RX
l=k+1

σklw̄k(φ) +
R−1X
k=1

RX
l=k+1

σklw̄l(φ) (37)

gives

a2(σ) =
1

2

RX
k=1

σ2kw̄k(φ) (38)

3. Finally the terms associated with

ET[S
2
kg

(kk)(S,φ)|φ = φ] ≡ w̄kk(φ); ET[SkSlg
(kl)(S,φ)|φ = φ] ≡ w̄kl(φ),

(39)

are respectively

a3(σ) =
1

2

RX
k=1

σ2kw̄kk(φ); a4(σ) =
R−1X
k=1

RX
l=k+1

σklw̄kl(φ) (40)

It follows that the approximate structural bias function is given by

ba(s,θ) =
1

2

RX
k=1

σ2k
¡
skg

(k) (s,φ) + s2kg
(kk) (s,φ)

¢
+

R−1X
k=1

RX
l=k+1

σklskslg
(kl) (s,φ) .

(41)

SIGMA-ORDER CONSISTENCY OF THE APPROXIMATE GMM

ESTIMATOR

In this appendix the σ order of the bias corrected GMM estimator is derived.
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Let Y be a random variable whose distribution depends on θ = {φ, σ}. Let θ0 be
the true value, and consider the class of extremum estimators in which under the

condition that E[g(Y, θ0)|θ = θ0] = 0, estimators are obtained by maximizing an

approximation to a true objective function, bQn(θ) = −ĝn(θ)0Ŵ ĝn(θ), where ĝn(θ) =

n−1/2
Pn

i=1 g(yi, θ). By the law of large numbers ĝn(θ)
p→ g0(θ) = E[g(Y, θ)|θ = θ0].

Then by a continuity argument bQn(θ)
p→ Q0(θ) = −g0(θ)0Wg0(θ), is the probability

limit of the true objective function, and convergence in probability is uniform.

The objective function bQa
n(θ) = −ĝan(θ)0Ŵ ĝan(θ), maximized at θ̂

a

n, is obtained by

approximating the influence of a subset of parameters σ, on the moment conditions

in a way that

E[ga(Y, θ0)|θ = θ0] = O
¡
σ30
¢

(42)

Assuming that ĝan(θ)
p→ ga0(θ) = E[ga(Y, θ)|θ = θ0], the probability limit of the

approximate objective function is bQa
n(θ)

p→ Qa
0(θ) = ga0(θ)

0Wga0(θ).

Theorem 3 Let Q0(θ) be the probability limit of the true objective function, and let

θ0 be the true value of θ assumed identifiable in the sense that

θ0 = argmax
θ

Q0(θ) = −g0(θ)0Wg0(θ) (43)

defines an unique value of θ0. Let θ
a the probability limit of the approximate estimator

be uniquely defined by

θa = argmax
θ

Qa
0(θ) = −ga0(θ)0Wga0(θ) (44)

Then θa − θ0 = O (σ30) .

The proof exploits the fact that θ̂
a

n has an influence function representation (see

Newey and McFadden, 1994) and that its distribution is degenerate, therefore con-

vergence in distribution implies convergence in probability.
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Assume θ0 is in the interior of its parameter space Θ.The first order condition for

θ̂
a

n has the form,

Ga
n(θ̂

a

n)Wgan(θ̂
a

n) = 0 (45)

where Ga
n(θ) = ∇θg

a
n(θ). Assume that g

a(y, θ) is continuously differentiable on int(Θ).

A mean value expansion of gan(θ̂
a

n) about θ0 gives

Ga
n(θ̂

a

n)
0W [gan(θ0) +Ga

n(θ̈n)(θ̂
a

n − θ0)] = 0 (46)

where θ̈n is between θ̂
a

n and θ0. Therefore,

n1/2(θ̂
a

n − θ0) = −[Ga
n(θ̂

a

n)
0WGa

n(θ̈n)]
−1Ga

n(θ̂
a

n)Wn1/2 gan(θ0) (47)

Because θ̂
a

n

p→ θa and θ0 is the true parameter vector, under standard regularity

conditions Ga
n(θ̂

a

n)
p→ Ga

θ and Ga
n(θ̈n)

p→ Ga
θ where G

a
θ = E[∇θg

a(Y, θa)|θ = θ0]. Let

A = −(Ga0
θ WGa

θ)
−1Ga0

θ W and write

n1/2(θ̂
a

n − θ0) = A n1/2(gan(θ0)−O(σ30)) + n1/2O(σ30) + op(1) (48)

or equivalently

n1/2(θ̂
a

n − θ0 −O(σ30)) = An1/2(gan(θ0)−O(σ30)) + op(1) (49)

It follows directly from (42) that n1/2(gan(θ0)−O(σ30))
d→ N(0, V ) where

V = E[(ga(Y, θ0)−O(σ30))(g
a(Y, θ0)−O(σ30))

0|θ = θ0] (50)

and that implies gan(θ0)−O(σ30)
p→ 0. As a direct consequence,

θ̂
a

n − θ0
p→ O(σ30). (51)

from which it follows that θa − θ0 = O (σ30) .
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Table 1. Definition of covariates.

Covariate Description

AGE Logarithm of age.

HEDUC 1 if Higher or first degree, teaching qualification and other qualifications.

LEDUC 1 if CSE, commercial, GCE and nursing qualifications, apprenticeship,

and other lower qualifications.

MARR 1 if married or leaving as a couple.

NCH No. of dependent children in the household.

UNRATE Unemployment rate at the metropolitan area of residence.

BENEF Benefeciary

INCUN Log of weekly benefits received by the individual from all sources

-Unemployment and Supplementary Benefits, Family Income Support,

Child Benefit and other government transfers- while unemployed, at

time of exit from unemployment.

INWK The log of weekly estimated earnings specified as a function of work

experience measures and other individual characteristics

This should be a time varying covariate as the level of benefits vary during the unemployment

spell, replacing it by a single value is a rough approximation.
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Table 2. Summary statistics for wave 1 sample.

All BENEF Non BENEF

Number of spells 510 – 403 – 107 –

Censored spells 0.60 – 0.65 – 0.41 –

Uncensored spell length (in weeks) 27.4 (47.2) 32.6 (55.3) 15.8 (13.7)

Censored spell length (in weeks) 64.4 (99.0) 69.9 (100.1) 31.8 (86.6)

AGE 33.6 (14.0) 34.7 (14.0) 29.5 (13.2)

HEDUC 0.23 – 0.22 – 0.30 –

LEDUC 0.42 – 0.41 – 0.47 –

MARR 0.56 – 0.59 – 0.44 –

NCH 0.56 (0.7) 0.56 (0.8) 0.59 (0.7)

UNRATE (in %) 7.8 (1.6) 7.9 (1.6) 7.5 (1.5)

INCUN (£ per week) 53.5 (55.5) 67.6 (54.2) – –

INCWK (£ per week) 160.1 (52.7) 161.0 (48.3) 156.9 (66.8)

* Standard errors in parentheses for continuous variables
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Table 3. Weibull and Log-logistic MLE and GMM corrected estimates

Weibull Log-logistic

Variable MLE GMM MLE GMM

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Alpha 0.880* .057 0.946 .056 1.232* .069 1.333* .073

Constant -3.326* .195 -3.337* .201 -3.840* .247 -4.132* .231

AGE -0.892* .394 -0.370 .280 -0.451 .398 -0.483 .401

HEDUC 1.322* .282 1.538* .270 1.713* .342 1.798* .328

LEDUC 0.702* .284 1.014* .244 1.119* .339 1.215* .334

MARR 0.636* .199 0.729* .196 0.862* .256 0.938* .264

NCH -0.372* .135 -0.476* .137 -0.506* .158 -0.564* .166

UNRATE -0.101** .055 -0.086 .058 -0.148* .070 -0.164* .075

BENEF -0.784* .258 -1.116* .200 -1.203* .235 -1.346* .256

INCUN -0.423* .059 -0.431* .063 -0.612* .099 -0.653* .112

INCWK (B) -0.269 .354 -0.591** .305 -0.488 .438 -0.482 .446

INCWK (N. B.) -0.237 .391 -0.608* .288 -0.369 .345 -0.343 .322

ME variance – – 0.003 .031 – – 0.306* .173

ME Test=83.75 ME Test=1.26

* Rejected at 5%

**Rejected at 10%
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Table 4. Log-logistic GMM corrected estimates with heteroskedastic measurement

error

Variable Linear Exponential Picewise1 Picewise2

Coef. S.e. Coef. S.e. Coef. S.e. Coef. S.e.

Alpha 1.348* .086 1.396 .176 1.435* .151 1.422* .155

Constant -4.133* .258 -4.274 .459 -4.390* .382 -4.345* .414

AGE -0.494 .420 -0.485 .496 -0.386 .486 -0.345 .450

HEDUC 1.828* .350 1.880 .415 1.937* .392 1.939* .378

LEDUC 1.265* .361 1.335 .436 1.392* .397 1.389* .380

MARR 0.979* .277 1.015 .327 1.039* .316 1.031* .301

NCH -0.600* .175 -0.632 .211 -0.660* .208 -0.654* .203

UNRATE -0.177* .077 -0.186 .088 -0.198* .085 -0.195* .082

BENEF -1.399* .261 -1.453 .315 -1.481 .317 -1.469* .297

INCUN -0.652* .114 -0.670 .133 -0.685* .132 -0.681* .125

INCWK (B) -0.488 .455 -0.488 .522 -0.560 .503 -0.580 .484

INCWK (N. B.) -0.331 .332 -0.327 .373 -0.430 .360 -0.470 .326

πj0 0.243* .144 -1.192 .637 0.348* .210 0.411* .203

πj1 0.186** .139 0.457 .453 -0.017 .215 0.052 .171

πj2 – – – – 0.693* .399 -0.075 .099

πj3 – – – – – – 0.772* .378

*rejected at 5%

**rejected at 10%
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Table 5. Summary Statistics for sample

All Employed Unemployed

Observations 3620 – 3217 – 403 –

Age 37.3 (13.1) 37.7 (12.9) 34.3 (14.2)

Higher education 0.30 – 0.31 – 0.25 –

Lower education 0.42 – 0.43 – 0.31 –

Married 0.71 – 0.73 – 0.53 –

Number of children 0.56 (0.74) 0.55 (0.73) 0.62 (0.83)

Local unemployment rate (in %) 7.8 (1.6) 7.9 (1.6) 7.5 (1.5)

Experience 20.6 (14.1) 20.9 (13.8) 18.3 (15.5)

*Standard deviations in parentheses
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Table 6. Estimates of the probit and wage offer equation

Participation Mean log wage

Variable Coef. p-value Coef. t-ratio

Constant 0.473 .004 4.682 .000

HEDUC 0.162 .172 0.303 .000

LEDUC 0.409 .001 0.118 .000

MARR 0.277 .012 – –

NCH -0.166 .005 – –

log(EXPER) 0.561 .000 0.668 .000

log(EXPER)2 -0.067 .068 -0.146 .000

log(EXPER)×log(AGE) – – 0.353 .000

[log(EPER)×log(AGE)]2 – – -0.184 .000

UNRATE – – -0.019 .000

Sigma – – 0.424 .000

Rho – – -0.540 .000

No. of observations 2786 2658

Log lik.=-1896.53
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Fig. 1. Approximate proportional inconsistency of α and β1, as a function of the

censoring proportion for V ar(log T )/V ar(logS) ∈ {0.80, 0.85, 0.90}.
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Fig. 2. Exact expectation of Weibull scores and approximate bias corrected

scores with Lognormal (dotted) and Gamma (dashed) measurement error for

α ∈ {0.8, 1, 1.5} and 20 /% and 50% censoring.
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Fig. 3. Exact expectation of Log-logistic scores and approximate bias corrected

scores with Lognormal (dotted) and Gamma (dashed) measurement error for

α ∈ {0.8, 1, 1.5} and 20% and 50% censoring.
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Fig. 4. Residual analyses for Weibull and Log-logistic MLE estimates.

Weibull

Estimated integrated hazard

M
in

us
 lo

g 
K

ap
la

n-
M

ei
er

 s
ur

vi
vo

r

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

oooooooooooooooooooooooooooooooooooooooooooooooooooooo oo ooo ooo
o

oooo
o

oo
o

oooo
o

ooooooo
o

oo
oo

ooooo
ooooo

o
oo

ooooooo
oo

oooo
oo

o
o

oooo
o

ooo
o

oo
ooo

o

o

o

o

o

o

o

ooo

o

o

ooo

o

oo

o

o

o

oo

o

ooo

o

oooo

ooo

oo

o

ooo

o

oooo

o

oooooooooooooooooooo

o

oo

o

o

o

oo

oo

oooo

ooooo

oo

oo

o

o

o

o

o

o

oo

o

o

o

ooo

o

o

ooo

ooooo

o

oo

oo

o

oo

ooo

oo

o

oo

ooo

o

ooooo

o

oo

o

o

o

oo

oo

oo

oo

oo

o

o

o

ooo

ooo

o

oo

oo

o

oo

oo

oo

o

o

o

o

o

ooooooo

ooo

o

o

o

o

ooo

oo

o

o

o

o

oo

o

o

oooo

o

o

ooooo

oo

o

o

o

o

o

oooo

ooooooo

o

o

o

ooo

ooo

o

o

o

o

oo

o

o

o

ooo

oooo

o

o

o

o

o

o

o

o

o

o

oooo

o

o

o

o

o

o

o

oo

o

o

o

oo

o

oooo

o

oo

ooo
oo

ooo

o

o

ooo
oo

oo

ooo
o

ooo

o

oo

o

o

o

o

oo

oooo

o

ooo

oo
o

o

o

o

o

oo

oo

o

o

oo

o

o

o

oo

o

oo

o
o
o
o
o

o

o

o

oooo

Log-logistic

Estimated integrated hazard

M
in

us
 lo

g 
K

ap
la

n-
M

ei
er

 s
ur

vi
vo

r

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
o

ooo
o

oooo
o

ooooo
o

o
o

oo
o

ooooo
ooooo

o
o

oo
oo

o
o

o
o

ooooo
o

ooo
o

o
oo

o
o

ooo
o

oooo
o

o
oo

o

oo

ooo

o

ooo

o

oo

o

oooo

o

ooo

o

ooo

o

ooo

o

oo

oo

o

o

o

oo

ooooo

o

oo

o

o

o

oo

o

oo

oooo

oo

o

oo

o

ooo

o

ooo

oo

oooooo

o

ooooo

o

oooo

o

o

oo

ooooo

o

ooooo

oo

ooooo

oo

oo

oo

o

oo

o

oo

o

o

oooooooo

ooo

o

o

o

oooo

o

o

oo

o

o

o

o

ooo

o

o

oooooo

oo

o

oo

oooooo

o

o

o

oo

oo

o

o

oo

o

o

o

o

oo

oooo

o

oooo

o

o

oo

oooooo

oo

oo

oo

ooo

ooooo

o

oo

o

oo

oo

oooo

oo

o

oo

o

o

oo

oo

o

ooo

o

oooooo

o

oo

ooooo
o

oooo

oo

o

ooo

o

oo

oooo

o

oooo

o

oo

ooo

o

oo

ooo

ooo
oo

oooo

o

o

ooo
o

o

o

oo

o

ooo

o

o

oo
o

o

o

oo

o

ooo

o

oo

o

o

o

ooooo

o

o

o

o

o o
o

o

o

o

o
o
o
o

oo

o
o
o
o

o

oo

o

o

o

o

o

o

oo

51



Fig. 5. Estimated error contaminated (MLE) and bias corrected (GMM) hazard

functions.
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