
1

Comparison of �nancial time series using a TARCH-based distance

Jorge Caiadoa Nuno Cratob

aDepartment of Economics and Management, ESCE, Polytechnic Institute of Setúbal,
and CEMAPRE, Campus do IPS, Estefanilha, 2914-503 Setúbal, Portugal. Tel.: +351
265 709 438. Fax: +351 265 709 301. E-mail: jcaiado@esce.ips.pt

bDepartment of Mathematics, ISEG, Technical University of Lisbon, and CEMAPRE,
Rua do Quelhas 6, 1200-781 Lisboa, Portugal. Tel.: +351 213 925 846. E-mail:
ncrato@iseg.utl.pt

Abstract: This paper proposes an asymmetric-volatility based method for cluster
analysis of stock returns. Using the information about the estimated parameters in the
TARCH equation, we compute a distance matrix for the stock returns. Clusters are
formed by looking to the hierarchical structure tree (or dendrogram) and the computed
principal coordinates. We employ these techniques to investigate the similarities and
dissimilarities between the "blue-chip" stocks used to compute the Dow Jones Industrial
Average (DJIA) index.
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1. Introduction

Cluster analysis of �nancial time series plays an important role in several areas of appli-
cation. In stock markets, the examination of mean and variance correlations between asset
returns can be useful for portfolio diversi�cation and risk management purposes. In inter-
national equity markets, we may be interested in identifying similarities in index returns
and volatilities for grouping countries. The existence of asymmetric cross-correlations and
dependences in asset returns is also of interest for many �nancial researchers.
Many time-varying volatility models have been proposed to capture the asymmetric

volatility e¤ects in asset returns. These include the common univariate asymmetric mod-
els of Nelson (1991), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993) and
Zakoian (1994), the multivariate generalized autoregressive conditionally heteroskedastic-
ity (GARCH) models of Engle and Kroner (1995) and Kroner and Ng (1998), and the
asymmetric dynamic autoregressive conditional correlation model of Capiello, Engle and
Sheppard (2006).
Many existing statistical methods for analysis of multiple asset returns use multivariate

volatility models imposing conditions on the covariance matrix that are hard to apply.
To avoid these problems, three types of multivariate statistical techniques have been used
for analyzing the structure of asset returns comovements. One is the principal component
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analysis (PCA) that is concerned with the covariance structure of asset returns and can
be used in dimension reduction. The second is the factor model for asset returns that
uses multiple time series to describe the common factors of returns (see Zivot and Wang,
2003 and Tsay, 2005 for further discussion). The third is the identi�cation of similarities
in asset return volatilities using cluster analysis (see, for instance, Bonanno, Caldarelli,
Lillo, Miccieché, Vandewalle and Mantegna, 2004).
A fundamental problem in clustering of �nancial time series is the choice of a relevant

metric. Mantegna (1999), Bonanno, Lillo and Mantegna (2001), among others, used the
Pearson correlation coe¢ cient as similarity measure of a pair of stock returns. Although
this metric can be useful to ascertain the structure of stock returns movements, it does
not take into account the stochastic volatility dependence of the processes and cannot
be used for comparison and grouping stocks with unequal sample sizes. The latter is
a common problem of most existing nonparametric-based metrics for cluster analysis of
economic and �nancial time series.
In this paper, we introduce a distance measure between the threshold autoregressive

conditionally heteroskedastic (TARCH) parameters of the return series. In order to sum-
marize and better interpret the results, we suggest using a hierarchical clustering tree and
a multidimensional scaling map to explore the existence of clusters. We apply these steps
to investigate the similarities and dissimilarities among the �blue-chip�stocks of the Dow
Jones Industrial Average (DJIA) index.
The remaining sections are organized as follows. Section 2 provides the asymmetric-

volatility based method for clustering asset returns. Section 3 describes the data. Section 4
presents the empirical �ndings on the analyzed data. Section 5 summarizes and concludes.

2. Asymmetric-volatility based distance

Glosten, Jagannathan and Runkle (1993) and Zakoian (1994) introduced independently
the Threshold ARCH model to allow for asymmetric shocks to volatility. The simple
TARCH(1,1) model assumes the form

"t = zt�t, (1)

�2t = ! + ��2t�1 + �"
2
t�1 + "

2
t�1dt�1, (2)

where fztg is a sequence of independent and identically distributed random variables with
zero mean and unit variance, dt = 1 if "t is negative, and dt = 0 otherwise. In this model,
volatility tends to rise with the "bad news" ("t�1 < 0 ) and to fall with the "good news"
("t�1 > 0). Good news has an impact of � while bad news has an impact of � + . If
 > 0 then the leverage e¤ect exists. If  6= 0, the shock is asymmetric, and if  = 0,
the shock is symmetric. The persistence of shocks to volatility is given by � + � + =2.
Nelson (1991) proposed also an heteroskedasticity model to incorporate the asymmetric
e¤ects between positive and negative stock returns, called the exponential GARCH (or
EGARCH) model, in which the leverage e¤ect is exponential rather than quadratic. To
capture all the skewness and excess kurtosis in the volatility processes with asymmetric
distributions, Nelson (1991) suggested a "fat-tailed" distribution, the generalized error
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distribution (GED), with density function given by

f(z) =
v exp [�0:5 jz=�jv]
�2(1+1=v)�(1=v)

; 0 < v � 1;�1 < z < +1 (3)

where v is the tail-tickness parameter, �(�) is the gamma function, and

� =

�
2(�2=v)�(1=v)

�(3=v)

�0:5
. (4)

When v = 2, fztg is normally distributed, and is fat-tailed distributed if v < 2. For
v > 2, it has thin tails distribution (for example, for v = +1, it has a uniform distribution
on the interval [�

p
3;
p
3]).

We now introduce a distance measure for clustering time series with similar asymmetric
volatility e¤ects. Let rx;t = logPx;t � logPx;t�1 denote the continuously compounded
return of an asset x from time t�1 to t (ry;t is similarly de�ned for asset y). Suppose we �t
a common TARCH(1,1) model to both time series by the method of maximum likelihoods
assuming GED innovations. Let TGx = (b�x; b�x; bx; bvx)0 and TGy = (b�y; b�y; by; bgy)0 be the
vectors of the estimated ARCH, GARCH, leverage e¤ect and tail-tickness parameters,
respectively, with the estimated covariance matrices given by V Gx and V Gy , respectively. A
Mahalanobis-like distance between the asymmetric features of the volatilities (TARCH-
based distance) of the return series rx;t and ry;t can be de�ned by

dTARCH(x; y) =
q
(TGx � TGy )0
�1(TGx � TGy ), (5)

where 
 = V Gx + V
G
y . This measure takes into account the information about the asym-

metric structure of the time series volatilities and solves the problem of unequal lengths.
The distance measure (5) ful�lls the usual properties of a metric (except the triangle in-
equality): (i) d(x; y) is asymptotically zero for independent time series generated by the
same DGP; (ii) d(x; y) � 0; and (iii) d(x; y) = d(y; x).

3. Data description

We consider data of the 30 "blue-chip" US daily stocks used to compute the Dow
Jones Industrial Average (DJIA) index for the period from June 1990, 11 to September
2006, 12 (4100 daily observations), as shown in Table 1. This data was obtained from
Yahoo Finance (http://�nance.yahoo.com) and correspond to closing prices adjusted for
dividends and splits.
In Table 2 we present the estimation results of TARCH(1,1) models for DJIA stock

returns with GED innovations, including diagnostic tests for residual and squared residu-
als. The estimated coe¢ cients are statistically signi�cant for all stocks except the ARCH
estimates for CAT, DIS, GE and MRK, and the leverage-e¤ect for INTC and MMM,
which are not signi�cant at conventional levels. The distribution of the innovation series
is fat-tailed for all stocks. As expected, the persistent estimates for all the asymmetric
models are very close to one. This extreme persistence in the conditional variance is very
common in many empirical application using high frequency data (see Bollerselev, Chou
and Kroner, 1992, and Kroner and Ng, 1998).
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Table 1
Stocks used to compute the Dow Jones Industrial Average (DJIA) Index

Stock Code Sector Stock Code Sector
Alcoa Inc. AA Basic materials Johnson & Johnson JNJ Healthcare
American Int. Group AIG Financial JP Morgan Chase JPM Financial
American Express AXP Financial Coca-Cola KO Consumer goods
Boeing Co. BA Industrial goods McDonalds MCD Services
Caterpillar Inc. CAT Financial 3M Co. MMM Conglomerates
Citigroup Inc. CIT Industrial goods Altria Group MO Consumer goods
El Dupont DD Basic materials Merck & Co. MRK Healthcare
Walt Disney DIS Services Microsoft Corp. MSFT Technology
General Electric GE Industrial goods P�zer Inc. PFE Healthcare
General Motors GM Consumer goods Procter & Gamble PG Consumer goods
Home Depot HD Services AT&T Inc. T Technology
Honeywell HON Industrial goods United Technologies UTX Conglomerates
Hewlett-Packard HPQ Technology Verizon Communic. VZ Technology
Int. Business Machin. IBM Technology Walt-Mart Stores WMT Services
Inter-tel Inc. INTC Technology Exxon Mobile CP XOM Basic materials

The Lagrange multiplier test statistic shows evidence of no serial correlation in the
squared residuals up to order 20 for all stocks except CAT, MCD and VZ. In terms of
the mean equation, the Ljung-Box test statistic does not reject the null hypothesis of no
serial correlation in the residuals for all stocks except AIG, JNJ, PFE, UTX, VZ, and
XOM.

4. Cluster analysis

Cluster analysis of time series attempts to determine groups (or clusters) of objects in
a multivariate data set. The most commonly used partition clustering method is based in
hierarchical classi�cations of the objects. In hierarchical cluster analysis, we begin with
each time series being considered as a separate cluster (k clusters). In the second stage,
the closest two groups are linked to form k � 1 clusters. This process continues until the
last stage in which all the time series are in the same cluster (see Everitt, Landau and
Leese, 2001 for further discussion).
Figure 1 shows the cluster analysis of DJIA stock returns using a hierarchical clustering

tree (or dendrogram) by complete linkage (see, e.g., Johnson and Wichern, 2002). For
this purpose we used the TARCH-based distance measure de�ned in (5).
Figure 2 shows the multidimensional scaling map of distances constructed with the

same distance measure. The multidimensional scaling is a multivariate statistical method
closely related to principal coordinates analysis, and uses the information about the simi-
larities (or dissimilarities) between the time series to construct a con�guration of k points
in the r-dimensional space (in this case, two dimensions). For details, see Morrison (2005).
The plot can also help to identify the clusters.
The dendrogram associated with the stochastic features of returns series suggests two
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Table 2
Estimated TARCH(1,1) models with conditional GED innovations for DJIA stock returns

Stock b� b� b bv Persistence Q(20) Q2(20) LM(20)
AA 0.02403* 0.95053* 0.03220* 1.482* 0.9907 26.4 19.3 18.9
AIG 0.04141* 0.91677* 0.05873* 1.417* 0.9874 35.0** 15.6 16.3
AXP 0.01958* 0.94808* 0.06949* 1.343* 1.0024 24.2 3.2 3.2
BA 0.03346* 0.93562* 0.03709* 1.317* 0.9876 15.5 21.8 21.0
CAT 0.00340 0.98055* 0.02344* 1.320* 0.9957 21.9 36.2** 16.3
CIT 0.02722* 0.95570* 0.03781* 1.405* 1.0018 21.1 17.0 16.9
DD 0.01787* 0.96790* 0.02372* 1.466* 0.9976 15.1 16.2 16.4
DIS 0.00494 0.97643* 0.03166* 1.344* 0.9972 17.5 10.7 10.4
GE 0.00816 0.96498* 0.05153* 1.598* 0.9989 17.6 21.1 21.2
GM 0.02065* 0.94330* 0.04757* 1.380* 0.9877 23.0 13.5 13.2
HD 0.01317* 0.95588* 0.05286* 1.397* 0.9955 29.8 7.7 7.9
HON 0.04347* 0.87160* 0.11698* 1.247* 0.9736 17.7 16.5 16.3
HPQ 0.01362* 0.97216* 0.01908* 1.224* 0.9953 19.6 9.0 8.9
IBM 0.02417* 0.95046* 0.04493* 1.259* 0.9971 14.2 12.1 11.8
INTC 0.02642* 0.96920* 0.00817 0.969* 0.9997 25.7 11.2 11.0
JNJ 0.03090* 0.93535* 0.06490* 1.450* 0.9999 35.5** 26.1 26.5
JPM 0.02044* 0.95543* 0.06946* 1.418* 1.0006 27.2 15.0 14.9
KO 0.02089* 0.95719* 0.04040* 1.416* 0.9983 22.8 22.6 22.7
MCD 0.01897* 0.95870* 0.02784* 1.405* 0.9916 13.9 44.6* 45.5*
MMM 0.01216* 0.98754* -0.00219 1.186* 0.9986 21.9 17.1 16.6
MO 0.06040* 0.88601* 0.05836* 1.098* 0.9756 16.3 3.7 4.0
MRK 0.01701 0.90773* 0.06365* 1.186* 0.9566 28.8 0.9 0.9
MSFT 0.05052* 0.92676* 0.04293* 1.316* 0.9988 10.8 6.2 6.4
PFE 0.04057* 0.93469* 0.02592** 1.468* 0.9882 31.9** 11.6 11.2
PG 0.03159* 0.94220* 0.04236* 1.336* 0.9950 26.9 2.6 2.8
T 0.03919* 0.93948* 0.03402* 1.450* 0.9957 22.1 22.4 22.7
UTX 0.02540* 0.90959* 0.10784* 1.324* 0.9889 32.2** 4.4 4.4
VZ 0.02877* 0.94453* 0.04853* 1.520* 0.9976 33.6** 41.2* 37.8*
WMT 0.02549* 0.95718* 0.03206* 1.543* 0.9987 30.2 18.9 18.2
XOM 0.03407* 0.93796* 0.03420* 1.610* 0.9891 45.8* 26.1 26.4
* (**) Signi�cant at the 1% (5%) level; Q(20) is the Ljung-Box statistic for serial correlation
in the residuals up to order 20; Q2(20) is the Ljung-Box statistic for serial correlation in the
squared residuals up to order 20 (McLeod and Li, 1983); LM(20) is the Lagrange multiplier
test statistic for ARCH e¤ects (Engle, 1982) in the residuals up to order 20.
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Figure 1. Dendrogram of DJIA stock returns using the TARCH-based distance
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Figure 2. Multidimensional scaling of DJIA stock returns using the TARCH-based distance
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clear clusters. One is formed by consumer goods companies (Coca-Cola and Altria),
by �nancial companies (American Express and Caterpillar), by technology companies
(Hewlett-Packard, Inter-tel, Verizon and AT&T), by basic materials companies (Alcoa
and El Dupont), by industrial goods (Citigroup, General Electric), by services companies
(Walt Disney, McDonalds and Walt-Mart Stores) and by Merck. The second is formed by
Healthcare companies (Johnson & Johnson and P�zer), by conglomerates companies (3M
and United Technologies), by technology companies (Microsoft and IBM), by �nancial
companies (JP Morgan and American Int. Group), by consumer goods companies (Gen-
eral Motors and Procter &Gamble), by industrial goods companies (Boeing and Honywell)
and by miscellaneous sector companies (Exxon and Home Depot).
Looking at the map of distances across the stocks, we appear to have most technology

companies close together, most services and basic materials companies tend to cluster
together, and most consumer goods companies are close to each other and close to the
industrial goods companies, with exception of HON at the �rst coordinate. MRK company
is a clear outlier.

5. Conclusions

In this paper, we introduced an asymmetric-volatility based dmetric for clustering
�nancial time series. Using the information about the simple TARCH model estimates
of the squared returns, we investigated the similarities among the stocks of the Dow
Jones Industrial Average (DJIA) index. From empirical study, we found homogenous
clusters of stocks with respect to the conglomerates, services and technology sectors, and
we found heteregoneous clusters of stocks with respect to the �nancial, consumer goods
and industrial goods sectors.
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