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1 Introduction

This paper deals with optimal reinsurance when the insurer seeks to maximize the adjustment coefficient of

the retained risk and the reinsurer prices reinsurance using a loading which is an increasing function g of

the variance of the accepted risk. Important instances of such pricing principles are the variance and the

standard deviation principles.

Guerra and Centeno (2008) studied the problem of determining the optimal reinsurance policy using as

optimality criterion the adjustment coefficient. Assuming that the reinsurance premium is convex and

satisfies some very general regularity assumptions, it was shown that the optimal reinsurance scheme always

exists and it is unique “up to an economic equivalent treaty”. A necessary optimality condition was found,

that in principle allows for the computation of the optimal treaty.

The proofs in Guerra and Centeno (2008) were obtained by relating the adjustment coefficient with the

expected utility of wealth for an exponential utility function. The type of reinsurance arrangement that

maximizes the expected utility of wealth is the same type that maximizes the adjustment coefficient and vice

versa. Further, the optimal policies for both problems coincide when the risk aversion coefficient is equal to

the adjustment coefficient of the retained risk. For example, if for a given premium functional P , stop loss

maximizes the adjustment coefficient (which will be the case when P is calculated according to the expected

value principle), then stop loss is also optimal for the expected utility problem, and vice-versa. The retention

limit on the expected utility problem will depend of course on the risk aversion coefficient of the exponential

utility function. When the risk aversion coefficient equals the adjustment coefficient of the retained risk,

then that particular adjustment coefficient is maximal and the same retention limit maximizes the expected

utility and the adjustment coefficient.

In the case that concerns us specifically in the present paper, namely when the loading is an increasing

function of the variance, it was shown that the optimal arrangement is a nonlinear function of a type

previously unknown in the reinsurance literature.

We have three objectives in the present paper: first to characterize the functions g that provide convex

premium calculation principles, second to show that the solution mentioned above can easily be computed

by standard numerical methods and third to compare the performance of the optimal treaty with the best

stop-loss policy, under fairly realistic reinsurance loadings and claim distributions.

Comparison with stop-loss treaties is meaningful because it is by far the most widely known type of ag-

gregate treaty that guarantees existence of the adjustment coefficient for the retained risk in cases when

de distribution of the aggregate claims has an heavy tail, as is usually the case in practical applications.

Further, there are well known results in the literature showing that stop-loss is the optimal treaty for various

2



types of optimality criteria and several assumptions on the reinsurance premium. Such results go back to

Borch (1960) and Arrow (1963) which considered the variance and the expected utility of wealth, respec-

tively, as optimality criteria. Hesselager (1990) proved an equivalent result using the adjustment coefficient

as optimality criterion. Some recent results in favor of stop-loss treaties are found in Kaluszka (2004).

The text is organized as follows: Section 2 contains the main assumptions and characterizes convex variance-

related premium principles. Section 3 contains the statement of the problem and a short overview of the

main results in Guerra and Centeno (2008) concerning specifically the case when the reinsurance loading is

an increasing function of the variance. This overview is kept to the minimum required to make the paper

self-contained. Interested readers are referred to Guerra and Centeno (2008) for a full theoretical analysis

of the interrelated problems of maximizing the expected utility of the insurer’s wealth and maximizing the

adjustment coefficient of the retained risk. Some theoretical details which are useful in the computation of

optimal treaties are added in the present paper. Section 4 contains an analysis of the main issues arising

in the numerical computation of optimal treaties. We show that thought the solution given in Section 3 is

in an implicit form, it can be numerically computed using classical methods. In Section 5 we compare the

optimal policy with the best stop loss policy with respect to a standard deviation principle for two different

claim distributions. The distributions are chosen to have identical first two moments but quite different tails.

The results suggest that the optimal policy not only can offer significant improvement in the value of the

adjustment coefficient compared to the best stop-loss treaty, but also its performance is much more robust

with respect to the retention level. This is an important feature for practical implementation where the data

of the problem cannot be known with full accuracy and hence the chosen treaty is in fact suboptimal.

2 Assumptions and preliminaries

Let Y be a non-negative random variable, representing the annual aggregate claims and let us assume that

aggregate claims over consecutive periods are i.i.d. random variables. We assume that Y is a continuous

random variable, with density function f , and that E[Y 2] < +∞. Let c, c > E[Y ], be the corresponding

premium income, net of expenses. A map Z : [0, +∞) 7→ [0, +∞) identifies a reinsurance policy. The set of

all possible reinsurance programmes is:

Z = {Z : [0, +∞) 7→ R| Z is measurable and 0 ≤ Z (y) ≤ y, ∀y ≥ 0} .

We do not distinguish between functions which differ only on a set of zero probability. i.e., two measurable

functions, φ and φ′ are considered to be the same whenever Pr {φ (Y ) = φ′ (Y )} = 1. Similarly, a measurable

function, Z, is an element of Z whenever Pr {0 ≤ Z (Y ) ≤ Y } = 1.
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For a given reinsurance policy, Z ∈ Z, the reinsurer charges a premium P (Z) of the type

P (Z) = E [Z] + g (V ar [Z]) , (1)

where g : [0,+∞) 7→ [0,+∞) is a continuous function smooth in (0, +∞) such that g(0) = 0 and g′ (x) >

0, ∀x ∈ (0,+∞). Further we assume that P is a convex functional. We call premium calculation principles

of this type “variance-related principles”. The variance principle and the standard deviation principle are

both under these conditions, with g(x) = βx and g(x) = βx1/2, β > 0, respectively. Convexity of these two

principles was proved by Deprez and Gerber (1985), but also follows immediately from the Proposition 1,

which characterizes convex variance-related premiums and will be useful in the next section.

Proposition 1 Let B = sup{V ar[Z] : Z ∈ Z} and assume that g is twice differentiable in the interval

(0, B). P (Z) = E[Z] + g(V ar[Z]) is a convex functional if and only if

g′′(x)
g′(x)

≥ − 1
2x

, ∀x ∈ (0, B) . ¤ (2)

Proof. The proof below is an adaptation of the proof by Deprez and Gerber (1985) for a related result.

First, assume that the map P : Z 7→ R is convex. Fix Z ∈ Z\{0} and consider the map t 7→ P (tZ), t ∈ [0, 1].

Then

d2

dt2
P (tZ) =

d2

dt2
(
tE[Z] + g

(
t2V ar[Z]

))
=

= g′′
(
t2V ar[Z]

)
4t2V ar[Z]2 + g′

(
t2V ar[Z]

)
2V ar[Z].

Convexity of P implies convexity of the map t 7→ P (tZ), t ∈ [0, 1]. It follows that d2

dt2 P (tZ) ≥ 0, i.e.,

g′′
(
t2V ar[Z]

)

g′ (t2V ar[Z])
≥ −1

2t2V ar[Z]

must hold for all t ∈ (0, 1). Since Z ∈ Z is arbitrary, inequality (2) follows immediately.

Now, assume that inequality (2) holds and for each Z, W ∈ Z consider the map

t 7→ PZ,W (t) = P (Z + t(W − Z)), t ∈ [0, 1].

From the definition of convex map, it follows that Z 7→ P (Z) is convex if and only if for every Z, W ∈ Z
the map t 7→ PZ,W (t) is convex. The maps t 7→ PZ,W (t) are continuous in [0, 1], twice differentiable in (0, 1),

and

P ′′Z,W (t) = 4g′′ (V ar[Z + t(W − Z)]) (Cov[Z,W − Z] + tV ar[W − Z])2 +

+2g′ (V ar[Z + t(W − Z)])V ar[W − Z].

In particular,
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P ′′Z,W (0) = 4g′′ (V ar[Z]) Cov[Z, W − Z]2 + 2g′ (V ar[Z]) V ar[W − Z] =

= 4g′′ (V ar[Z]) (Cov[Z, W ]− V ar[Z])2 +

+2g′ (V ar[Z]) (V ar[W ]− 2Cov[Z, W ] + V ar[Z]) =

= 2g′ (V ar[Z])
(

2g′′(V ar[Z])
g′(V ar[Z]) (Cov[Z, W ]− V ar[Z])2 + V ar[W ]− 2Cov[Z,W ] + V ar[Z]

)
.

By inequality (2), this implies

P ′′Z,W (0) ≥

≥ 2g′ (V ar[Z])
(

−1
V ar[Z] (Cov[Z,W ]− V ar[Z])2 + V ar[W ]− 2Cov[Z, W ] + V ar[Z]

)
=

= 2g′(V ar[Z])
V ar[Z]

(
V ar[W ]V ar[Z]− Cov[Z, W ]2

)
.

Then, the Cauchy-Schwarz inequality guarantees that

P ′′Z,W (0) ≥ 0, ∀Z, W ∈ Z. (3)

We conclude the proof by showing that inequality (3) implies the apparently stronger condition

P ′′Z,W (t) ≥ 0, ∀Z,W ∈ Z, ∀ t ∈ (0, 1).

In order to do this, notice that

PZ+t(W−Z),W (s) = P (Z + t(W − Z) + s (W − (Z + t(W − Z)))) = PZ,W (t + s(1− t))

holds for every Z, W ∈ Z, t, s ∈ (0, 1) and t, s ∈ (0, 1) implies t + s(1− t) ∈ (0, 1). If follows that

d2

ds2
PZ+t(W−Z),W (s)

∣∣∣∣
s=0

=
d2

ds2
PZ,W (t + s(1− t))

∣∣∣∣
s=0

= P ′′2Z,W ,

which concludes the proof.

Remark 1 Condition (2) holds as an equality for the standard deviation principle and the left hand side of

(2) is zero for the variance principle. Hence both principles are convex.

The net profit, after reinsurance, is

LZ = c− P (Z)− (Y − Z (Y )) .

We assume that c, P and the claim size distribution are such that

Pr {LZ < 0} > 0, ∀Z ∈ Z, (4)
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otherwise there would exist a policy under which the risk of ruin would be zero. This requires the premium

loading to be sufficiently high. Namely, for the variance principle it requires that the inequality

β > (c− E[Y ])/V ar[Y ] (5)

holds. In the standard deviation principle case the required condition is

β > (c− E[Y ])/
√

V ar[Y ]. (6)

Consider the map G : R×Z 7→ [0,+∞], defined by

G (R, Z) =
∫ +∞

0

e−RLZ(y)f (y) dy, R ∈ R, Z ∈ Z. (7)

Let RZ denote the adjustment coefficient of the retained risk for a particular reinsurance policy, Z ∈ Z. RZ

is defined as the strictly positive value of R which solves the equation

G (R, Z) = 1, (8)

for that particular Z, when such a root exists. Equation (8) can not have more than one positive solution.

This means the map Z 7→ RZ is a well defined functional in the set

Z+ = {Z ∈ Z : (8) admits a positive solution} .

3 Optimal reinsurance policies for variance related premiums

Theorem 1 below, which proof can be seen in Guerra and Centeno (2008), provides the solution, under the

assumptions made on Section 2, to the following problem:

Problem 1 Find
(
R̂, Ẑ

)
∈ (0,+∞)×Z+ such that

R̂ = RẐ = max
{
RZ : Z ∈ Z+

}
. ¤

In what follows ν ∈ [0,+∞) denotes the number

ν = sup{y : Pr{Y ≤ y} = 0}.

Theorem 1 A solution to Problem 1 always exists.

a) When g′ is a bounded function in a neighborhood of zero, the adjustment coefficient of the retained

aggregate claims is maximized when Z(y) satisfies

y = Z(y) +
1
R

ln
Z(y) + α

α
, ∀y ≥ 0, (9)
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where α is a positive solution to

h(α) = 0, (10)

with

h(α) = α + E[Z]− 1
2g′(V ar[Z])

. (11)

and R is the unique positive root to equation (8).

When g′ is unbounded in any neighborhood of zero, then either a contract satisfying (8), (9) and (10)

is optimal or the optimal treaty is Z(y) = 0, ∀y (no reinsurance at all) and no solution to (8), (9),

(10) exists.

b) If ν = 0, the solution is unique. If ν > 0 then all solutions are of the form Z(y) + x, where Z(y) is the

treaty described in a) and x is any constant such that −Z(ν) ≤ x ≤ ν − Z(ν). ¤

Theorem 1 evokes some simple remarks:

Remark 2 Under the optimal treaty the direct insurer always retains some part of the tail of the risk

distribution. Off course, the retained tail must always be “light” since the corresponding adjustment coefficient

is guaranteed to exist.

Remark 3 If the optimal treaty is not unique (i.e., if ν > 0) then any two optimal treaties differ only by

a constant. This implies that all optimal treaties provide the same profit (LZ+x = LZ , since P (Z + x) =

P (Z) + x), and hence are indifferent from the economic point of view.

Remark 4 Let Z satisfy (9). Although Z is not an explicitly function of Y , its distribution function can

easily be calculated. Since the left-hand side of (9) is strictly increasing with respect to Z, the distribution

function of Z is

FZ(ζ) = Pr
{

Y ≤ ζ +
1
R

ln
ζ + α

α

}
= F

(
ζ +

1
R

ln
ζ + α

α

)
. (12)

Therefore its density function is

fZ(ζ) = f

(
ζ +

1
R

ln
ζ + α

α

)
1 + R(ζ + α)

R(ζ + α)
. (13)

Theorem 1 leaves some ambiguity about the number of roots of equation (10). We will show below that this

equation has at most one solution.

First, let us introduce the functions

Φk (R,α) =
∫ +∞

0

(1 + R (Z (y) + α))k
f (y) dy, k ∈ Z, (14)
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where Z(y) is such that (9) holds for the particular (R, α) indicated. These functions are useful to prove the

properties below. They are also convenient to deal with issues related to numerical computation of optimal

treaties.

Remark 5 Since we assume that E[Y 2] < +∞, Φk is finite for all k ≤ 2, α > 0, R > 0.

Remark 6 For k ≥ 0, it is clear that Φk is a linear combination of the moments of order ≤ k of Z. Indeed,

a simple computation shows that for the first two moments we have:

E [Z] =
1
R

(Φ1 − (1 + Rα)) , (15)

V ar [Z] =
1

R2

(
Φ2 − Φ2

1

)
. (16)

The reason why we use the functions Φk, instead of formulating the following arguments in terms of moments

of Z, is that due to Proposition 2 below, functions Φk with k < 0 turn out naturally in our proof of Proposition

4, making some expressions far more complicated when expressed in terms of moments. Further, the same

functions appear again when Newton-type algorithms are considered to compute the numerical solutions of

the problem.

Derivatives of Φk with respect to the parameter α can be easily computed:

Proposition 2 For k ≤ 2, R > 0 the map α 7→ Φk(R,α) is smooth and

∂Φk

∂α
= k

(
1
α

+ R

)
(Φk−1 − Φk−2) .¤ (17)

Proof. From (9) it follows that

∂Z(y)
∂α

=
Z(y)

α(1 + R(Z(y) + α)
=

1
αR

− 1 + αR

αR

1
1 + R(Z(y) + α)

.

Then,

∂Φk

∂α
=

∫ +∞

0

k(1 + R(Z(y) + α)k−1R

(
∂Z

∂α
+ 1

)
f(y)dy =

=
k(1 + αR)

α

∫ +∞

0

(
(1 + R(Z(y) + α))k−1 − (1 + R(Z(y) + α))k−2

)
f(y)dy,

from where follows (17).

This Proposition allows us to state the following:

Proposition 3

∂E [Z]
∂α

=
1

Rα
− 1 + Rα

Rα
Φ−1, (18)

∂V ar [Z]
∂α

=
2(1 + Rα)

R2α
(Φ1Φ−1 − 1) . ¤ (19)
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Using the material above we are able to prove the following uniqueness result:

Proposition 4 Suppose that g is twice differentiable in the interval (0, +∞). For each R ∈ (0, +∞) (fixed)

equation (10) has at most one solution, αR > 0.

If such a solution exists, then h′(αR) > 0 holds. Therefore h(α) is strictly negative for α ∈ (0, αR), and it is

strictly positive for α ∈ (αR,+∞). ¤

Proof. Throughout this proof we consider Z(y) defined by (9).

Differentiating h(α), for α > 0 , we get

∂h

∂α
(α) = 1 +

∂E[Z]
∂α

+
1
2

g′′(V ar[Z])
(g′(V ar[Z]))2

∂V ar[Z]
∂α

. (20)

At the points where h(α) = 0, we must have

1
2

= (E[Z] + α)g′(V ar[Z]) (21)

and hence
∂h

∂α
(α)

∣∣∣∣
h(α)=0

= 1 +
∂E[Z]

∂α
+ (E[Z] + α)

g′′(V ar[Z]
g′(V ar[Z])

∂V ar[Z]
∂α

. (22)

Noticing that E[Z] + α and ∂V ar[Z]/∂α (given by (19)) are positive and using Proposition 1 we have that

∂h

∂α
(α)

∣∣∣∣
h(α)=0

≥ 1 +
∂E[Z]

∂α
− (E[Z] + α)

2V ar[Z]
∂V ar[Z]

∂α
. (23)

Now, using (15), (16), (18) and (19) we get

∂h

∂α
(α)

∣∣∣∣
h(α)=0

≥
(

1 +
1

Rα

)
(1− Φ−1)− E[Z] + α

Φ2 − Φ2
1

(
1
α

+ R

)
(Φ1Φ−1 − 1) =

=
(

1 +
1

Rα

)
(1− Φ−1)−

1
R (Φ1 − 1)
Φ2 − Φ2

1

(
1
α

+ R

)
(Φ1Φ−1 − 1) =

=
(

1 +
1

Rα

)(
1− Φ−1 − (Φ1 − 1)(Φ1Φ−1 − 1)

Φ2 − Φ2
1

)
=

=
1 + Rα

Rα(Φ2 − Φ2
1)

(
(1− Φ−1)(Φ2 − Φ2

1)− (Φ1 − 1)(Φ1Φ−1 − 1)
)

=

=
1 + Rα

Rα(Φ2 − Φ2
1)

(
(Φ2 − Φ1) (1− Φ−1)− (Φ1 − 1)2

)
.

Noticing that

Φ2 − Φ1 =
∫ +∞

0

R(Z (y) + α) (1 + R (Z (y) + α)) f (y) dy,

1− Φ−1 =
∫ +∞

0

R (Z(y) + α)
1 + R(Z(y) + α)

f(y)dy,

Φ1 − 1 =
∫ +∞

0

R(Z (y) + α)f (y) dy =

=
∫ +∞

0

√
R(Z (y) + α)(1 + R(Z(y) + α))

√
R(Z (y) + α)

(1 + R(Z(y) + α))
f (y) dy,
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and recalling that the Cauchy–Schwarz inequality states that

E2[X1X2] ≤ E[X2
1 ]E[X2

2 ],

holds for any random variables such that E[X2
1 ] < +∞ and E[X2

2 ] < +∞, with strict inequality when X1, X2

are linearly independent, we conclude that ∂h
∂α (α)

∣∣
h(α)=0

> 0. Hence there exists at most a positive solution

to equation (10), in which case h(α) < 0 holds for every α between zero and the root of (10).

Remark 7 For the variance premium calculation principle we have g(x) = βx, β > 0. Therefore g′ ≡ β is

bounded in a neighborhood of zero. Therefore, Theorem 1 guarantees that the optimal reinsurance policy is

always a nonzero policy. Since the solution for (8), (9), (10) is unique, it gives indeed the optimal solution

(and not any other critical point of the adjustment coefficient).

This contrasts with the case of the standard deviation principle where g(x) = βx1/2, β > 0, and hence

g′(x) = β
2 x−1/2 is unbounded in any neighborhood of zero. In this case the optimal policy may be not to

reinsure any risk, but this can only happen when the tail of the distribution of Y is light such that the moments

generating function of Y is finite in some neighborhood of zero. In any case, if the optimal policy is different

from no reinsurance it will be given again by the unique solution for (8), (9), (10).

4 Numerical calculation of optimal treaties

Let G(R, α) be defined as G(R, Z) with Z satisfying (9) for that particular (R,α). The following proposition

gives a convenient expression for G(R, α):

Proposition 5 G(R, α) can be computed by

G(R,α) =
1
α

(E[Z] + α) eR(P (Z)−c). ¤

Proof.

G(R, α) = eR(P (Z)−c)

∫ +∞

0

eR(y−Z(y))f(y)dy =

= eR(P (Z)−c)

∫ +∞

0

Z(y) + α

α
f(y)dy =

=
1
α

(E[Z] + α) eR(P (Z)−c).
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Now we are ready to proceed into the discussion of numerical solution of the system (8), (10). We will show

that this can be achieved by a simple combination of standard algorithms for quadrature and for solution of

nonlinear equations.

Notice that, for any R ∈ (0, +∞) (fixed) the functions Z(y) satisfying (9) converge pointwise to Z(y) = y

when α → +∞ and converge pointwise to Z ≡ 0 when α → 0+. It follows that lim
α→+∞

h(α) = +∞ and hence

Proposition 4 implies that equation (10) has a solution if and only if h(α) < 0 for some α > 0.

This observation shows that it is quite easy to devise numerical schemes that for any R > 0 (fixed) always

converge to the corresponding solution of (10) if such a solution exists and converge to α = 0 if such a

solution does not exist. For an example of such a procedure (thought not a very efficient one), consider the

bisection algorithm starting with a sufficiently large interval [0, α0] and use formulae (15), (16) to compute

h(α).

For each R > 0, let αR denote the unique solution of (10) if it exists, otherwise αR = 0. The results in

Guerra and Centeno (2008) guarantee that the one-variable equation

G(R,αR) = 1 (24)

has one unique solution R∗ ∈ (0, +∞) and that (R∗, αR∗) is the solution of (8), (10). Further, G(R, αR) < 1

holds for every R ∈ (0, R∗), while G(R, αR) > 1 holds for every R ∈ (R∗, +∞). Thus, it is also easy to

devise algorithms to solve (24) that always converge to the solution.

The discussion above shows that algorithms that always converge to the solution of our problem require

only evaluations h(α) and G(R,α), which can be obtained using (15), (16) and Proposition 5. Typically,

such methods have the drawback of having quite slow convergence rates. Therefore, one may wish to use

Newton-type algorithms which have good properties of rapid (local) convergence and high accuracy, provided

that the left-hand side of the equations and its first order partial derivatives can be quickly and accurately

computed.

In order to see that this can also be achieved, we introduce the functions

Ψk(R,α) =
∫ +∞

0

(1 + R (Z(y) + α))k ln
(

Z(y) + α

α

)
f(y)dy, R > 0, α > 0, k ∈ Z.

Using Proposition 2 it is straightforward to obtain convenient expressions for the partial derivative with

respect to α of the left-hand side of (8), (10). The following proposition does the same for the partial

derivative with respect to R.

Proposition 6 For k ≤ 2, α > 0 the map R 7→ Φk(R,α) is smooth and

∂Φk

∂R
=

k

R
(Φk − Φk−1 + Ψk−1 −Ψk−2) . ¤
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Proof. By differentiating (9) with respect to R, we obtain

0 =
∂Z

∂R
− 1

R2
ln

(
Z + α

α

)
+

1
R

1
Z + α

∂Z

∂R
.

Solving this with respect to ∂Z
∂R yields

∂Z

∂R
=

1
R2

(
1− 1

1 + R(Z + α)

)
ln

(
Z + α

α

)
.

The assumption E[Y 2] < +∞ implies that Ψk is finite for all k ≤ 1, R > 0, α > 0. It follows that

∂Φk

∂R
=

∫ +∞

0

k (1 + R (Z + α))k−1

(
Z + α + R

∂Z

∂R

)
fdy =

=
∫ +∞

0

k (1 + R (Z + α))k−1×

×
(
Z + α + 1

R

(
1− 1

1+R(Z+α)

)
ln

(
Z+α

α

))
fdy =

=
k

R

∫ +∞

0

(1 + R (Z + α))k−1 (1 + R(Z + α)− 1) fdy +

+
k

R

∫ +∞

0

(1 + R (Z + α))k−1

(
1− 1

1 + R(Z + α)

)
ln

(
Z + α

α

)
fdy =

=
k

R
(Φk − Φk−1 + Ψk−1 −Ψk−2) .

We see that the system (8), 10) can be solved by algorithms using derivatives provided we find a way to

compute Φ2, Φ1, Ψ1, Ψ0, Ψ−1. Hence, the important point that remains open is to show that the functions

Φk, Ψk can be computed by standard integration methods. The following proposition shows that Φk, Ψk

can be given an explicit form thought Z is given only in the implicit form (9).

Proposition 7 The functions Φk, Ψk can be represented as the integrals:

Φk(R,α) =
1
R

∫ +∞

0

(1 + R (ζ + α))k+1

ζ + α
f

(
ζ +

1
R

ln
ζ + α

α

)
dζ, (25)

Ψk(R,α) =
1
R

∫ +∞

0

(1 + R (ζ + α))k+1

ζ + α
ln

(
ζ + α

α

)
f

(
ζ +

1
R

ln
ζ + α

α

)
dζ. ¤ (26)

Proof. Using the change of variable y = ζ + 1
R ln ζ+α

α , ζ ∈ [0, +∞[, we obtain

Φk =
∫ +∞

0

(1 + R (Z (y) + α))k
f (y) dy =

=
∫ +∞

0

(1 + R (ζ + α))k
f

(
ζ +

1
R

ln
ζ + α

α

) (
1 +

1
R (ζ + α)

)
dζ =

=
1
R

∫ +∞

0

(1 + R (ζ + α))k+1

ζ + α
f

(
ζ +

1
R

ln
ζ + α

α

)
dζ.

The proof of equality (26) is analogous.
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It is well known that, generically speaking, integrals of smooth functions in compact intervals are much

easier to evaluate numerically than other types of integrals. We conclude this section by giving a procedure

that allows for the reduction of the integrals (25), (26) into sums of integrals of smooth functions in compact

intervals, provided the density f satisfies suitable regularity assumptions, which are usually met in practical

applications.

Notice that our blanket assumption that E[Y 2] < +∞ guarantees that lim
y→+∞

y3f(y) = 0 holds. In the

following we need a stronger condition, namely, existence of some ε > 0 such that

lim
y→+∞

y3+εf(y) = 0 (27)

holds. Notice that condition (27) is sufficient but not necessary for E[Y 2] < +∞. Also, we will assume that

the density f is a continuous function in [0, +∞), with the possible exception of a finite set of points, where it

has right and left limits (possibly infinite). Thus, the density f can be unbounded but only in neighborhoods

of a finite number of points of discontinuity. In this case, there is a partition 0 = a0 < a1 < ... < am < +∞
such that the map ζ 7→ f

(
ζ + 1

R ln ζ+α
α

)
is continuous and bounded in [am, +∞) and for each i ∈ {1, 2, ..., m}

it is continuous in one semiclosed interval, (ai−1, ai] or [ai−1, ai). Thus, we only need to reduce integrals

over the intervals [am, +∞) and (ai−1, ai] or [ai−1, ai), i = 1, 2, ..., m.

If condition (27) holds then the condition

lim
y→+∞

y2+ε ln (y) f(y) = 0 (28)

also holds. Using the change of variable ζ = t−
1
ε − 1, we obtain

∫ +∞

am

(1 + R(ζ + α))k+1

ζ + α
f

(
ζ +

1
R

ln
(

ζ + α

α

))
dζ =

=
1
ε

∫ (1+am)−ε

0

(1+R(t−
1
ε−1+α))k+1

t−
1
ε−1+α

×

×f

(
t−

1
ε − 1 + 1

R ln
(

t−
1
ε−1+α

α

))
t−

1
ε (1+ε)dt,

(29)

∫ +∞

am

(1 + R(ζ + α))k+1

ζ + α
ln

(
ζ + α

α

)
f

(
ζ +

1
R

ln
(

ζ + α

α

))
dζ =

=
1
ε

∫ (1+am)−ε

0

(1+R(t−
1
ε−1+α))k+1

t−
1
ε−1+α

ln
(

t−
1
ε−1+α

α

)
×

×f

(
t−

1
ε − 1 + 1

R ln
(

t−
1
ε−1+α

α

))
t−

1
ε (1+ε)dt.

(30)

We can check that the integrand on the right-hand side of (29) is bounded for k ≤ 2 and the integrand on

the right-hand side of (30) is bounded for k ≤ 1.
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Now, consider the case when ζ 7→ f
(
ζ + 1

R ln ζ+α
α

)
is continuous in (ai−1, ai] (resp., [ai−1, ai)) but

lim
y→(ai−1+

1
R ln

ai−1+α

α )+
f(y) = +∞ (resp., lim

y→(ai+
1
R ln

ai+α

α )−
f(y) = +∞).

Since f is integrable, it follows that

lim
y→(ai−1+

1
R ln

ai−1+α

α )+
f(y)

√
y − (ai−1 +

1
R

ln
ai−1 + α

α
) = 0

(
resp., lim

y→(ai+
1
R ln

ai+α

α )−
f(y)

√
ai +

1
R

ln
ai + α

α
− y = 0

)

must hold.

Using the change of variable ζ = ai−1+(ai−ai−1)t2 (resp., ζ = ai−(ai−ai−1)t2), we transform the integrals

∫ ai

ai−1

(1 + R(ζ + α))k+1

ζ + α
f

(
ζ +

1
R

ln
(

ζ + α

α

))
dζ,

∫ ai

ai−1

(1 + R(ζ + α))k+1

ζ + α
ln

(
ζ + α

α

)
f

(
ζ +

1
R

ln
(

ζ + α

α

))
dζ

into integrals of continuous functions over the interval [0, 1].

Further, if f has continuous derivatives up to order n in the intervals (0, a1), (a1, a2),..., am−1, am), (am,+∞),

then the same holds for the integrands after the changes of variables introduced above. In that case all

the integrals can be computed by Gaussian quadrature or any other standard method based on smooth

interpolation. Note that adaptative quadrature based on these methods allows for easy estimates of the

truncation error.

5 Examples

In this section we give two examples for the standard deviation principle. In the first example we consider

that Y follows a Pareto distribution. In the second example we consider a generalized gamma distribution.

The parameters of these distributions where chosen such that E[Y ] = 1 and both distributions have the same

variance (which was set to V ar[Y ] = 16
5 , for convenience of the choice of parameters). Notice that thought

they have the same mean and variance, the tails of the two distributions are rather different. However,

none of them has moment generating function defined in any neighborhood of the origin. Hence the optimal

solution must always be different than no reinsurance.

In both examples we consider the same premium income c = 1.2 and the same loading coefficient β = 0.25.
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Table 1: Y - Pareto random variable

Optimal Treaty Best Stop Loss

α = 1.74411 M = 67.4436

R 0.055406 0.047703

E[Z] 0.098018 0.001050

V ar[Z] 0.212089 0.160269

P (Z) 0.213151 0.101134

E[LZ ] 0.084867 0.099916

Example 1 We consider that Y follows the Pareto distribution

f(y) =
32× 2132/11

(21 + 11y)43/11
, y > 0.

The first column of Table 1 shows the optimal value of α and the corresponding values of R, E[Z], V ar[Z],

P (Z), and E[LZ ], while the second column shows the corresponding values for the best (in terms of the

adjustment coefficient) stop loss treaty. The optimal policy improves the adjustment coefficient by 16.1% with

respect to the best stop loss treaty, at the cost of an increase of 111% in the reinsurance premium. However,

notice that the relative contribution of the loading to the total reinsurance premium is much smaller in the

optimal policy, compared with the best stop loss. Hence, thought a larger premium is ceded under the optimal

treaty than under the best stop loss, this is made mainly through the pure premium, rather than the premium

loading, so the expected profits are not dramatically different.

Figure 1 shows the optimal reinsurance arrangement versus the best stop loss treaty ZM (y) = max{0, y−M}.
It shows that the improved performance of the optimal policy is achieved partly by compensating a lower level

of reinsurance against very high losses (which occur rarely) by reinsuring a substantial part of moderate

losses, which occur more frequently but are inadequately covered or not covered at all by the stop-loss treaty.
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Figure 1: Optimal policy (full line) versus best stop loss (dashed line): the Pareto

case.

Α1.744 0.5 0.1

R
0.0554

0.0477

0.04

0.02

M0 67.4 400 800

Figure 2: Adjustment coefficient as a function of treaty parameter for policies of type

(9) (full line) compared with stop loss policies (dashed line) in the Pareto case. In

both cases the horizontal axis represents the policy parameter (α and M , resp., scales

not comparable).

In general, it can be expected that the treaty selected in a practical context is suboptimal. Supposing that

the direct insurer is allowed to chose a treaty of the type (9), numerical errors and incomplete knowledge
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about the distribution of claims ensure that the choice of the value for the parameter α can not be made with

complete accuracy. Therefore, it is interesting to see how the adjustment coefficients of treaties of type (9)

and stop loss treaties behave as functions of the treaty parameters (resp., α and M). For this purpose we

present some additional figures.

Figure 2 plots values of the adjustment coefficient against the treaty parameters. In order to make the

retained risk to increase in the same direction (from left to right) in both curves, we plot the α parameter

of the treaties (9) in inverse scale (i.e., we plot 1
α). The curves corresponding to both types of treaties have

the same overall shape, decreasing smoothly to the right of a well defined maximum. However, notice that

the horizontal scales of these curves is not comparable because the parameters M and 1
α do not have any

common interpretation.

In order to make the comparison more meaningful we present two other plots in which the horizontal axis

has the same meaning for both treaties. In Figure 3 we show the adjustment coefficient plotted as a function

of the ceded risk (E[Z]). We see that while stop loss policies exhibit a very sharp maximum corresponding to

a small value of E[Z], the policies of type (9) exhibit a broad maximum. The adjustment coefficient of stop

loss policies decreases very steeply when E[Z] departs in either way from the optimum (this can be seen in

some detail in Figure 4). Such behavior contrasts with policies of type (9) which keep a good performance

even when the amount of risk ceded differs substantially from the optimum.

E@ZD
0 0.1 0.2 0.3 0.4

R
0.0554

0.0477

0.04

0.02

Figure 3: Adjustment coefficient as a function of ceded risk (E[Z]) for policies of

type (9) (full line) compared with stop loss policies (dashed line) in the Pareto case.

17



E@ZD0 0.01 0.02 0.03 0.04

R
0.0554

0.0477

0.04

0.02

Figure 4: Detail of figure 3.

The presence of a sharp maximum is due to the fact that when stop loss policies are considered, the expected

profit decreases very sharply when the ceded risk increases. By contrast, using policies of type (9) it is possible

to cede a larger amount of risk with a moderate decrease in the expected profit.

E@LZD
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0.0477

0.04

0.02

Figure 5: Adjustment coefficient as a function of expected profit (E[LZ ]) for policies

of type (9) (full line) compared with stop loss policies (dashed line) in the Pareto case.

Figure 5 shows the adjustment coefficient plotted as a function of the expected profit (E [LZ ]). Recall that the

adjustment coefficient is defined only for policies satisfying E [LZ ] > 0 and due to the choice of our examples
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E [LZ ] ≤ 0.2 holds for all Z ∈ Z. Therefore we see that the policies of type (9) significantly outperform the

comparable stop loss policies except at very high or very low values of expected profit (i.e., except in situations

of very strong over-reinsurance or sub-reinsurance).

Example 2 In this example, Y follows the generalized gamma distribution with density

f(y) =
b

Γ(k)θ

(y

θ

)kb−1

e−( y
θ )b

, y > 0,

with b = 1/3, k = 4 and θ = 3!/6!. Table 2 shows the results for this example. The general features are

similar to Example 1 but the improvement with respect to the best stop loss is smaller (the optimal policy

increases the adjustment coefficient by about 7.8% with respect to the best stop loss). The optimal policy

presents a larger increase in the sharing of risk and profits and a sharp increase in the reinsurance premium

(more than seven-fold) with respect to the best stop loss. However, in both cases the amount of the risk and

of the profits which is ceded under the reinsurance treaty is substantially smaller than in the Pareto case.

Table 2: Y - Generalized gamma random variable

Optimal Treaty Best Stop Loss

α =0.813383 M = 47.8468

R 0.084709 0.078571

E[Z] 0.076969 0.000204

V ar[Z] 0.049546 0.004951

P (Z) 0.132616 0.017794

E[LZ ] 0.144353 0.182410

Our comments on Example 1 comparing the performance of treaties of type (9) with stop loss treaties remain

valid for the present example.

Notice that the plots of the adjustment coefficients functions of the expected profit in the present example

(figure 8) are skewed to the right compared with the corresponding plot in Example 1 (figure 5). In figure 8

the stop loss treaty presents a sharper maximum than in figure 5, while the opposite is true for the treaties

of type (9).
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Figure 6: Optimal policy (full line) versus best stop loss (dashed line): the generalized

gamma case.
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Figure 7: Adjustment coefficient as a function of ceded risk (E[Z]) for policies of

type (9) (full line) compared with stop loss policies (dashed line) in the generalized

gamma case.
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Figure 8: Adjustment coefficient as a function of expected profit (E[LZ ]) for policies

of type (9) (full line) compared with stop loss policies (dashed line) in the generalized

gamma case.
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