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case for most nonproportional treaties placed in the market.
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Assuming that the premium calculation principle is a convex functional

we prove existence and uniqueness of solutions and provide a necessary op-

timality condition (via needle-like perturbations, widely known in optimal

control). These results are used to �nd the optimal reinsurance policy when

the reinsurance loading is increasing with the variance. The optimal contract

is described by a nonlinear function, of a similar form than in the aggregate

case.

Key words: optimal reinsurance, adjustment coe¢ cient, expected util-

ity, exponential utility function, convex premium principles, risk.

1 Introduction

There are many theoretical results in favor of this or that type of reinsurance,

depending on the optimality criterion and the premium principle that has

been chosen. Borch (1960) proved that stop loss minimizes the variance of

the retained risk if the reinsurer charges a �xed premium dependent only on

the expected reinsurance claims. Taking the maximization of the expected

utility as the optimality criterion, Arrow (1963) proved a similar result in

favor of the stop loss contract. There are some generalizations of Arrow�s

result, a few of them quite recent (e.g. Kaluszka (2004)). Hesselager (1990)

achieved an equivalent result using the adjustment coe¢ cient as optimality

criterion.
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All these articles in favor of the stop loss contract are based on the as-

sumption that the ceded claims have a �xed expected value, although Borch

himself has made, in Borch (1969), a number of negative remarks to his

result. In fact the reinsurance premium with the same loading coe¢ cient

(=loading divided by the expected claim amount), for all the reinsurance

schemes, does not have any practical adherence.

All these articles consider that reinsurance is placed on the aggregate.

When we consider that reinsurance is placed on individual terms excess of

loss takes the place of the stop loss contract. See, for instance, Bowers et

al (1987), Gerber (1979), Gajek (2000) and Kaluszka (2001). The com-

ments made about the reinsurance premium can also apply to individual

reinsurance. Froot (2001), using over 4,000 catastrophe reinsurance layers

transacted during the period 1970-1998, shows that the loading coe¢ cient

increases for higher layers, as it would be expected. This justi�es the need

of results that deviate from the assumption that the premium is calculated

according to the expected value principle.

There are some results on optimal reinsurance that consider that the

premium loading is an increasing function with the variance of the ceded risk.

Gajek (2000) and Kaluszka (2001) minimize the variance of the retained risk,

when the loading of the reinsurance premium used is based on the expected

value and/or on the variance of the reinsured risk and the premium is �xed.

Kaluszka (2005) generalizes that article to other convex premium calculation

principles and other optimality criteria.

Guerra and Centeno (2008) choose as optimality criterion the adjustment
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coe¢ cient of the retained risk and assume that the reinsurance premium is a

convex functional. Note, however that the amount to pay for the reinsurance

arrangements is not �xed, as it is the case in all the papers cited above. Part

of the di¢ culty in studying the problem lies on the fact that the adjustment

coe¢ cient is de�ned in an implicit form and its domain has not a structure

appropriate to use arguments based on classical implicit function theorems.

We overcome that di¢ culty by showing that to maximize the adjustment

coe¢ cient is equivalent to solve a two-step problem. The �rst step in this

new problem consists in maximizing the expected utility of wealth of the

retained risk for an exponential utility function, for all positive values of

the coe¢ cient of risk aversion. The second step consists in solving a single-

variable equation. The optimal adjustment coe¢ cient equals the coe¢ cient

of risk aversion for which the maximal expected value of the utility function

is -1. The reinsurance policy that maximizes the adjustment coe¢ cient is

the treaty that maximizes the expected utility of wealth for that particular

value of the risk-aversion coe¢ cient. It turns out that the maximization step

in the two-step problem is easier to deal from the mathematical point of view

than the original one. Thus, both problems are solved. It is proved that one

optimal reinsurance policy always exists and it is given a necessary condition

for a policy to be optimal. Stop loss is indeed the optimal form of reinsurance

if the reinsurer rates the contracts by the expected value principle, but when

the reinsurance loading is an increasing function of the variance (for example,

in the variance or standard deviation premium principles), then the optimal

form is of a nonlinear type (not an already known typical form), but very
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easily constructed (see Guerra and Centeno (2007)).

In this article we generalize the results obtained in Guerra and Centeno

(2008), by considering that the reinsurance strategies are con�ned to be per

claim reinsurance. We omit the proves of our results whenever they follow

exactly the same reasoning that in Guerra and Centeno (2008).

The paper follows the same structure as Guerra and Centeno (2008) and

is organized as follows. Section 2 contains the formulation of the problem,

the basic notation and the blanket assumptions that will be used. Section 3

contains some essentially technical elements that will be used to obtain the

main results. In Section 4 we analyze the relationship between the maximiza-

tion of the adjustment coe¢ cient of the retained risk and the maximization

of the expected value of the utility of the insurer�s wealth. In Section 5 we

prove existence and uniqueness of optimal policies for the expected utility

criterion. This result is used in Section 6 to prove existence and unique-

ness of a policy which maximizes the adjustment coe¢ cient. A necessary

condition for optimality is obtained in Section 7. In Section 8 we assume

that the loading on the reinsurance premium is an increasing function of

the variance and provide the optimal necessary conditions. We show that

the optimal treaty is broadly of the same type as in the aggregate case but

some additional issues concerning the structure of optimal treaties arise in

the individual claim case. The relationship between this structure and the

distribution of claim numbers is discussed in Section 9.
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2 Assumptions

In our model we consider some simplifying assumptions. To start with we

consider that the reinsurance market consists of one insurer and one reinsurer,

that both the insurer and the reinsurer have the same information on the

claim number and claim amount distributions, that the reinsurer �xes the

pricing rule and that this rule is of the knowledge of the insurer.

Let N denote the number of claims of a given risk (a policy or portfolio of

policies) over a given period of time (say, one year). N is an integer random

variable with distribution

Pr fN = ng = p (n) ; n = 0; 1; 2; 3; ::::

We assume that

Assumption 1 The moment-generating function of the random variable N

exists (is �nite) on a neighborhood of zero, i.e. the radius of convergence

of the probability generating function �(t) = E[tN ] =
+1P
n=0

tnp(n) is strictly

greater than 1. �

Let Yi represent the value of the ith claim in the period of time being

considered. Yi, i 2 N are assumed to be random variables satisfying the

following assumptions:

Assumption 2 fYigi=1;2;::: are i.i.d. nonnegative continuous random vari-

ables with common density function f , and E [Y 2
i ] < +1. �

Assumption 3 fYigi=1;2;::: are independent of the random variableN . �
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When we refer to a generic claim (whichever its order of occurrence), we

denote it by Y (i.e., Y denotes an arbitrary continuous random variable with

the same density f).

Let bY be the gross (of reinsurance) aggregate claim amount for the same
period of time, i.e.

Ŷ =
NX
i=0

Yi;

with Y0 � 0. Aggregate claims over consecutive periods are assumed to be

i.i.d..

As we are dealing with per claim reinsurance, a reinsurance policy is a

function Z : [0;+1[ 7! [0;+1[, mapping each possible value of a claim Y

into the corresponding value refunded under the reinsurance contract. The

set of all possible reinsurance policies is:

Z = fZ : [0;+1[ 7! Rj Z is measurable and 0 � Z (y) � y; 8y � 0g :

We do not distinguish between functions which di¤er only on a set of zero

probability with respect to the density f . i.e., two measurable functions,

� and �0 are considered to be the same whenever Pr f� (Y ) = �0 (Y )g = 1.

Similarly, a measurable function Z is an element of Z whenever

Pr f0 � Z (Y ) � Y g = 1:

The aggregate claims refunded under the reinsurance contract Z 2 Z is

the random variable

Ẑ =
NX
i=0

Z (Yi) :
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Assume that for each period of time, the premium charged for a reinsur-

ance policy is computed by a real functional P : Z 7! [0;+1]. Assuming

that the insurer�s gross premium amount, free of expenses and tax, per unit

of time, is c; with c > E[Ŷ ], and acquires a given reinsurance policy Z 2 Z

for the same period, the net result obtained, which for simplicity we call

pro�t is the random variable

LZ = c� P (Z)�
�
Ŷ � Ẑ

�
= c� P (Z)�

NX
i=0

(Yi � Z (Yi)) ;

(meaning a loss when its value is negative). Concerning the random variablebY and the premiums c and P (Z), we take the following additional assump-

tions:

Assumption 4 No reinsurance policy exists that guarantees a nonnegative

pro�t, i.e., Pr fLZ < 0g > 0 holds for every Z 2 Z. �

Assumption 5 The reinsurance premium is a convex, non negative func-

tional, such that P (0) = 0. It is continuous in the mean-squared sense, i.e.,

limk!1 P (Zk) = P (Z 0) holds for every sequence fZk 2 Zgk=1;2;::: such that

lim
k!1

Z +1

0

(Zk (y)� Z 0 (y))
2
f (y) dy = 0: �

The concept of convex premium calculation principles was introduced in

the actuarial literature by Deprez and Gerber (1985).

Thought some regularity of the probability measure is necessary, the re-

quirement that Y is a continuous random variable can be much weakened.

We provide this assumption in order to simplify the technical content of our
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proofs, so we focus in the general features of the approach we propose. In

contrast, Assumptions 1, 3 and 5 and the requirement that E[Y 2] < +1 can

not be lifted. This is because our approach depends in a fundamental way

on Hilbert space arguments and convex optimization.

Consider the map G : R�Z 7! [0;+1], de�ned by

G (R;Z) = E
�
e�RLZ

�
; R 2 R; Z 2 Z:

Let RZ denote the adjustment coe¢ cient of the retained risk for a particular

reinsurance policy, Z 2 Z. RZ is de�ned as the strictly positive value of R

which solves the equation

G (R;Z) = 1; (1)

for that particular Z; when such a root exists. It comes as a Corollary of

Lemma 1 below that (1) cannot have more than one positive solution. This

means that the map Z 7! RZ is a well de�ned functional in the set

Z+ = fZ 2 Z : (1) admits a positive solutiong :

Now, suppose that the insurance company detains a certain amount of

reserves, u > 0, to cover eventual losses. If a reinsurance policy Z 2 Z is in

force year after year, then the probability of ultimate ruin is

 Z(u) = Pr

(
u+

nX
k=1

LZ;k < 0; for some n = 1; 2; :::

)
;

where LZ;k denotes the pro�t obtained by the insurer in the year k (all

LZ;k are i.i.d. with the same distribution as LZ). As it is well known (see
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for example Gerber (1979)) the probability of ruin satis�es the Lundberg

inequality:

 Z(u) � exp(�uRZ):

Further, the behavior of  Z(u) as a function of u is quite similar to the behav-

ior of exp(�uRZ) for most common reinsurance forms (see Centeno (1997)).

Therefore, the established practice of seeking to maximize RZ instead of

minimizing  Z(u) itself is acceptable.

Thus, we deal with the following optimization problem:

Problem 1 Find
�
R̂; Ẑ

�
2 ]0;+1[�Z+ such that

R̂ = RẐ = max
�
RZ : Z 2 Z+

	
:�

A policy Ẑ 2 Z is said to be optimal for the adjustment coe¢ cient

criterion if
�
RẐ ; Ẑ

�
solves this problem. We remind that the problem was

solved in Guerra and Centeno (2008) for the case N � 1; i.e. for aggregate

reinsurance.

Given the formulation of Problem 1, it becomes clear that Assumption

4 is required in order to make the problem nontrivial: If there exists some

policy satisfying PrfLZ < 0g = 0, then the risk of ruin under this policy is

obviously zero.

It is also clear that Assumption 1 is necessary to make the problem well

posed. Indeed it can be checked that

G (R;Z) = �
�
E
�
eR(Y�Z)

��
eR(P (Z)�c); (2)
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where �(�) is the probability generating function of the number of claims N .

Therefore, if the radius of convergence of �(t) equals 1, then Z � Y is the

unique reinsurance treaty satisfying G (R;Z) < +1 and the problem does

not admit any solution.

3 Preliminaries

In this section we study some properties of the map (R;Z) 7! G (R;Z) and

the existence of the adjustment coe¢ cient.

Lemma 1 Fix Z 2 Z, and suppose there exists some R > 0 such that

G (R;Z) < +1.

Then, there exists a constant �Z 2 ]0;+1] such that map R 7! G (R;Z) is

smooth in [0; �Z [, and G (R;Z) = +1 for all R > �Z. Further,

lim
R!��Z

G (R;Z) = G (�Z ; Z) : (3)

For R 2 [0; �Z [, we have

@kG (R;Z)

@Rk
= E

h
(�LZ)k e�RLZ

i
; k � 0: � (4)

Proof. Existence of �Z and equality (3) follow directly from (2) and Lemma

1 in Guerra and Centeno (2008). The rest of the proof is in all similar to the

proof of Lemma 1 in Guerra and Centeno (2008).

Lemma 1 has the following immediate Corollary:
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Corollary 1 For any Z 2 Z the map R 7! G(R;Z) is strictly convex in

[0; �Z ]. Hence, equation (1) admits at most one positive solution. It admits

no positive solution if E [LZ ] � 0. �

The existence of a reinsurance policy such thatE [LZ ] > 0 andG (�Z ; Z) <

1 can not be ruled out. Let � be the radius of convergence of the probability

generating function of N , �(�). Then it can be shown that the cases in which

such phenomenon occurs are exactly the following:

1. E
�
e�Z(Y�Z)

�
< � and G (�Z ; Z) < 1 hold, but E

�
eR(Y�Z)

�
= +1 holds

for all R > �Z ;

2. E
�
e�Z(Y�Z)

�
= � < +1 and G (�Z ; Z) < 1.

This implies that the map Z 7! RZ is a functional de�ned in implicit

form whose domain Z+ lacks a convenient structure to allow for optimiza-

tion methods based on the implicit function theorem. The remaining results

presented in this section will be used in later sections to overcome this di¢ -

culty.

The following Proposition shows that for each Z 2 Z such that E [LZ ] > 0

and G (�Z ; Z) < 1, there exists ~Z 2 Z+ such that R ~Z > �Z .

Proposition 1 Fix (R;Z) 2 ]0;+1[ � Z such that G (R;Z) < eR(P (Y )�c).

For every su¢ ciently small " > 0 there exists � > 0 such that, for any

~R 2 [R;R + �] and any  2
�
G (R;Z) + "; eR(P (Y )�c)

�
, there exists ~Z 2 Z

such that

G
�
~R; ~Z

�
= : �
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Proof. Fix (R;Z) 2 ]0;+1[ � Z such that G (R;Z) < eR(P (Y )�c) and �x

" > 0 such that G (R;Z) + " � eR(P (Y )�c). For each M 2 ]0;+1[, let

ZM (y) = max fZ (y) ; y �Mg :

The dominated convergence theorem guarantees that for everyM0 2 [0;+1[,

the equality

lim
M!M0

Z +1

0

(ZM (y)� ZM0 (y))
2 f (y) dy = 0

holds. The dominated convergence theorem also guarantees that

lim
M!+1

Z +1

0

(ZM (y)� Z (y))2 f (y) dy = 0:

Therefore, Assumption 5 guarantees that the map M 7! P (ZM) is continu-

ous, and lim
M!+1

P (ZM) = P (Z). Also, the dominated convergence theorem

guarantees that the map M 7! E
�
eR(Y�ZM )

�
is continuous nondecreasing in

[0;+1[ with E
�
eR(Y�Z0)

�
= 1 and lim

M!+1
E
�
eR(Y�ZM )

�
= E

�
eR(Y�Z)

�
�

�. For any M > 0 (�xed), the map ~R 7! E
h
e
~R(Y�ZM )

i
is continuous

and �nite for all ~R > 0. Hence, there exists M0 2 ]0;+1[ such that

G (R;ZM0) < G (R;Z) + "
2
, It follows that there exists � > 0 such that

G
�
~R;ZM0

�
< G (R;Z) + " holds for all ~R 2 [R;R + �]. Assumption 4 im-

plies that P (Y )� c > 0. Therefore, Bolzano�s Theorem guarantees that the

set n�
~R;G

�
~R;ZM

��
: ~R 2 [R;R + �] ; M 2 [0;M0]

o
covers the rectangle [R;R + �]�

�
G (R;Z) + "; eR(P (Y )�c)

�
.
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Corollary 2 Fix Z 2 Z. If G (�Z ; Z) < 1, then there exists R > �Z, ~Z 2 Z

such that G
�
R; ~Z

�
= 1.�

Proof. Assumption 4 implies that P (Y )�c > 0. Hence 1 2
�
G (�Z ; Z) ; e

�Z(P (Z)�c)
�
.

Therefore, the Corollary follows immediately from Proposition 1.

The following Proposition studies the convexity of the map Z 7! G (R;Z) :

Proposition 2 The map Z 7! G (R;Z) is convex in Z. It is strictly convex

unless the random variable N is concentrated at a unique integer k. In that

case the map
�
P (Z)
k
� Z

�
7! G (R;Z) is strictly convex. �

Proof. Given that bY and bZ are both compound random variables, with the
same claim number distribution, for every (R;Z) 2 ]0;+1[ � Z, we have

that

G (R;Z) = eR(P (Z)�c)
+1X
n=0

E
�
eR(Y�Z)

�n
p(n): (5)

Consider two reinsurance treaties Z1; Z2 2 Z, with Z1 6= Z2. Fix � 2 ]0; 1[.

Then,

G (R; �Z1 + (1� �)Z2) = eR(P (�Z1+(1��)Z2)�c)p(0) +

+
1X
n=1

E

�
e
R
�
P (�Z1+(1��)Z2)�c

n
+Y��Z1�(1��)Z2(Y )

��n
p (n) :

Convexity of the premium implies that

G (R; �Z1 + (1� �)Z2) � eR(�(P (Z1)�c)+(1��)(P (Z2)�c))p (0) +

+

+1X
n=1

E

�
e
R
�
�
�
P (Z1)�c

n
+Y�Z1

�
+(1��)

�
P (Z2)�c

n
+Y�Z2

���n
p (n) :
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Therefore, strict convexity of the exponential and of powers xn (n � 1; x > 0)

imply

G (R; �Z1 + (1� �)Z2) �

� (�eR(P (Z1)�c) + (1� �)eR(P (Z2)�c))p(0)+

+
+1P
n=1

�
�E

�
e
R
�
P (Z1)�c

n
+Y�Z1

��n
+ (1� �)E

�
e
R
�
P (Z2)�c

n
+Y�Z2

��n�
p (n) =

= �G (R;Z1) + (1� �)G (R;Z2) ;

with strict inequality holding unless

P (Z1)� nZ1 = P (Z2)� nZ2

holds for every n � 0 such that p (n) 6= 0.

It is easy to check that this last condition can be satis�ed only when N is a

degenerate random variable taking one single value k with probability 1.

4 Maximization of the expected utility of wealth

It was pointed in the previous Section that the map Z 7! RZ is a functional

de�ned in implicit form whose domain, Z+, lacks a convenient structure to

allow for optimization methods based on the implicit function theorem. It

turns out that this theoretical obstacle can be avoided by exploiting the close

relationship between maximizing of the adjustment coe¢ cient of the retained

risk (Problem 1) and maximizing of the expected utility of wealth with an
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arbitrary coe¢ cient of risk aversion (Problem 2, below). In this Section we

discuss the relationship between the two problems.

Consider the exponential utility function with coe¢ cient of risk aversion

R > 0:

UR (w) = �e�Rw:

For any given coe¢ cient of risk aversion, R > 0, the expected utility of the

pro�t obtained by the insurance company in a given unit of time is

E [UR (LZ)] = �G (R;Z) : (6)

We consider the maximization problem:

Problem 2 Find Z� 2 Z, such that

E [UR (LZ�)] = max fE [UR (LZ)] : Z 2 Zg :

Here R > 0 is a given constant (�xed).�

A policy Z 2 Z is said to be optimal for the expected utility cri-

terion with coe¢ cient of risk aversion R if it solves Problem 2 for that

particular R. When it is clear from the context which is the coe¢ cient of

risk aversion being considered, we will just say that the policy is optimal for

the expected utility criterion.

It follows immediately from (6) that a policy is optimal for the expected

utility criterion if and only if it is a minimizer of the functional Z 7! G (R;Z),

with the same (�xed) value of R being considered. The following relationship

between Problem 1 and Problem 2 is the key to our approach and its proof
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is similar to the corresponding result for the aggregate case, see Guerra and

Centeno (2008).

Proposition 3 A pair (R�; Z�) 2]0;+1[�Z solves Problem 1 (i.e., Z� is

optimal for the adjustment coe¢ cient criterion) if and only if it satis�es the

following conditions:

1. Z� is optimal for the expected utility criterion (i.e., it solves Problem

2) with coe¢ cient of risk aversion R = R�;

2. G(R�; Z�) = 1:

Proof. The only substantial di¤erence to the aggregate case is that the

Lemma 2 of Section 3 in Guerra and Centeno (2008) does not hold in the

individual case claim. However, the Lemma can be replaced by Proposition

1 from the previous section and then all other arguments hold.

Proposition 3 shows that, Problem 1 can be solved in two steps:

1. For each R 2 ]0;+1[ �nd ZR, the respective optimal policy for the

expected utility criterion. Equivalently, �nd

ZR = argmin fG (R;Z) : Z 2 Zg ;

2. Solve the equation with one single real variable

G (R;ZR) = 1:

We will always adhere to the notation used above:
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Notation 1 For each Z 2 Z+, RZ denotes the positive solution of the equa-

tion G (R;Z) = 1, for the particular (�xed) Z being considered.

For each R > 0, ZR denotes the optimal policy for the expected utility crite-

rion with the particular coe¢ cient of risk aversion R.

Below we show that the map R 7! ZR is well de�ned for R 2]0;+1[.

5 Existence and uniqueness of optimal poli-

cies for the expected utility criterion

Theorem 1 For each R 2 ]0;+1[ there exists an optimal policy for the

expected utility criterion.

If PrfN = kg = 1; for some k � 1; then given an optimal policy Z� 2 Z,

any other policy ~Z 2 Z is optimal if and only if

Pr

8<: ~Z (Y )� Z� (Y ) =
P
�
~Z
�
� P (Z�)

k

9=; = 1;

otherwise the optimal policy is unique.�

Proof. In our proof we consider the equivalent problem of minimizing the

functional Z 7! G (R;Z), for the particular value of R being considered.

Proposition 2 states that the functional Z 7! G (R;Z) is convex. If

Pr fN = kg = 1; for some integer k � 1 then the map
�
P (Z)
k
� Z

�
7!

G (R;Z) is well de�ned and strictly convex. Otherwise the map Z 7! G (R;Z)

is strictly convex. Since Z is convex, this proves the part of the Theorem
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concerning uniqueness of solutions.

Existence of a minimizer is a consequence of the classical Banach-Alaoglu

Theorem from functional analysis (see e.g. Rudin (1991)). The key points of

the argument are presented in Guerra and Centeno (2008).

6 Existence and uniqueness of optimal policy

for the adjustment coe¢ cient criterion

In this Section we use the results above to prove existence and uniqueness of

solutions of Problem 1.

Theorem 2 There exists an optimal policy for the adjustment coe¢ cient

criterion.

If PrfN = kg = 1; for some k � 1; then given an optimal policy Z� 2 Z,

any other policy ~Z 2 Z is optimal if and only if

Pr

8<: ~Z (Y )� Z� (Y ) =
P
�
~Z
�
� P (Z�)

k

9=; = 1; (7)

otherwise the optimal policy is unique.�

Proof. Uniqueness is a straightforward consequence of Proposition 3 and

Theorem 1. To see this, suppose the adjustment coe¢ cient admits two dif-

ferent global maximizers, Z�, ~Z 2 Z. Proposition 3 states that Z� and ~Z are

both optimal policies for the expected utility criterion with the particular

coe¢ cient of risk aversion R = RZ� = R ~Z . Then, Theorem 1 states that
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either the random variable N is such that PrfN = kg = 1; for some k � 1;

in which case Z�, ~Z satisfy (7), or ~Z = Z�.

In order to prove existence, we will proceed like in Guerra and Centeno

(2008): �rst we prove that the set fR 2 ]0;+1[ : G (R;ZR) � 1g is non-

empty. Then, we prove that the in�mum of this set solves the equation

G (R;ZR) = 1.

Suppose that G (R;ZR) < 1 holds for all R 2 ]0;+1[. Consider a sequence

fRkg ! +1, and the corresponding sequence fZRkg. The argument used in

Guerra and Centeno (2008) can be applied in the present case to show that

fRkg can be chosen in such a way that fZRkg converges in the weak sense

towards some ~Z 2 Z, and

G
�
R; ~Z

�
� lim

k!1
G (R;ZRk) (8)

holds for every R 2 ]0;+1[. Since the map R 7! G (R;Z) can not cross

the line G = 1 more than once in the positive semiaxis, the hypothesis

G (Rk; ZRk) < 1 implies that G
�
R;ZRk+m

�
< 1 holds for every k;m 2 N,

R � Rk. Therefore, (8) implies G
�
R; ~Z

�
� 1, 8R 2 ]0;+1[, which implies

Pr fL ~Z < 0g = 0. Since this contradicts Assumption 4, we conclude that

G (R;ZR) � 1 must hold for some �nite R.

Let R� = inf fR > 0 : G (R;ZR) � 1g. Suppose that G (R�; ZR�) < 1. Then,

Proposition 1 shows that there exists " > 0 such that G (R� + �; ZR�+�) < 1

holds for all � 2 [0; "[. This is in contradiction with the de�nition of R�,

therefore G (R�; ZR�) � 1 must hold.

Now, chose a sequence fRk < R�g, converging to R�. Without loss of gener-
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ality, we can chose the sequence fRkg such that the corresponding sequence

fZRkg converges weakly to some ~Z 2 Z, and

G
�
R; ~Z

�
� lim

k!1
G (R;ZRk) � 1 (9)

holds for every R < R�. The inequality (9) implies that R� � � ~Z and

lim
R!R��

G
�
R; ~Z

�
� 1. Therefore G

�
R�; ~Z

�
> 1 would be a contradiction

with Lemma 1. This proves that G
�
R�; ~Z

�
= 1 and therefore, ~Z is optimal

for the adjustment coe¢ cient criterion.

7 Necessary condition for optimality

Fix a reinsurance policy Z 2 Z. We consider needle-like perturbations (see

e.g. Gamkrelidze (1978)), i.e., we consider reinsurance policies of type

Z�;�;" (y) =

8><>:
Z (y) ; if y =2 [�; � + "] ;

�y; if y 2 [�; � + "] :

In what follows, we assume that the expression

�PZ (�) = lim
�!Z(�)

�

lim
"!0+

P (Z�;�;")� P (Z)

" (�� � Z (�))

is a well de�ned function in a domain with probability equal to 1 with respect

to the density f .

Indeed, in order to obtain some of the following results we also need

to consider compositions of needle-like perturbations. I.e., we will consider
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treaties of the type

Z�1;�1;"1j�2;�2;"2 (y) =

8>>>>><>>>>>:
Z (y) ; if y =2 [�1; �1 + "1] [ [�2; �2 + "2] ;

�1y; if y 2 [�1; �1 + "1] ;

�2y if y 2 [�2; �2 + "2] ;

for arbitrary �1 6= �2 and su¢ ciently small "1,"2. We assume that the func-

tion�PZ suitably approximates the e¤ect of double needle-like perturbations

on the reinsurance premium, in the sense that the estimate

P
�
Z�1;�1;"1j�2;�2;"2

�
� P (Z) =

= "1 (�1�1 � Z (�1))�PZ (�1) + "1o (�1�1 � Z (�1)) + o ("1)+

+"2 (�2�2 � Z (�2))�PZ (�2) + "2o (�2�2 � Z (�2)) + o ("2)

(10)

holds for every �1 6= �2 chosen in a set of probability equal to one with

respect to the density f . It can be shown that important premium calculation

principles like the expected value principle and the variance-related principles

studied in the next section satisfy these conditions.

Under the assumptions above, the following holds:

Theorem 3 Let � 2 ]0;+1] denote the radius of convergence of the series

� (t) =
+1P
n=0

tnp (n). Fix R > 0, and let ZR 2 Z be optimal for the expected

utility criterion.

There exists a constant C 2 ]0;+1[ such that ZR satis�es8>>>>><>>>>>:
�PZ (y) � Cf (y) ; if Z (y) = y;

�PZ (y) = CeR(y�ZR(y))f (y) ; if 0 < Z (y) < y;

�PZ (y) � CeRyf (y) ; if Z (y) = 0;

(11)
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with probability equal to one with respect to the density f .

Further,

C =
�0
�
E
�
eR(Y�ZR)

��
� (E [eR(Y�ZR)])

holds whenever E
�
eR(Y�ZR)

�
< �, while

C � �0(�)

�(�)
(12)

holds if E
�
eR(Y�ZR)

�
= �. �

Proof. Fix � 2 [0;+1[, a Lebesgue point of the functions f , e�RZRf , with

f (�) > 0.

Suppose that ZR (�) < � and consider a perturbation Z�;�;" with

�� > ZR (�) : (13)

Optimality of ZR implies that

0 � G (R;Z�;�;")�G (R;ZR) ; (14)

and (13) implies that E
�
eR(Y�Z�;�;")

�
< E

�
eR(Y�ZR)

�
� �. Therefore the

function t 7! � (t) =
1P
n=0

tnp (n) is continuous in the interval
�
0; E

�
eR(Y�ZR)

��
,

di¤erentiable in
�
0; E

�
eR(Y�ZR)

��
. It follows by the mean-value theorem

that for each � satisfying (13) and each su¢ ciently small " > 0 there exists

� 2 ]0; 1[ such that

G (R;Z�;�;")�G (R;ZR) =
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= eR((1��)P (ZR)+�P (Z�;�;")�c)�
�
(1� �)E

�
eR(Y�ZR)

�
+ �E

�
eR(Y�Z�;�;")

��
�

�R (P (Z�;�;")� P (ZR))+

+eR((1��)P (ZR)+�P (Z�;�;")�c)�0
�
(1� �)E

�
eR(Y�ZR)

�
+ �E

�
eR(Y�Z�;�;")

��
�

�
�
E
�
eR(Y�Z�;�;")

�
� E

�
eR(Y�ZR)

��
:

Since � is a Lebesgue point of the functions f , e�RZRf , we have

E
�
eR(Y�Z�;�;")

�
� E

�
eR(Y�ZR)

�
=

=
R �+"
�

�
eR(y��y) � eR(y�ZR(y))

�
f (y) dy =

= "
�
eR(����) � eR(��ZR(�))

�
f (�) + o (") :

Therefore, inequality (14) reduces to

�eR((1��)P (ZR)+�P (Z�;�;")�c)�
�
(1� �)E

�
eR(Y�ZR)

�
+ �E

�
eR(Y�Z�;�;")

��
�

�RP (Z�;�;")�P (ZR)
"

�

� eR((1��)P (ZR)+�P (Z�;�;")�c)�0
�
(1� �)E

�
eR(Y�ZR)

�
+ �E

�
eR(Y�Z�;�;")

��
�

�
�
eR(����) � eR(��ZR(�))

�
f (�) + o(")

"
:

Taking limits when "! 0+, this yields

�eR(P (ZR)�c)�
�
E
�
eR(Y�ZR)

��
R lim
"!0+

P (Z�;�;")�P (ZR)
"

�

� eR(P (ZR)�c)�0
�
E
�
eR(Y�ZR)

�� �
eR(����) � eR(��ZR(�))

�
f (�) :

(15)

Due to (13), this is

�eR(P (ZR)�c)�
�
E
�
eR(Y�ZR)

��
R lim
"!0+

P (Z�;�")�P (ZR)
"(���ZR(�)) �

� eR(P (ZR)�c)�0
�
E
�
eR(Y�ZR)

��
eR(����)�eR(��ZR(�))

���ZR(�) f (�) :
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Taking limits when �!
�
ZR(�)
�

�+
, this yields

�eR(P (ZR)�c)�
�
E
�
eR(Y�ZR)

��
R�PZR (�) �

� eR(P (ZR)�c)�0
�
E
�
eR(Y�ZR)

��
(�R) eR(��ZR(�))f (�) ;

i.e.,
�0
�
E
�
eR(Y�ZR)

��
� (E [eR(Y�ZR)])

eR(��ZR(�))f (�) � �PZR (�) (16)

holds for almost every � such that ZR (�) < �.

If E
�
eR(Y�ZR)

�
< �, then E

�
eR(Y�Z�;�")

�
< � also holds for any � 2 [0; 1],

provided " > 0 is su¢ ciently small. Therefore in this case, inequality (15)

holds for almost every � such that ZR (�) > 0. Therefore, dividing both sides

of (15) by �� � ZR (�) and taking limits when �!
�
ZR(�)
�

��
, we obtain

�0
�
E
�
eR(Y�ZR)

��
� (E [eR(Y�ZR)])

eR(��ZR(�))f (�) � �PZR (�) : (17)

This proves the Proposition in the case when E
�
eR(Y�ZR)

�
< �.

Now, consider the case when E
�
eR(Y�ZR)

�
= �. In this case we have

E
�
eR(Y�Z�;�;")

�
> �

and therefore G (R;Z�;�;") = +1 for any needle-like perturbation with

�� < ZR (�) and su¢ ciently small support. Thus we can not use the argu-

ment above to prove an inequality analogous to (17). Instead we use double

needle-like perturbations such that E
h
eR(Y�Z�1;�1;"1j�2;�2;"2)

i
= �. Like be-

fore, �1; v2 2 ]0;+1[ are Lebesgue points of the functions f , e�RZRf , such

that �1 6= �2 and f (�i) > 0, i = 1; 2. Due to Assumption 4, we can choose

�1 such that ZR (�1) < �1 and �x �1 such that �1�1 > ZR (�1). For any
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�2 6= �1 such that ZR (�2) > 0, �x �2 such that �2�2 < ZR (�2). Then, we

have

E
h
eR(Y�Z�1;�1;"1j�2;�2;"2)

i
= E

�
eR(Y�ZR)

�
+

+

Z �1+"1

�1

�
eR(y��1y) � eR(y�ZR(y))

�
f (y) dy +

+

Z �2+"2

�2

�
eR(y��2y) � eR(y�ZR(y))

�
f (y) dy:

Since �1; �2 are Lebesgue points of the functions f , e�RZRf , it follows that

E
h
eR(Y�Z�1;�1;"1j�2;�2;"2)

i
=

= �+ "1
�
eR(�1��1�1) � eR(�1�ZR(�1))

�
f (�1) + o ("1)+

+"2
�
eR(�2��2�2) � eR(�2�ZR(�2))

�
f (�2) + o ("2) =

= �� "1 (�1�1 � ZR (�1))Re
R(�1�ZR(�1))f (�1) + "1o (�1�1 � ZR (�1)) + o ("1)�

�"2 (�2�2 � ZR (�2))Re
R(�2�ZR(�2))f (�2) + "2o (�2�2 � ZR (�2)) + o ("2) :

Therefore, an implicit function-type argument shows that for each su¢ ciently

small "2 > 0, (�1�1 � ZR (�1)) and (�2�2 � ZR (�2)) there exists a unique

"1 > 0 such that E
h
eR(Y�Z�1;�1;"j�2;�2;")

i
= �. Further, such "1 satis�es

"1 = � eR(�2�ZR(�2))(�2�2�ZR(�2))f(�2)
eR(�1�ZR(�1))(�1�1�ZR(�1))f(�1)

"2+

+(o (�1�1 � ZR (�1)) + o (�2�2 � ZR (�2))) "2 + o ("2) :

(18)

Since E
�
eR(Y�ZR)

�
= E

h
eR(Y�Z�1;�1;"1j�2;�2;"2)

i
= �, we have

G (R;ZR) = eR(P (ZR)�c)�(�);

G
�
R;Z�1;�1;"1j�2;�2;"2

�
= eR(P(Z�1;�1;"1j�2;�2;"2)�c)�(�):
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Therefore, optimality of ZR implies that

P
�
Z�1;�1;"1j�2;�2;"2

�
� P (ZR) � 0:

Substituting (18) in (10), this inequality becomes

(�2�2 � ZR (�2))
�
�PZR (�2)�

eR(�2�ZR(�2))f(�2)

eR(�1�ZR(�1))f(�1)
�PZR (�1)

�
+

+o (�1�1 � ZR (�1)) + o (�2�2 � ZR (�2)) +
o("2)
"2
� 0:

Setting (�1�1 � ZR (�1)) = � (�2�2 � ZR (�2)) and making "2 ! 0+, we

obtain

(�2�2 � ZR (�2))
�
�PZR (�2)�

eR(�2�Z(�2))f(�2)

eR(�1�ZR(�1))f(�1)
�PZR (�1)

�
+

+o (�2�2 � ZR (�2)) � 0:

Making (�2�2 � ZR (�2))! 0�, we see that this implies

�PZR (�2)

eR(�2�ZR(�2))f (�2)
� �PZR (�1)

eR(�1�ZR(�1))f (�1)
: (19)

This shows that (19) holds for any pair of Lebesgue points of the functions

y 7! f (y), y 7! e�RZR(y)f (y) such that f (�i) > 0, 0 � ZR (�1) < �1,

0 < ZR (�2) � �2. Let C denote the in�mum value of
�PZR (�)

eR(��ZR(�))f(�)
over

all the Lebesgue points of f , e�RZRf such that ZR (�) < �. Inequality (16)

shows that C � �0(�)
�(�)

and �PZR (�) � CeR(��ZR(�))f (v) holds whenever

ZR (�) < �. Since (19) guarantees that �PZR (�) � CeR(��ZR(�))f (v) holds

whenever ZR (�) > 0, the proof is complete.
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8 The optimal solution for variance related

premium calculation principles

In this section we apply the results obtained in the previous sections to the

case where the premium principle P : Z 7! [0;+1) is a convex variance-

related functional, i.e.

P (Z) = E
h bZi+ g

�
V ar

h bZi� ; (20)

with g : [0;+1) 7! [0;+1) continuous, smooth in (0;+1), such that

g(0) = 0; g0 (x) > 0 (21)

and
g00(x)

g0(x)
� � 1

2x
; 8x 2]0; B[; (22)

with B = supfV ar[ bZ] : Z 2 Zg. Following Guerra and Centeno (2007) we
can say that if g is twice di¤erentiable and satis�es (21), then the principle

(20) is convex if and only if (22) is ful�lled. It can be checked that such

premium principles are continuous in mean-squared sense, as required by

Assumption 5. The most important examples of convex variance related

premium principles are the standard deviation and the variance principles.

The following proposition provides an expression for �PZ .

Proposition 4 If the reinsurance premium is computed by a functional of
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the form (20), then the following equality holds on a set of probability one

�PZ (�) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

E [N ] f (�)+

+2g0
�
V ar

h bZi� (E [N ] (Z (�)� E [Z]) + V ar [N ]E [Z]) f (�) ;

if Pr fZ 6= 0g > 0;

E [N ] f (�) ; if Z � 0 and g0 (0+) < +1;

+1; if Z � 0 and g0 (0+) = +1:�

Proof. Fix � > 0, a Lebesgue point of the maps � ! f(�), � ! Z(�)f(�)

and � ! Z(�)2f(�), such that f (v) > 0.

By the de�nition of �PZ , we have

�PZ (�) = lim
�!Z(�)

�

lim
"!0+

P (Z�;�;")� P (Z)

(�� � Z (�)) "
=

= lim
�!Z(�)

�

lim
"!0+

E
h
Ẑ�;�;"

i
�E

h
Ẑ
i
+g
�
V ar

h
Ẑ�;�;"

i�
�g
�
V ar

h
Ẑ
i�

(�� � Z (�)) "
: (23)

The mean-value theorem states that, for each � > 0, � 2 [0; 1], " > 0, there

exists � 2 ]0; 1[ such that

g
�
V ar

h
Ẑ�;�;"

i�
� g

�
V ar

h
Ẑ
i�
=

= g0
�
(1� �)V ar

h
Ẑ
i
+ �V ar

h
Ẑ�;�;"

i�
�
�
V ar

h
Ẑ�;�;"

i
� V ar

h
Ẑ
i�
:

Recall that the �rst two moments of Ẑ can be calculated as

E
h
Ẑ
i
= E [N ]E [Z] ;

V ar
h
Ẑ
i
= E [N ]V ar [Z] + V ar [N ]E [Z]2 :
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Since � is a Lebesgue point, we have

E [Z�;�;"]�E [Z] =
Z �+"

�

(�y � Z (y)) f (y) dy = " (�� � Z (�)) f (�)+o (") ;

and

V ar [Z�;�;"]� V ar [Z] =

=
�
E
�
Z2�;�;"

�
� E

�
Z2
��
�
�
E [Z�;�;"]

2 � E [Z]2
�
=

=

Z �+"

�

�
(�y)2 � Z (y)2

�
f (y) dy � (E[Z�;�;"]� E [Z]) (E[Z�;�;"] + E [Z]) =

= "
�
�2�2 � Z (�)2

�
f (�)� " (�� � Z (�)) f (�) 2E [Z] + o (") =

= " (�� � Z (�)) (�� + Z (�)) f (�)� " (�� � Z (�)) f (�) 2E [Z] + o (") =

= " (�� � Z (�)) (�� + Z (�)� 2E [Z]) f (�) + o (") :

It follows that

E
h
Ẑ�;�;"

i
� E

h
Ẑ
i
= " (�� � Z (�))E [N ] f (�) + o (") ; (24)

V ar
h
Ẑ�;�;"

i
� V ar

h
Ẑ
i
=

= E [N ] (V ar [Z�;�;"]� V ar [Z]) + V ar [N ]
�
E [Z�;�;"]

2 � E [Z]2
�
=

= " (�� � Z (�))�

� (E [N ] (�� + Z (�)� 2E [Z]) + 2V ar [N ]E [Z]) f (�) + o (") :

(25)

In the case when Pr fZ > 0g > 0, substitution of (24)-(25) in (23) yields

immediately the desired equality.

In the case when Pr fZ > 0g = 0, the equalities (24)-(25) show that

lim
"!0+

P (Z�;�;")� P (Z)

(�� � Z (�)) "
=
��E [N ] + g0 (0+)E [N ] (��)2

��
f (�) =

=

8><>:
(E [N ] + g0 (0+)E [N ]��) f (�) ; if g0 (0+) < +1;

+1; if g0 (0+) = +1:
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This completes the proof.

Using Proposition 4 we can state the following Corollary to Theorem 3:

Corollary 3 Fix R > 0, and let Z = ZR 2 Z be optimal for the expected

utility criterion. If g0 is bounded in a neighborhood of zero, then the following

set of conditions holds with probability equal to one with respect to the density

f :

y � �1 + �2; if Z (y) = y; (26)

y = Z (y) +
1

R
ln
Z (y)� �2

�1
; if 0 < Z (y) < y; (27)

y � 1

R
ln
��2
�1

; if Z (y) = 0: (28)

�1, �2 are constants satisfying

�1 =
�0
�
E
�
eR(Y�Z)

��
E [N ] � (E [eR(Y�Z)]) 2g0

�
V ar

� bZ�� ; if E
�
eR(Y�Z)

�
< �;

�1 �
�0
�
E
�
eR(Y�Z)

��
E [N ] � (E [eR(Y�Z)]) 2g0

�
V ar

� bZ�� ; if E
�
eR(Y�Z)

�
= �;

�2 =
E [N ]� V ar [N ]

E (N)
E [Z]� 1

2g0
�
V ar

� bZ�� :
where � is the radius of convergence of �(�), the probability generating func-

tion of N .

If g0 is unbounded in any neighborhood of zero, then the optimal treaty must

be either a function of the type described above or Z � 0 (no reinsurance at

all). �
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Remark 1 Notice that in the Corollary above �1 is always strictly positive

while �2 may be either positive or negative.

Also, remark that if (26) holds for some y > 0, then �1 + �2 > 0 must

hold. Similarly, if (28) holds for some y > 0, then �1+�2 < 0 must hold. It

follows that, provided the optimal treaty is not identically zero, then it must

be a function satisfying either (26)-(27) or (27)-(28).

Proof. First, suppose that Pr fZ > 0g holds, and let C 2 ]0;+1[ be as

stated in Theorem 3. Due to Proposition 4 the optimality conditions become8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

2g0
�
V ar

h bZi� (E [N ] (y � E [Z]) + V ar [N ]E [Z]) +

+E [N ] � C;

if Z (y) = y;

2g0
�
V ar

h bZi� (E [N ] (Z (y)� E [Z]) + V ar [N ]E [Z]) +

+E [N ] = CeR(y�Z(y))
if 0 < Z (y) < y;

2g0
�
V ar

h bZi� (�E [N ]E [Z] + V ar [N ]E [Z]) +

+E [N ] � CeRy
if Z (y) = 0:

This is8>>>>>>>><>>>>>>>>:

y � C

2g0(V ar( bZ))E[N ] + E[N ]�V ar(N)
E[N ]

E [Z]� 1

2g0(V ar( bZ)) ; if Z (y) = y;

eR(y�Z(y)) =
Z(y)�

�
E[N ]�V ar(N)

E[N ]
E[Z]� 1

2g0(V ar( bZ))
�

C=(2g0(V ar( bZ))E[N ]) if 0 < Z (y) < y;

eR(y) � �
E[N ]�V ar(N)

E[N ]
E[Z]� 1

2g0(V ar( bZ))
C=(2g0(V ar( bZ))E[N ]) if Z (y) = 0:

Hence the result follows immediately from Theorem 3 by making �1 =

C

2g0(V ar( bZ))E[N ] , �2 = E[N ]�V ar(N)
E[N ]

E [Z]� 1

2g0(V ar( bZ)) .
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Now, consider the case when g0 (x) is unbounded in any neighborhood of

x = 0, and let Z � 0. In that case, for each �, a Lebesgue point of the

function y 7! f (y), and each � 2 ]0; 1], we can choose a sequence f"kgk2N
such that "k ! 0+ and limk!1

P(Z�;�;"k)�P (0)
"k(���Z(�)) = +1. Therefore, Theorem 3

does not exclude the possibility that Z � 0 be optimal.

9 Structure of the optimal treaty: depen-

dence on the distribution of claim numbers

According to Corollary 3, if the optimal treaty for a variance-related principle

is not identically zero, then it is a member of the family of functions with

two parameters (�1; �2) 2 (0;+1)�R, satisfying (26)-(28). It can be shown

that in the aggregate claim case an optimal treaty satisfying �1 + �2 = 0

always exists (the limit case �1 = �2 = 0 corresponding to the case when

zero reinsurance is optimal) �see Guerra and Centeno (2008).

Below we show that a similar result holds for the individual claim case

when the number of claims N follows a distribution belonging to the so-called

Katz family, also known in actuarial literature as the Panjer or (a; b; 0) family

of distributions. This family is important for practical applications, including

some of the most widely used claim number models. However, we also show

that both the cases �1+�2 > 0 and �1+�2 < 0 do occur in individual claim

reinsurance, provided the number of claims follows appropriate distributions.

We start with an interesting relationship between the structure of �(�) -
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the probability generating function of N - and the sign of �1 + �2.

Theorem 4 Suppose that the optimal treaty is not identically zero and sat-

is�es E
�
eR(Y�Z)

�
< �, the radius of convergence of the series �(t).

(a) If the function q(t) = �(t)
�0(t) is convex, then �1 + �2 � 0 holds;

(b) If q is strictly convex, then �1 + �2 < 0 holds;

(c) If q is concave, then �1 + �2 � 0 holds;

(d) If q is strictly concave, then �1 + �2 > 0 holds. �

Proof. It easy to check that

E[N ] = �0(1); V ar[N ] = �00(1) + �0(1)� �0(1)2:

Therefore, Corollary 3 states that

�1 =
q(1)

q(x)

1

2g0(V ar[ bZ]) ; (29)

�2 =
q0(1)

q(1)
E[Z]� 1

2g0(V ar[ bZ]) ; (30)

where x = E
�
eR(Y�Z)

�
. Equation (30) is equivalent to

1

2g0(V ar[ bZ]) = q0(1)

q(1)
E[Z]� �2:

Substituting in (29), we obtain

q(x)�1 = q0(1)E[Z]� q(1)�2: (31)
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Now, suppose that q is convex and �1 + �2 � 0 holds. Corollary 3 implies

that

x = E
�
eR(Y�Z)

�
=

Z �1+�2

0

dF (y) +

Z +1

�1+�2

Z(y)� �2
�1

dF (y) =

=
1

�1

�
E[Z]� �2 +

Z �1+�2

0

(�1 + �2 � y)dF (y)

�
:

This is

E[Z] = x�1 + �2 �
Z �1+�2

0

(�1 + �2 � y)dF (y):

Substituting in (31) and rearranging we obtain

(q(x)� q(1)� q0(1)(x� 1))�1 + (q(1)� q0(1)) (�1 + �2) =

= �q0(1)
Z �1+�2

0

(�1 + �2 � y)dF (y): (32)

Notice that
R �1+�2
0

(�1+�2�y)dF (y) � �1+�2, with strict inequality holding

unless �1 + �2 = 0. If q0(1) � 0 then the second term on the left-hand

side of (32) is non-negative and no smaller that the right-hand side term.

By convexity, the �rst term on the left-hand side is non-negative (strictly

positive if q is strictly convex). Hence (32) can hold with q0(1) � 0 only if

�1 + �2 = 0 and q is linear in [0; x].

Now, note that

q(1)� q0(1) =
V ar[N ]

E[N ]2
> 0: (33)

Therefore, if q0(1) > 0 then the second term in the left-hand side of (32) is

non-negative while the term on the right-hand side is nonpositive and (32)

can hold only if �1 + �2 = 0 and q is linear in [0; x]. It cannot hold if q is

strictly convex.
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To prove (c) and (d), suppose that q is concave and �1 + �2 � 0 holds.

In this case, Corollary 3 implies that

x =

Z 1
R
ln

��2
�1

0

eRydF (y) +

Z +1

1
R
ln

��2
�1

Z(y)� �2
�1

dF (y) =

=
1

�1

 
E[Z]� �2 � �1

Z 1
R
ln

��2
�1

0

�
��2
�1

� eRy
�
dF (y)

!
:

This is

E[Z] =

 
x+

Z 1
R
ln

��2
�1

0

�
��2
�1

� eRy
�
dF (y)

!
�1 + �2:

Substituting in (31) and rearranging we obtain

q(x)� q(1)� q0(1)(x� 1) = q0(1)

Z 1
R
ln

��2
�1

0

�
��2
�1

� eRy
�
dF (y) +

+(q(1)� q0(1))

�
��2
�1

� 1
�
: (34)

By convexity the left-hand side is nonpositive (strictly negative if q is strictly

concave). If q0(1) � 0, then the right-hand side of (34) is non-negative, being

zero only if �1 + �2 = 0. If q0(1) < 0 then rearrange the right-hand side of

(34) to obtain

q(x)� q(1)� q0(1)(x� 1) = q(1)

�
��2
�1

� 1
�
�

�q0(1)
 
��2
�1

� 1�
Z 1

R
ln

��2
�1

0

�
��2
�1

� eRy
�
dF (y)

!
;

where the right-hand side is obviously non-negative, being zero only if �1 +

�2 = 0. Hence we see that (34) holds only if �1 + �2 = 0 and q is linear in

[0; x].
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Remark 2 When the distribution of claim values has a heavy tail, some part

of the risk must be ceded under the optimal arrangement, irrespective of the

distribution of claim numbers (otherwise the adjustment coe¢ cient would not

exist). Therefore the possibility of zero reinsurance being optimal indicated

at the beginning of the Theorem can be immediately excluded in such cases.

Theorem 4 shows that the case in which the function q is linear has the

special property �1 + �2 = 0. One such case is aggregate claim reinsurance,

analyzed in Guerra and Centeno (2008). Indeed, it is clear that the random

variable N � 1 has probability generating function �(t) = t and hence

q(t) = t is simultaneously concave and convex. It turns out that there exists

also an important family of nondegenerate distributions with this property.

This is the so-called Katz family (see Johnson et al (1993, pg. 38)). It

consists of the binomial, Poisson and negative binomial distributions.

Corollary 4 Assume that the distribution of the number of claims N belongs

to the Katz family.

If g0 is bounded in a neighborhood of zero, then the optimal policy satis�es

y = Z (y) + 1
R
ln Z(y)+�

�
;

� =
�0(E[eR(Y�Z)])

E[N ]�(E[eR(Y�Z)]) 2g0(V ar( bZ))
If g0 is unbounded near zero, then either Z � 0 is optimal or the optimal

policy satis�es the conditions above. �

Proof. Recall that Katz-type distributions are characterized by having a
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probability generating function of the type

�(t) =

�
1� at

1� a

��(a+b)=a
; (35)

with a < 1, a+ b > 0 and b = �(k + 1)a for some k 2 N when a < 0 (in the

case a = 0, it is �(t) = lima!0
�
1�at
1�a
��(a+b)=a

= eb(t�1)). It follows that q is

the linear function

q(t) =
1� at

a+ b
;

hence it is simultaneously concave and convex. The radius of convergence of

� is � = 1
a
if a 2 (0; 1) or � = +1 if a � 0. In the case when a 2 (0; 1), we

have lim
x!��

�(x) = +1. It follows that the optimal reinsurance policy must

satisfy E
�
eR(Y�Z)

�
< � and the result follows immediately from Corollary 3

and Theorem 4.

In order to see that there are cases where �1 + �2 < 0 and cases where

�1+�2 > 0 holds, recall that the Katz family of distributions can be embed-

ded in the larger Sundt & Jewell family (Sundt & Jewell 1981). These are

combinations of a Katz random variable with a random variable concentrated

at N = 0.

The probability generating function of a Sundt & Jewell distribution is

�(t) = c+ (1� c)

�
1� at

1� a

��(a+b)=a
;

with a, b like in (35) and (1�a)(a+b)=a
(1�a)(a+b)=a�1 � c < 1. Since this is a combination of

a Katz random variable with the null random variable, the proof of Corollary

4 shows that the optimal treaty must satisfy E
�
eR(Y�Z)

�
< �. Therefore, due

to Theorem 4, we only need to check the convexity of q = �
�0 .
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A simple computation shows that a Sundt & Jewell distribution satis�es

q00(t) =
c(2a+ b)

(1� at)(�(t)� c)
:

Since a + b > 0 and b = �(k + 1)a must hold when a < 0, we see that

2a + b > 0 holds except in the case when a < 0, b = �2a. In this case N

is a Bernoulli random variable and hence any mixture with the null random

variable is still Bernoulli .

Therefore we see that, except in the Bernoulli case, q is strictly convex

(i.e., �1 + �2 < 0) if c > 0 and it is strictly concave (i.e., �1 + �2 > 0) if

(1�a)(a+b)=a
(1�a)(a+b)=a�1 � c < 0. It is linear (i.e., �1 + �2 = 0) if c = 0.

The discussion above shows that the case �1+�2 = 0 is a very particular

one, being destroyed by small perturbations of the distribution of claim num-

bers. To see this consider that N follows a Katz distribution and it is not

Bernoulli. This is a Sundt & Jewell distribution with c = 0. By changing the

value of c by any small amount (i.e., by changing PrfN = 0g by any small

amount, adjusting proportionally the remaining probabilities in such a way

to obtain a probability function) we can either obtain the case �1 + �2 < 0

or �1 + �2 > 0, according to the sign of c.

Notice that, according to the proof of Theorem 4, the sign of �1 + �2

depends on the sign of the remainder of the Taylor expansion of the function

q(�) (convexity being just one condition that ensures that this remainder has

the appropriate sign). Therefore, one can expect to �nd distributions of the

number of claims such that the sign of �1+�2 changes when the reinsurance

loading increases.
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To see this, consider a family of variance related principles

P�(Z) = E[Z] + �g(V ar[Z]); � 2]0;+1[;

where g : [0;+1) 7! [0;+1) is continuous, smooth in (0;+1) and satis�es

(21)-(22) (say, g(t) =
p
t, in which case fP�g�>0 is the family of standard

deviation principles). Assuming that all the remaining data of the problem

remains unchanged, one can expect that for small values of the parameter �

a large proportion of the risk is ceded under the optimal treaty and hence

the value of x = E
�
eR(Y�Z)

�
is close to one. Conversely, when � is large,

a small part of the total risk is ceded under the optimal treaty, making

x = E
�
eR(Y�Z)

�
large.

Now suppose that the distribution of the number of claims is such that the

function q is (say) strictly concave in the interval [1; x0] and strictly convex

in [x0; �). Clearly, the Taylor remainder q(x)� q(1)� q0(1)(x� 1) is negative

whenever x 2 (1; x1), for some x1 > x0. However, we cannot exclude that

x1 < +1 and the remainder becomes positive for x 2 (x1;+1). In such a

case optimal treaties would satisfy �1+�2 > 0 for small loadings (i.e., small

� and hence a large amount of risk is ceded under the optimal treaty) and

�1+�2 < 0 for higher loadings (large �, and a small amount of risk is ceded).
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