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Abstract. This paper introduces a new approach for obtaining explicit solutions
for a �rst order linear delay di¤erential equation with constant coe¢ cients. We conjec-
ture that there is a generating function de�ned over of a speci�c class of polynomials in
the delay that solves the equation, and prove in the main theorem that the conjecture
is valid. We also show the advantage of our method as regards the traditional Method
of Step Algorithm (MSA).
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1. Introduction
Delay di¤erential equations (DDEs) are a special class of functional di¤er-

ential equations. The most important results on existence, uniqueness and the
properties of solutions for linear and nonlinear DDEs can be found in [1, 2, 3].
In this paper we present a new approach to obtain the exact solution for

a particular linear DDE with constant coe¢ cients, based upon the generating
function concept.
The results presented in the Main Theorem concern the solutions of the

Basic Initial Problem (BIP),�
x0(t) = Bx(t� r); t � 0
x(t) = �(t); t 2 [�r; 0]

where B and r are constants, r > 0 is the delay, and �(t) is a given continuous
function on [�r; 0].
Assuming �(t) is constant on [�r; 0], and applying the MSA to the BIP,

the solutions xn(t) de�ned on An = ((n� 1)r; nr], n � 1, reveal a kind of a
tree structure for the solution x(t) of the problem. This allows to formulate a
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conjecture concerning the solution for the BIP: x(t) is the generating function
for a sequence of polynomials in the delay, Pnj (rB).
In order to prove this, a new speci�c formulation of the solution of the

problem is required. As far as we know, the approach via generating function is
new to the relevant literature. When compared with the MSA, the advantage
of the Main Theorem is to provide an explicite formula for xn(t) on the An
interval without the use of the information on all solutions xn�1(t) de�ned
on the previous intervals An�1. If we used the MSA, each solution xn(t) would
depend upon the solution xn�1(t). Our main theorem proves that this is possible
if we introduce polynomials Pnj (rB).
The present paper is organized as follows. Section 2 describes the MSA, and

presents the conjecture. Section 3 constructs the alternative method to obtain
the BIP�s solution. Section 4 contains the two fundamental propositions with
which we obtain the calculating formulas for any solution xn(t) de�ned on An
with n � 2. Section 5 is devoted to the Main Theorem. Section 6 consists of
the proof of the lemma, which is the basis of the new solution�s method. An
example is given to illustrate the theorem in section 7. Section 8 presents future
directions that this work allowed to persue.

2. Preliminaries

2.1. The Method of Step Algorithm
Consider the Basic Initial Problem�

x0(t) = Bx(t� r); t � 0
x(t) = �(t); t 2 [�r; 0] ; (1)

where B 2 <, r > 0 is the delay, and �(t) is a given continuous function on
[�r; 0].
The Method of Step Algorithm (MSA) can be described as follows.
Step 1
Consider x0(t) = f(x(t � r)). Given �(t) on [�r; 0], we can determine x(t)

on the interval [0; r] by solving the ODE�
x0(t) = f(�(t� r))
x(0) = �(0):

Denote its solution by x1(t).
Step n
For each integer n � 2, given the solution xn�1(t) on [(n� 2) r; (n� 1) r],

we can determine x(t) on the interval [(n� 1) r; nr] by solving the ODE�
x0(t) = f(xn�1(t� r))

x((n� 1) r) = xn�1((n� 1) r):

Denote its solution by xn(t).
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Conclusion
We can de�ne the solution of�

x0(t) = f(x(t� r)); t � 0
x(t) = �(t); t 2 [�r; 0]

on each interval An = [(n� 1) r; nr], n � 1, by

xn(t) = xn�1 ((n� 1) r) +
tZ

(n�1)r

f (xn�1 (s� r)) ds;

where x0 (:) � � (:).

For j = 1; :::; 5; let xj(t) be the solution of (1) de�ned on the interval Aj
obtained with the MSA. Assuming �(t) = �(0) is a constant,

x1(t) = �(0) [1 +Bt]

x2(t) = �(0)

"
(Bt)

2

2!
+Bt (1�Br) + (Br)

2

2!
+ 1

#
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2664
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3

3!
+
(Bt)

2

2!

�
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3
Br

�
+Bt

�
1�Br + 3:2

2

3!
(Br)

2

�
�

� (Br)
3

3!
23 +

(Br)
2

2!
+ 1

3775

x4(t) = �(0)

26666664
(Bt)

4

4!
+
(Bt)

3

3!

�
1� 4:3

4
Br

�
+
(Bt)

2

2!

�
1� 3:2

3
Br +

6:32

4:3
(Br)

2

�
+

+Bt

�
1�Br + 3:2

2

3!
(Br)

2 � 4:3
3

4!
(Br)

3

�
+

+
(Br)

4

4!
34 � (Br)

3

3!
23 +

(Br)
2

2!
+ 1

37777775

x5(t) = �(0)

266666666664

(Bt)
5

5!
+
(Bt)

4

4!

�
1� 5:4

5
Br

�
+
(Bt)

3

3!

�
1� 4:3

4
Br +

10:42

5:4
(Br)

2

�
+

+
(Bt)

2

2!

�
1� 3:2

3
Br +

6:32

4:3
(Br)

2 � 10:4
3

5:4:3
(Br)

3

�
+

+Bt

�
1�Br + 3:2

2

3!
(Br)

2 � 4:3
3

4!
(Br)

3
+
5:44

5!
(Br)

4

�
�

� (Br)
5

5!
45 +

(Br)
4

4!
34 � (Br)

3

3!
23 +

(Br)
2

2!
+ 1

377777777775
Analysing the form of these �rst iterates, we observe a tree structure e¤ect,

which allow us to formulate the following conjecture.

2.2. The Conjecture
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De�nition 1 (Rainville, [4]): Let cj, j 2 N0, be a speci�ed sequence indepen-
dent of r and t. We say that X (r; t) is a generating function of the set gj(r)
if
X (r; t) =

X
j�0
cjgj(r)t

j.

Conjecture 2 If x(t), t � 0, is the solution of BIP, then

x(t) � X(r; t) =
X
j�0
vj(r)t

j ;

i.e., x(t) is a generating function for some sequence (vj(r))j�0 in the delay
r.
3. Construction of a New Solution�s Method
3.1. A New Solution�s Formalization
In order to prove our claim, we will proceed in the following way. Con-

sider the decomposition of (0;1) in disjoint subintervals of equal length r. We
will consider the restriction of the solution to each of these subintervals, as a
generating function of some family of polynomials in r. That is,

(0;1) = [
n�1

An; where for each n � 1; An = ((n� 1) r; nr] ; (2)

' (t) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

� (t) if t 2 A0 = [�r; 0]P
j�0
w1j (r) t

j if t 2 A1 = (0; r]P
j�0
w2j (r) t

j if t 2 A2 = (r; 2r]

...P
j�0
wnj (r) t

j if t 2 An = ((n� 1) r; nr]

...

(3)

Hence, we have ' (t) de�ned on each interval An, n � 1, as

' (t) jt2An� xn (t) =
X
j�0
wnj (r) t

j : (4)

If our conjecture is valid we must have '0 (t) = B' (t� r) for t � 0, where the
derivative at t = 0 represents the right-hand derivative. Two di¤erent types of
conditions must hold. On one hand, we are concerned with the di¤erenciability
at each point t = nr, which will guarantee the continuity of the solution. This
will be treated in conditions (2.A).
On the other hand, we want x0(t) = Bx (t� r) to be satis�ed on any interior

point of An. This will be treated in conditions (2.B). In order to do that, we
determine which conditions the iterates wnj (r) in equation (4) should satisfy in
terms of ' (t). Meaning
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'0 (0) = B' (�r) (5)

x0n (t) = Bxn�1 (t� r) for t 2 An, n � 1, where x0 � �. (6)

3.2. The Constructive Process
(2.A.1) '0 (0) = B� (�r).
At t = 0 we have

'0 (0) = lim
h!0+

P
j�0
w1j (r)h

j � � (0)

h
= lim

h!0+

w10 (r) + w
1
1 (r)h+ w

1
2 (r)h

2 + � � � � � (0)
h

:

A su¢ cient condition for (2.A.1) to hold, is

(2.a.1) w10 (r) = � (0) and w
1
1 (r) = B� (�r) and w1j (r) takes any value for j � 2.

(2.B.1) '0 (t) = B� (t� r), t 2 (0; r).
Since

'0 (t) =
X
j�0

(j + 1)w1j+1 (r) t
j ;

we can establish the following statement. A su¢ cient condition for having
(2.B.1) is

(2.b.1) B� (�r) +
P
j�2
jw1j (r) t

j�1 = B� (t� r).

We want to emphasize an important statement that later will lead us to the
Main Theorem. If the initial function, � (t), is constant, combining (2.a.1) and
(2.b.1), we can choose w1j (r) = (� (0) ; B� (�r) ; 0; 0; � � � ): In fact, condition
(2.b.1) implies � (�r) = � (t� r) since t� r 2 (�r; 0), and on this interval the
function is constant.
Therefore, the solution on the interval A1can be de�ned as

x1 (t) =
X
j�0
w1j (r) t

j = � (0) [1 +Bt] ;

where � (t) = � (0) for t 2 [�r; 0], which is exactly the solution obtained by the
MSA.
Returning to a continuous initial function �(t); we can state the following

proposition.

Proposition 3 If there exists w1j (r) satisfying (2.a.1) and (2.b.1), then
x1 (t) =

P
j�0
w1j (r) t

j satis�es (6) on the interval (0; r) :
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Proof. For t 2 (0; r), let
x1 (t) =

P
j�0
w1j (r) t

j = w10 (r) + w
1
1 (r) t+

P
j�2
w1j (r) t

j .

If w1j (r) satis�es (2.a.1), then
x1 (t) = � (0) +B� (�r) t+

P
j�2
w1j (r) t

j .

By di¤erentiation we obtain
x01 (t) = B� (�r) +

P
j�2
jw1j (r) t

j�1,

and if (2.b.1) holds, then
x01 (t) = B� (t� r) :
From now on we will use the following lemma whose proof can be seen in

Section 6.

Lemma 4 For t 6= 0 and t 6= r

X
j�0
fj (r) (t� r)j =

X
j�0

tj

j!

0@X
i�0
fj+i (r)

(�r)i

i!
(j + i)!

1A :
(2.A.2) '0 (r) = B� (0).
This equality requires: the existence of the derivative at t = r, the derivative

has the value B� (0).

� (ai) To prove the existence of '0 (r), notice

'0
�
r�
�
= lim

h!0�

'(r+h)�'(r)
h =

= lim
h!0�

P
j�0

w1j (r)(r+h)
j�
P
j�0

w1j (r)r
j

h =

= lim
h!0�

P
j�0

hj

j!

 P
i�0

w1j+i(r)
ri

i! (j+i)!

!
�
P
j�0

w1j (r)r
j

h =

= lim
h!0�

P
i�0

w1i (r)r
i+h

P
i�0

w11+i(r)r
i(1+i)+

P
j�2

hj

j!

 P
i�0

w1j+i(r)
ri

i! (j+i)!

!
�
P
j�0

w1j (r)r
j

h =

=
P
i�0
w11+i (r) r

i (1 + i) + lim
h!0�

P
j�2

hj�1

j!

 P
i�0
w1j+i (r)

ri

i! (j + i)!

!
:

If convergence of the series is ensured, then the left-hand derivative at t = r, is
equal to

'0
�
r�
�
=
X
i�0
w11+i (r) r

i (1 + i) :

6



Proceeding in a similar way, we have

'0
�
r+
�
= lim

h!0+

'(r+h)�'(r)
h =

= lim
h!0+

P
j�0

w2j (r)(r+h)
j�
P
j�0

w1j (r)r
j

h =

= lim
h!0+

P
j�0

hj

j!

 P
i�0

w2j+i(r)
ri

i! (j+i)!

!
�
P
j�0

w1j (r)r
j

h =

= lim
h!0+

P
i�0

w2i (r)r
i+h

P
i�0

w21+i(r)r
i(1+i)+

P
j�2

hj

j!

 P
i�0

w2j+i(r)
ri

i! (j+i)!

!
�
P
j�0

w1j (r)r
j

h :

The right-hand derivative of ' at t = r exists, if:P
i�0
w2i (r) r

i =
P
j�0
w1j (r) r

j ;P
i�0
w21+i (r) r

i (1 + i) =
P
i�0
w11+i (r) r

i (1 + i) ;

and the series
P
i�0
wkj+i (r)

ri

i! (j + i)!, k = 1; 2, converge.

� (aii) '0(r) = B�(0)

We notice that the second conditionP
i�0
w21+i (r) r

i (1 + i) =
P
i�0
w11+i (r) r

i (1 + i)

represents the equality between, respectively, '0(r+) and '0(r�). In order
to have '0(r) = B�(0); it su¢ ces to haveX

i�0
w21+i (r) r

i (1 + i) = B�(0):

The next proposition tells us the behaviour w2j (r) must have, so that the
delay di¤erential equation is satis�ed at t = r. We remark that in Proposition
3, we have established an equivalent result for the interior points of A1.

Proposition 5 If there exists w2j (r) satisfying

(2:2i))

8<:
P
j�0
w2j (r) r

j =
P
j�0
w1j (r) r

jP
j�0
w21+j (r) r

j (1 + j) =
P
j�0
w11+j (r) r

j (1 + j)

and
(2:2ii))

P
j�0
w21+j (r) r

j (1 + j) = B� (0),

then '0 (r) = B� (0) and equality (2:b:1) holds at t = r.
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Proof. We have already seen that (2:2i)) and (2:2ii)) imply '0 (r) = B� (0).
We want to prove

B� (�r) +
X
j�2
jw1j (r) r

j�1 �B� (0) = 0:

If (2:2ii)) holds, then we can write the �rst member as

B� (�r) +
X
i�0

(2 + i)w12+i (r) r
i+1 �

X
j�0
w21+j (r) r

j (1 + j) =

= B� (�r) +
X
i�0

(2 + i)w12+i (r) r
i+1 �

X
j�0
w11+j (r) r

j (1 + j) =

=
X
j�0
w11+j (r) r

j (1 + j)�
X
j�0
w11+j (r) r

j (1 + j) ,

taking into account that B� (�r) = w11 (r) and associating the terms in a
appropriate way.

The procedure we have just described, can be repeated in an inductive way.
Hence we can proceed in the following way;

(2.B.2) '0 (t) = B' (t� r), t 2 (r; 2r).
Since

'0 (t) =
X
j�0

(j + 1)w2j+1 (r) t
j

and

' (t� r) =
X
j�0
w1j (r) (t� r)

j
=
X
j�0

tj

j!

0@X
i�0
w1j+i (r)

(�r)i

i!
(j + i)!

1A ,
we can state that a su¢ cient condition for having (2.B.2) is

(2.b.2) w2j+1 (r) =
B

(j+1)!

P
i�0
w1j+i (r)

(�r)i
i! (j + i)!, for each j � 0.

We have �nished the analysis of the solution de�ned on interior points of
A2:
4. The Fundamental Propositions

In a structural point of view, conditions (2:2i)) ; (2:2ii)) and (2:b:2) are
identical in each interval An, for n � 2. Then we can state two fundamental
propositions which establish su¢ cient conditions on wnj (r), n � 2, in order for
(6) to hold. The �rst one concerns with interior points, and the second one
concerns with end points.
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Proposition 6 If for each n � 2 and j � 0; there exist a sequence wnj (r)
verifying

wnj+1 (r)=
B

(j + 1)!

X
i�0
wn�1j+i (r)

(�r)i

i!
(j + i) ! (7)

then x0n (t) = Bxn�1 (t� r), for t 2 int An:

Proof. Let xn (t) =
P
j�0
wnj (r) t

j : If t 2 intAn and n � 2 then

x0n (t) =
X
j�0

(1 + j)wn1+j (r) t
j =

X
j�0

(1 + j) tj

0@ B

(j + 1)!

X
i�0
wn�1j+i (r)

(�r)i

i!
(j + i)!

1A
= B

X
j�0

tj

j!

0@X
i�0
wn�1j+i (r)

(�r)i

i!
(j + i)!

1A =

= B
X
j�0
wn�1j (r) (t� r)j = Bxn�1 (t� r) ;

where we have considered (7) and lemma 4.

Proposition 7 If for each n � 2 there exist a sequence wnj (r) that satis�es the
conditions 8><>:

P
j�0

(nr)
j
wn+1j (r) =

P
j�0

(nr)
j
wnj (r)P

j�0
(1 + j) (nr)

j
wn+11+j (r) =

P
j�0

(1 + j) (nr)
j
wn1+j (r)

(8)

and X
j�0

(1 + j) (nr)
j
wn+11+j (r) = B

X
j�0
wn�1j (r) [(n� 1) r]j (9)

then x0n (nr) = Bxn�1 ((n� 1) r) :

Proof. Let n � 2 and t = nr
We start by showing the existence of derivative at points t = nr for n � 2.
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� left-hand derivative:

x0n
�
nr�

�
= lim

h!0�

xn (nr + h)� xn (nr)
h

= lim
h!0�

P
j�0
wnj (r) (nr + h)

j �
P
j�0
wnj (r) (nr)

j

h

= lim
h!0�

P
j�0

hj

j!

 P
i�0
wnj+i (r)

(nr)i

i! (j + i)!

!
�
P
j�0
wnj (r) (nr)

j

h

= lim
h!0�

8>><>>:
P
i�0

wni (r)(nr)
i+h

P
i�0

wn1+i(r)(nr)
i(1+i)

h +

+

P
j�2

hj

j!

 P
i�0

wnj+i(r)
(nr)i

i! (j+i)!

!
�
P
j�0

wnj (r)(nr)
j

h

9>>=>>; =

=
X
i�0
wn1+i (r) (nr)

i
(1 + i) ,

assuming that
P
i�0
wnj+i (r)

(nr)i

i! (j + i)! converge for j � 1.

� right-hand derivative:

x0n
�
nr+

�
= lim

h!0+

xn (nr + h)� xn (nr)
h

= lim
h!0+

P
j�0
wn+1j (r) (nr + h)

j �
P
j�0
wnj (r) (nr)

j

h
=

= lim
h!0+

P
j�0

hj

j!

 P
i�0
wn+1j+i (r)

(nr)i

i! (j + i)!

!
�
P
j�0
wnj (r) (nr)

j

h
=

= lim
h!0+

8><>:
P
i�0
wn+1i (r) (nr)

i
+ h

P
i�0
wn+11+i (r) (nr)

i
(1 + i)

h
+

+

P
j�2

hj

j!

 P
i�0
wn+1j+i (r)

(nr)i

i! (j + i)!

!
�
P
j�0
wnj (r) (nr)

j

h

9>>>>=>>>>;
=

X
i�0
wn+11+i (r) (nr)

i
(1 + i) ,

assuming that (8) holds, and
P
i�0
wn+1j+i (r)

(nr)i

i! (j + i)! converges for n � 1

and j � 1:
We have proved the existence of derivative of xn (t) at t = nr, n � 2, and

x0n (nr) =
X
j�0
wn+11+j (r) (nr)

j
(1 + j) =

X
j�0
wn1+j (r) (nr)

j
(1 + j) :
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Next, we will show that x0n (t) = Bxn�1 (t� r) at t = nr, n � 2.

x0n (nr) =
X
j�0
wn+11+j (r) (nr)

j
(1 + j) = B

X
j�0
wn�1j (r) [(n� 1) r]j = Bxn�1 ((n� 1) r) ,

where we have considered (9).

We point out, that equalities, (7), (8) and (9) provide calculating formulas
for all the terms of the sequences wnj (r) for n � 2.

Corollary 8 Equality (9) is a direct consequence of (7) and (8).

Proof. X
j�0

(1 + j) (nr)
j
wn+11+j (r) =

(8)

X
j�0

(1 + j) (nr)
j
wn1+j (r) =

=
X
j�0

(1 + j) (nr)
j

0@ B

(j + 1)!

X
i�0
wn�1i+j (r)

(�r)i

i!
(i+ j)!

1A =

= B
X
j�0

(nr)
j

j!

0@X
i�0
wn�1i+j (r)

(�r)i

i!
(i+ j)!

1A =

= B
X
j�0
wn�1j (r) (nr � r)j ;

where we have considered (7) and the Lemma 4.
We also have a correspondent result to (2.2ii), which refers to n = 1.

Corollary 9 Equality (2.2ii) is a direct consequence of (2.2i) and (2.b.1), being
the last one applied to t = r.

Proof. As a consequence of proposition 5, (2.b.1) is veri�ed at t = r, so

B� (�r) +
X
j�2
jw1j (r) r

j�1 = B� (0) :

Then,

X
j�0
w21+j (r) r

j (1 + j) =
X
j�0
w11+j (r) r

j (1 + j)

= w11 (r) +
X
j�1
w11+j (r) r

j (1 + j) = w11 (r) +B� (0)�B� (�r) = B� (0) ;

since w11 (r) = B� (�r) :
These two corolaries suggest that during the constructive process of the

solution, some conditions with distinct functions emerge.

5. The Main Theorem

11



From now on we consider � (t) = � (0) = C for t 2 [�r; 0], where C is a real
constant.

Proposition 10 If

w10 (r) = C; w
1
1 (r) = BC and w1j (r) = 0 for j � 2 (10)

then
x1 (t) =

X
j�0
w1j (r) t

j = C (1 +Bt)

is the solution of problem (1) de�ned on A1 = (0; r] :

Proof. Equalities (10) verify (2.a.1) and (2.b.1), implying x01 (t) = BC for
t 2 [0; r). According to (4), we can then write

x1 (t) =
X
j�0
w1j (r) t

j = C (1 +Bt) for t 2 (0; r) :

By proposition 5, the result is also true at t = r.
The main result of this paper is the following Theorem.

Theorem 11 The solution of problem (1) with � (t) = C if t 2 [�r; 0], can be
written as

X (r; t) =
X
j�0
vj (r) t

j ;

for t � 0. The sequence vj (r) is de�ned by

vj (r) = C
Bj

j!
Pnj (rB) ;

where the polynomials Pnj (rB) are de�ned by

Pnj (rB) =

8>><>>:
1 +

n�(j+1)P
i=0

(�rB)i+1
(i+1)! (i+ j)

i+1 if j � n� 1

1 if j = n
0 if j � n+ 1.

The proof of this Theorem is divided into four stages: Propositions (12)
and (13), and Corollaries (14) and (15). In Proposition (12) we will obtain
the calculating formulas to obtain all terms of the sequences, wnj (r), n � 2.
Moreover, we will show that these formulas do not depend on the fact that
the initial function is constant. This fact makes this procedure an alternative
method to solve problem (1). In Proposition (13) and their Corollaries, we will
show the consequences of taking constant the initial function constant.

12



Proposition 12 For n � 2 the solution xn (t) =
P
j�0
wnj (r) t

j, de�ned on each

interval An, is obtained through the application of the following formulas, in the
following order

wnj+1(r) =
B

(j + 1)!

X
i>0
wn�1i+j (r)

(�r)i

i!
(i+ j)! (11)

and
wn+10 (r) = wn0 (r)�

X
j>1

�
wn+1j (r)� wnj (r)

�
(nr)

j
: (12)

Proof. Equality (11) is the su¢ cient condition (7) in proposition 6, and equality
(12) is obtained from the �rst equality of (8).
From now on, we consider w1j (r) = 0 for j � 2.
Combining equalities (11) and (12) we will obtain the sequence w2j (r) :
According to (11), for n � 2

w21 (r) = B
X
i�0
w1i (r) (�r)

i
= B

1X
i=0

w1i (r) (�r)
i
;

and since w1j (r) = 0 for j � 2,

w21 (r) = B (C � rBC) :

On the other hand

w22 (r) =
B

2!

X
i�0
w1i+1 (r) (�r)

i
(i+ 1) =

B

2!
BC:

It is easy to check w2j (r) = 0 for j � 3. This will lead us to assume that for
j � n+ 1; wnj (r) = 0. We will prove this fact in the next Proposition.
It remains to calculate the �rst term. According to (12)

w20 (r) = w
1
0 (r)�

X
j�1

�
w2j (r)� w1j (r)

�
rj = C �

2X
j=1

�
w2j (r)� w1j (r)

�
rj ;

and since w2j (r) = 0 for j � 3,

w20 (r) = C � r
�
w21 (r)� w11 (r)

�
� r2w22 (r) = C

�
1 +

r2B2

2

�
.

Finally, we obtain the solution x2 (t) de�ned on A2 = (r; 2r]

x2 (t) =
2X
j=0

w2j (r) t
j = C

 
1 +

(rB)
2

2
+ t
�
B � rB2

�
+
t2B2

2!

!
:

We can verify that

13



x1 (r) = x2 (r) = C (1 + rB).

Also, notice that the form of x2 (t), obtained with our calculating formulas,
has exactly the same form like the one obtained with MSA.

Proposition 13 Consider problem (1), where � (t) = C for t 2 [�r; 0].
If w1j (r) = 0 for j � 2, then

wnj (r) = 0 for j � n+ 1. (13)

Proof. We will use induction on n. The case n = 1 is obviously true. Assuming
wnj (r) = 0 for j � n+ 1, consider j � n+ 2. As a consequence of (11)

wn+1j (r) =
B

j!

X
i�0
wni+j�1 (r)

(�r)i

i!
(i+ j � 1)!

By the induction step, wn+1j (r) = 0 if i + j � 1 � n + 1: Since i � 0 we can
conclude wn+1j (r) = 0 for j � n+ 2 as wanted.

Corollary 14 In the above conditions, if n � 1 then

wnn (r) = C
Bn

n!
. (14)

Proof. We will use induction on n. Since w11 (r) = BC, the result holds for

n = 1. Assuming
wnn (r) = C

Bn

n! .

we have

wn+1n+1 (r) =
B

(n+ 1)!

X
i�0
wni+n (r)

(�r)i

i!
(i+ n)! =

=
B

(n+ 1)!
wnn (r)n! =

B

(n+ 1)!
C
Bn

n!
n! = C

Bn+1

(n+ 1)!
;

where we used (11), (13) and the induction step.

Corollary 15 In the conditions of proposition (13), if j � n� 1 then

wnj (r) = C
Bj

j!

0@1 + n�(j+1)X
i=0

(�rB)i+1

(i+ 1)!
(i+ j)

i+1

1A . (15)

Proof. To prove (15), we will use induction reasoning applied to j = n� k for
the sucessive values k = 1; 2; � � � ; n. So, we will do it, �rst considering k = 1,
then k = 2, and �nally by an induction reasoning.
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1. If j = n� 1, n � 1, we want to prove that

wnn�1 (r) = C
Bn�1

(n� 1)! [1 + (�rB) (n� 1)] .

Using induction on n, the case n = 1 is valid as a consequence of (2.a.1).
Assuming
wnn�1 (r) = C

Bn�1

(n�1)! [1 + (�rB) (n� 1)].
we have

wn+1n (r) =
B

n!

X
i�0
wni+n�1 (r)

(�r)i

i!
(i+ n� 1)! =

=
B

n!

1X
i=0

wni+n�1 (r)
(�r)i

i!
(i+ n� 1)! =

=
B

n!

�
wnn�1 (r) (n� 1)! + wnn (r) (�r)n!

	
=

= B

�
1

n

CBn�1

(n� 1)! [1 + (�rB) (n� 1)] + (�r)C
Bn

n!

�
=

= C
Bn

n!
[1� rBn+ rB � rB] = CB

n

n!
[1 + (�rB)n] .

where we used (11) for j = n� 1, (13), (14) and the induction step.
2. If j = n� 2 for n � 2, we want to prove that

wnn�2 (r) = C
Bn�2

(n� 2)!

"
1 + (�rB) (n� 2) + (�rB)

2

2!
(n� 1)2

#
.

For n = 2, using (12), we have

w20 (r) = w
1
0 (r)�

P
j�1

�
w2j (r)� w1j (r)

�
rj =

= C �
�
w21 (r)� w11 (r)

�
r �

�
w22 (r)� 0

�
r2 � 0 =

= C � [B (C � rBC)� CB] r � C B2

2! r
2 = C

�
1 + (�rB)2

2!

�
.

Assuming

wnn�2 (r) = C
Bn�2

(n�2)!

h
1 + (�rB) (n� 2) + (�rB)2

2! (n� 1)2
i
,

We have

wn+1n�1 (r) =
B

(n� 1)!
X
i�0
wni+n�2 (r)

(�r)i

i!
(i+ n� 2)! =

=
B

(n� 1)!

(
wnn�2 (r) (n� 2)! + wnn�1 (r) (�r) (n� 1)! + wnn (r)

(�r)2

2!
n!

)
=

= C
Bn�1

(n� 1)!

"
1 + (�rB) (n� 1) + (�rB)

2

2!
n2

#
;
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where we have used (11) for j = n� 2, (13), (14) and the induction step.
It can be assumed by induction, that

for k = 1; 2; � � � ; n and n � k;

wnn�k (r) = C
Bn�k

(n� k)!

 
1 +

k�1X
i=0

(�rB)i+1

(i+ 1)!
(i+ n� k)i+1

!
.

The proof of the Theorem is now complete.
Hence, if we �x n 2 N, we can calculate xn (t) with t 2 An = ((n� 1) r; nr]

using

xn (t) =
X
j�0
wnj (r) t

j = C
X
j�0

Bj

j!
Pnj (rB) t

j , (16)

where Pnj (rB) are de�ned in theorem 11.
The solution found by this new method coincides with the one obtained by

the method of steps, the recurrences formulas (11) and (12) can be replaced
with (16), whenever � (t) is a constant, and �nally the solution of problem (1)
is the generating fuction for fwnj (r)gj=0;1;:::.

6. Proof of Lemma 4
For r > 0, t 6= 0 and t 6= r

X
j�0
fj(r) (t� r)j =

X
j�0

tj

j!

0@X
i�0
fj+i(r)

(�r)i

i!
(j + i)!

1A .
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Proof.X
j�0
fj(r) (t� r)j = f0(r) + f1 (r) (t� r) + f2 (r) (t� r)2 + f3 (r) (t� r)3 + :::

+fp (r) (t� r)p + fp+1 (r) (t� r)p+1 + :::

=

�
f0(r) + f1 (r) (�r) + f2 (r) (�r)2 + f3 (r) (�r)3 + :::

+fp (r) (�r)p + fp+1 (r) (�r)p+1 + :::

�
+t

"
f1(r)� 2rf2 (r) + 3r2f3 (r)� 4r3f4 (r) + :::

+
�
p
p�1
�
(�r)p�1 fp (r) + fp+1 (r) (�r)p

�
1 +

�
p
p�1
��
+ :::

#

+t2

"
f2 (r)� 3rf3 (r) + 6r2f4 (r) + :::

+
�
p
p�2
�
(�r)p�2 fp (r) + fp+1 (r) (�r)p�1

��
p
p�1
�
+
�
p
p�2
��
+ :::

#

+t3

"
f3 (r)� 4rf4 (r) + :::

+
�
p
p�3
�
(�r)p�3 fp (r) + fp+1 (r) (�r)p�2

��
p
p�2
�
+
�
p
p�3
��
+ :::

#

+:::+ tp�2
��
p

2

�
(�r)2 fp (r) + fp+1 (r) (�r)3

��
p

3

�
+

�
p

2

��
+ :::

�
+tp�1

��
p

1

�
(�r) fp (r) + fp+1 (r) (�r)2

��
p

2

�
+

�
p

1

��
+ :::

�
+tp

�
fp (r) + fp+1 (r) (�r)

��
p

1

�
+ 1

�
+ :::

�
+ :::

De�ne g(z) =
P
j>0

(�1)j fj (r) zj ; where g(r) =
P
j>0
fj (r) (�r)j represents

f0(r) + f1 (r) (�r) + f2 (r) (�r)2 + f3 (r) (�r)3 + :::
+fp (r) (�r)p + fp+1 (r) (�r)p+1 + :::

Claim 16 t

"
f1(r)� 2rf2 (r) + 3r2f3 (r)� 4r3f4 (r) + :::

+
�
p
p�1
�
(�r)p�1 fp (r) + fp+1 (r) (�r)p

�
1 +

�
p
p�1
��
+ :::

#
can be written as

�tg0(z) jz=r :

In fact g0(z) =
P
j>0

(�1)j+1 (j + 1) fj+1 (r) zj . So

�tg0(z)z=r = t

24X
j>0

(�z)j (j + 1) fj+1 (r)

35
z=r

=

= t
h
f1(r)� 2rf2 (r) + 3r2f3 (r) + :::+ p (�r)p�1 fp (r) + :::

i
.

Claim 17 t2
"

f2 (r)� 3rf3 (r) + 6r2f4 (r) + :::
+
�
p
p�2
�
(�r)p�2 fp (r) + fp+1 (r) (�r)p�1

��
p
p�1
�
+
�
p
p�2
��
+ :::

#
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can be written as
t2

2!
g00(z) jz=r :

In fact g00(z) =
P
j>0

(�1)j+2 (j + 1) (j + 2) fj+2 (r) zj . So

t2

2!
g00(z)z=r =

t2

2!

24X
j>0

(�z)j (j + 1) (j + 2) fj+2 (r)

35
z=r

=

= t2
�
f2 (r)� 3rf3 (r) + 6r2f4 (r) + :::+

�
p

2

�
(�r)p�2 fp (r) + :::

�
:

Repeating the process,

Claim 18 tn
�
fn (r) + fn+1 (r) (�r)

��
n
1

�
+ 1
�
+ :::

�
can be written as

(�1)n t
n

n!
g(n)(z) jz=r

where
g(n)(z) =

X
j>0

(�1)j+n (j + 1) (j + 2) ::: (j + n) fj+n(r)zj :

We prove this fact by induction on n:
Proof: As we have already seen
g0(z) =

P
j>0

(�1)j+1 (j + 1) fj+1(r)zj , so the case n = 1 is veri�ed.

Assuming
g(n�1)(z) =

P
j>0

(�1)j+n�1 (j + 1) (j + 2) ::: (j + n� 1) fj+n�1(r)zj ,

we want to prove that
g(n)(z) =

P
j>0

(�1)j+n (j + 1) (j + 2) ::: (j + n) fj+n(r)zj :

We have

g(n)(z) =
d

dz

0@X
j>0

(�1)j+n�1 (j + 1) (j + 2) ::: (j + n� 1) fj+n�1(r)zj
1A =

=
X
j>0

(�1)j+n (j + 1) (j + 2) ::: (j + n) fj+n(r)zj :

Hence, we can writeX
j�0
fj(r)(t� r)j = g(r)� tg0(r) + t

2

2!
g00(r)� t

3

3!
g000(r) + :::+ (�1)p t

p

p!
g(p)(r) + ::: =

=
X
j>0

(�1)j t
j

j!
g(j)(r) =

X
j>0

(�1)j t
j

j!

0@X
i>0

(�1)i+j (i+ 1) ::: (i+ j) fi+j(r)ri
1A =

=
X
j>0

tj

j!

0@X
i>0

(�r)i (i+ j)!
i!

fi+j(r)

1A =
X
j>0

tj

j!

0@X
i>0
fi+j(r)

(�r)i

i!
(i+ j)!

1A ,
18



where we used the equality (i+ 1) (i+ 2) (i+ 3) ::: (i+ j) =
(i+ j)!

i!
.
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7. An Application

Suppose we want to study a population P (t) = (x(t); y(t)), where x(t) de-
notes the average height and y(t) the average weight. It was observed that x(t)
depends on the height of the previous generation through x0(t) = Bx(t � r),
where r is the size (in units of time) of a generation.
We can determine explicitly the behaviour of this variable regarding the

fourth generation. This means that we want to compute x4(t); given x(t) = C
for t 2 [�r; 0] ; where C is the average height.
Using equation (16) we can determine it directly, without having to compute

the height for the previous generations,

x4(t) =
X
j�0
w4j (r) t

j = C
X
j�0

Bj

j!
P 4j (rB) t

j ,

where P 4j (rB) are computed applying theorem 11. From this theorem, as

P 44 (rB) = 1

P 43 (rB) = 1 +
0X
i=0

(�rB)i+1

(i+ 1)!
(i+ 3)

i+1
= 1 + 3 (�rB)

P 42 (rB) = 1 +

1X
i=0

(�rB)i+1

(i+ 1)!
(i+ 2)

i+1
= 1 + 2 (�rB) + 3

2

2!
(�rB)2

P 41 (rB) = 1 +
2X
i=0

(�rB)i+1

(i+ 1)!
(i+ 1)

i+1
= 1 + (�rB) + 2

2

2!
(�rB)2 + 3

3

3!
(�rB)3

P 40 (rB) = 1 +

3X
i=0

(�rB)i+1

(i+ 1)!
ii+1 = 1 +

(�rB)2

2!
+
23

3!
(�rB)3 + 3

4

4!
(�rB)4 ;

for j = 0; 1; 2; 3; 4, then we have

x4(t) = C

�
P 40 (rB) +BP

4
1 (rB) t+

B2

2!
P 42 (rB) t

2 +
B3

3!
P 43 (rB) t

3 +
B4

4!
P 44 (rB) t

4

�

= C

8<: 1 + (�rB)2
2! + 23

3! (�rB)
3
+ 34

4! (�rB)
4
+Bt

�
1� rB + 22

2! (�rB)
2
+ 33

3! (�rB)
3
�
+

+B2

2! t
2
�
1� 2rB + 32

2! (�rB)
2
�
+ B3

3! t
3 (1� 3rB) + B4

4! t
4

9=; :

8. Conclusion and Future Directions
We have developed a new method for computing the analytical solution to

the simplest delay di¤erential equation. Future directions of research include:
extending this method to a much wider class of DDEs, as x0(t) = Ax(t)+Bx(t�
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r), and �nding the relationship between our solution of equation (1), which uses
the polynomials Pnj (rB), and the alternative solution

x(t) = Ce

W (rB)

r
t

in terms of the Lambert W-function.
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