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Abstract

In general, geometric additive models are incomplete and the perfect
replication of derivatives, in the usual sense, is not possible.

In this paper we complete the market by introducing the so-called
power-jump assets. Using a static hedging formula, in order to relate call
options and power-jump assets, we show that this market can also be
completed by considering portfolios with a continuum of call options with
different strikes and the same maturity.
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1 Introduction
Hedging in incomplete markets is an unsolved problem. In these markets a
perfect replication of a derivative is, in general, not possible . Still we could try
a superhedging strategy but the cost of these strategies is in many situations
too high. For instance in [10] one can see that the superhedging cost of a call
option is the price of the underlying asset. Many solutions have been proposed
by using risk-minimizing strategies, trying to minimize the effect of imperfect
replication. We could use the quadratic loss function and this leads to the
notion of mean-variance hedging as in [13] or we could require the strategy to
hedge the derivative with a high probability and in an optimal way, that is
investing the least amount of initial wealth. This idea leads to the quantile
hedging as can be seen in [12]. Other authors as Balland [1], Carr and Madam
[4] and Jacod and Protter [15], between others, have tried to replicate complex
derivatives by using liquid and non redundant derivatives as vanilla options or
have introduced new derivatives to complete the market as in [3]. Here we follow
this latter approach. The context will be of a geometric additive model where
the log returns evolve as process with independent increments not necessarily
homogeneous, called also non-homogeneous Lévy processes [11]. These models
are in general incomplete, in fact only the cases where the additive process is a
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Brownian motion or a Poisson process are complete models. A recent paper [5]
shows that these kind of models, if we add the self-similarity condition, capture
quite well the term behaviour of the option prices. These processes have also
been used successfully to model bond markets, see [11].
The rest of the paper is organized as follows: in the next section we define

the market model. In section 3 we define the so called power-jump assets that
will allow us to complete the market This completness property is analyzed
in section 4. In section 5 we obtain hedging formulas for different kinds of
derivatives, in particular derivatives with payoffs SkT , k ≥ 2. We will see in this
section how we can invert the hedging formulas and express the power-jump
assets in terms of these derivatives. Finally by using the static hedging in terms
of calls, see for instance [4], we obtain formulas for dynamic complex hedging.
The last section is devoted to treat the optimization problem with complex
portfolios in the context of Lévy processes. Similar results could be obtained
for the non-homogeneous case but this will be the aim of another paper.

2 The geometric additive model
In this paper we will consider a market model where the stock price process
S = {St, t ∈ [0, T ]} is a geometric additive process and satisfies the stochastic
differential equation

dSt
St−

= dZt, S0 > 0, (1)

where Z = {Zt, t ∈ [0, T ]} is an additive process. Moreover, in our market we
have a riskless asset or bond B, evolving as

Bt = exp

µZ t

0

rsds

¶
, (2)

where rt is the deterministic spot interest rate at time t.
We begin by recalling the definition and the main properties of additive

processes. The fundamental references about this subject are [16] and [21].
The theory of integration and stochastic differential equations for the kind of
additive processes that we shall consider in this paper is the theory of integration
for semimartingales and a comprehensive introduction to this subject can be
found in [20]. It is well known that additive processes generalize Lévy processes
by relaxing the stationarity condition on the increments. Indeed, a real-valued
stochastic process Z = {Zt, t ∈ [0, T ]}, defined on a complete filtered probability
space (Ω,F ,F,P) , is called an additive process if it is stochastically continuous,
their increments are independent and Z0 = 0 a.s. The filtration F is the natural
filtration generated by the stock price process S completed with the P-null
sets N , that is, F = {Ft, t ∈ [0, T ]} ∪ N where Ft = σ(Ss : 0 ≤ s ≤ t). An
additive process Z always has a càdlàg modification (see [21], page 63) and
in the rest of this paper, we will always assume that we are dealing with this
càdlàg modification. Moreover, Zt has an infinitely divisible distribution for all
t, which is determined by its system of generating triplets (Γt, Ct, µt), where the
Gaussian covariance Ct is a nonnegative and increasing continuous function, the
location parameter Γt is a continuous function and the Lévy measure µt is an
increasing (in t) positive measure on R such that µt ({0}) = 0, µs (B)→ µt (B)
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as s→ t for all measurable sets B ⊂ {x : |x| ≥ ε} , for some ε > 0, andZ
R

¡
1 ∧ x2

¢
µt(dx) <∞, (3)

for all t ∈ [0, T ] .
Additive processes satisfy the generalized version of the Lévy-Itô decompo-

sition (see [21], page 120)
Zt = X

1
t +X

2
t ,

where X2 is the continuous part of the process and

X1
t = lim

ε&0

Z
{s∈(0,t],ε<|x|<1}

x(Q(ds,dx)− eµ(d (s, x))+Z
{s∈(0,t],|x|≥1}

xQ(ds,dx),

where Q (ds,dx) is a Poisson random measure on [0, T ]×R\{0} with intensity
measure eµ (d (s, x)) (this intensity measure is defined by eµ ((0, t]×B) = µt(B)
for all measurable B ⊂ B (R)). The integral

R
{s∈(0,t],ε<|x|<1} x(Q(ds,dx) −eµ(d (s, x)) as zero mean and its convergence, when ε & 0, is uniform in t on

any bounded interval. The process X1 is an additive process with a system
of generating triplets given by (0, 0, µt) and the process X2 is also an additive
process with generating triplets (Γt, Ct, 0) .
Not all additive processes are semimartingales. For instance, a continuous

deterministic process with unbounded variation is not a semimartingale. In this
paper, we will consider only semimartingales, since we need to use stochastic cal-
culus and Itô’s formula. Therefore, we will work with a subclass of the additive
processes - the set of natural additive processes, as they were defined by Sato
in [22]. An additive process is natural if the location parameter Γt has bounded
variation. Let us now define the concept of factoring for an additive process.
A factoring is a pair ({ρt : t ∈ [0, T ]} ,σ), where σ is a continuous (atomless)
finite measure on [0, T ] (e.g., the Lebesgue measure) and {ρt : t ∈ [0, T ]} is a
family of infinitely divisible distributions such that the characteristic function
of Zt is given by exp

R t
0
log (bρs (u))σ (ds) ,where bρs is the characteristic function

of ρs. Let us denote the generating triplet of ρt by
¡
γt, c

2
t , νt

¢
. Then (see [22],

Theorem 2.6 and Lemma 2.7, page 216)

Γt =

Z t

0

γsσ (ds) ,

Ct =

Z t

0

c2sσ (ds) ,

µt (B) =

Z t

0

νs (B)σ (ds) ,∀B ∈ B (R)

and the elements of the triplet
¡
γt, c

2
t , νt

¢
are called the local characteristics

of the natural additive process. From (3), it is clear that the family of Lévy
measures {νt}t∈[0,T ] satisfiesZ T

0

µZ
R

¡
1 ∧ x2

¢
νt(dx)

¶
σ (ds) <∞,

for all t ∈ [0, T ]. An additive process is natural if and only if a factoring
exists and it is a semimartingale if and only if it is natural (see [22], Theorem
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2.6, Proposition 2.10 and [16], Corollary 5.11, page 116). Therefore, we shall
consider natural additive processes with local characteristics

¡
γt, c

2
t , νt

¢
and for

these kind of processes, the generalized version of the Lévy-Itô decomposition
reads

Zt =

Z t

0

csdWs +Xt, (4)

where W = {Wt, t ∈ [0, T ]} is a standard Brownian motion and X = {Xt, t ∈
[0, T ]} is a jump process independent of W . Moreover, the jump part is given
by

Xt =

Z
{s∈(0,t],|x|<1}

x (Q(ds,dx)− νs(dx)ds)+

Z
{s∈(0,t],|x|≥1}

xQ(ds,dx)+

Z t

0

γsds,

(5)
where Q(dt,dx) is a Poisson random measure on [0, T ] × R\{0} with intensity
measure νt (dx)dt (we shall consider the case where σ(dt) =dt is the Lebesgue
measure, these processes are also referred in the literature as non-homogeneous
Lévy processes [11]). The decomposition (4) implies that the process Z =
{Zt, t ∈ [0, T ]} is a semimartingale with quadratic variation

[Z,Z]t =

Z t

0

c2sds+
X
s∈(0,t]

|∆Zs|2

We assume that the family of Lévy measures {νt}t∈[0,T ] satisfies, for some
ε > 0 and λ > 0,

sup
t∈[0,T ]

Z
(−ε,ε)c

exp(λ|x|)νt(dx) <∞. (6)

As a consequence of this assumption, it is easy to show thatZ +∞

−∞
|x|i νt(dx) <∞

for all i ≥ 2 and all t ∈ [0, T ]. Hence, all the moments of Zt and Xt exist and
we can define the following functions:

mi (t) :=

Z +∞

−∞
xiνt(dx), i ≥ 2 (7)

Mi(t) :=

Z t

0

mi (s) ds, i ≥ 2 (8)

By Itô’s formula for càdlàg semimartingales (see [20]), we obtain the solution
of the stochastic differential equation (1), which is given by

St = S0 exp

µ
Zt −

1

2

µZ t

0

c2sds

¶¶ Y
0<s≤t

(1 +∆Zs) exp(−∆Zs). (9)

In order to ensure that St > 0 for all t ≥ 0 a.s., we require that ∆Zt > −1
for all t. Hence, we shall assume that the family of Lévy measures {νt}t∈[0,T ] is
supported on (−1,+∞).

4



3 Power jump processes
Let us define the following "power jump" processes,

Z
(1)
t = Zt

Z
(i)
t =

X
0<s≤t

(∆Zs)
i
, i ≥ 2, (10)

where ∆Zs = Zs − Zs− and

X
(1)
t = Xt

X
(i)
t =

X
0<s≤t

(∆Xs)
i , i ≥ 2. (11)

The process X(i) is called the ith-power-jump process. Note that X(i)
t = Z

(i)
t

if i ≥ 2 and these processes are again natural additive processes. They have
jumps at the same points as the original natural additive processes and the size
of the jumps of Z(i)t is equal to the size of the original jumps to the power i.
Clearly, if we recall (7)-(8), then the moments of the power-jump processes

are given by (see [20], page 29)

E
h
X
(1)
t

i
=

Z t

0

γsds+

Z t

0

Z
{|x|≥1}

xνs (dx) ds :=

Z t

0

m1 (s) ds :=M1 (t) ,

E
h
X
(i)
t

i
=Mi (t) , i ≥ 2,

where we have set m1 (t) := γt +
R
{|x|≥1} xνt (dx) and M1(t) :=

R t
0
m1 (s)ds.

Let us introduce the following compensated power-jump processes:

Y
(i)
t = Z

(i)
t − E

h
Z
(i)
t

i
= Z

(i)
t −Mi (t) , i ≥ 1. (12)

These processes are martingales (the Teugels martingales) - see [1] and [18].
Following the orthonormalization procedure described in [18] and generalized in
[1] for regular martingales with independent increments, we obtain the following
sequence of strongly orthonormal martingales

©
H(i), i ≥ 1

ª
, defined by

H
(i)
t =

Z t

0

ci,i (s) dY
(i)
s +

Z t

0

ci,i−1 (s) dY
(i−1)
s + · · ·+

Z t

0

ci,1 (s) dY
(1)
s , i ≥ 1

(13)
The deterministic functions ci,j (·) are are the coefficients of the orthonormal-
ization of the following polynomials with time dependent coefficients,©

1{s<t},1{s<t}x,1{s<t}x
2, . . . ,1{s<t}x

i−1ª ,
with respect to the measure ϕs (dx)ds =

¡
x2νs (dx) + c

2
sδ (x) dx

¢
ds defined in

[0, T ] × R (see [1]), i.e., we consider the orthogonalization with respect to the
inner product

hp, qi =
Z T

0

Z +∞

−∞
ps(x)qs(x)

¡
x2νs (dx) + c

2
sδ (x) dx

¢
ds, (14)
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where pt (x) and qt(x) are real polynomials with time dependent coefficients.
The process H(i) is called the orthonormalized ith-power-jump-process.
The martingale representation property (MRP) obtained in [18] and gener-

alized in [1] allows the representation of any square integrable Q-martingale as
an orthogonal sum of stochastic integrals with respect to the orthonormalized
power-jump-processes

©
H(i), i ≥ 1

ª
, i.e., any square integrable Q-martingale

M = {Mt, t ∈ [0, T ]}, admits the representation

Mt =M0 +

Z t

0

h(1)s dZs +
∞X
i=2

Z t

0

h(i)s dH
(i)
s , (15)

where the processes h(i)s , i ≥ 1, are predictable and

E

"Z t

0

∞X
i=1

¯̄̄
h(i)s

¯̄̄2
ds

#
<∞.

4 Market completeness
Suppose that in our market exists at least one equivalent martingale measure
Q such that Z remains a natural additive process under Q. If these conditions
hold we say that Q is structure preserving (see Theorem 3.2. in [6] and Theorem
2.1 in [8] ). Under this risk neutral measure, the discounted stock price process
S̃ = {S̃t = St/Bt, 0 ≤ t ≤ T} and the process Z̃ = {Zt−

R t
0
rsds, 0 ≤ t ≤ T} are

both Q-martingales. Obviously∆Z̃t = ∆Zt and Z̃
(i)
t = Z

(i)
t , i ≥ 2. Under Q, we

construct the power-jump processes
©
Y (i), i ≥ 1

ª
and the orthonormalized ith-

power-jump-processes
©
H(i), i ≥ 1

ª
based on Z̃. Note that for i ≥ 2, emi (t) =R

R x
iν̃t(dx), where {eνt}t∈[0,T ] is the family of Lévy measures of Z (and Z̃) under

Q and we require these Lévy measures to satisfy (6).
In order to complete the market (which is, in the general case, incomplete) we

introduce new artificial assets: the power-jump assets Y
(i)
=
n
Yt
(i)
, t ∈ [0, T ]

o
,

given by

Yt
(i)
:= BtY

(i)
t , i ≥ 2.

Alternatively, we can also introduce the orthonormalized power-jump assets

H
(i)
=
n
Ht

(i)
, t ∈ [0, T ]

o
, where

Ht
(i)
:= BtH

(i)
t , i ≥ 2.

Clearly, the discounted power-jump assets
©
Y (i), i ≥ 1

ª
and the discounted

orthonormalized power-jump assets
©
H(i), i ≥ 1

ª
are Q-martingales.

Let us define the attainable contingent claims in our market. We say that a
nonnegative random variableX ∈ L2 (Ω,FT ,Q) is attainable contingent claim in
L2 (Q) if there exists a self-financing portfolio whose values, at time T , converges
in L2 (Q) to X. In our market, a portfolio π = {πn : n ≥ 1} is a sequence of
finite-dimensional predictable processesn

πnt =
³
αnt ,β

n
t ,β

(2),n
t ,β

(3),n
t , . . . ,β

(kn),n
t

´
, 0 ≤ t ≤ T, n ≥ 2

o
,
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where αnt represents the number of bonds at time t, β
n
t represents the number of

stocks at time t, β(i),nt is the number of the ith-power-jump assets H(i) and kn is
an integer which depends on n. The portfolio π = {πn : n ≥ 1} is self-financing
if πn is a self-financing-portfolio for each finite n.

Definition 1 Let us consider a market model MQ where the traded assets are
bonds with price process given by (2), a stock with dynamics given by (1) and the

family of power-jump assets
n
Y
(i)
, i ≥ 2

o
. Assume that the additive process Z

satisfies (6) and that exists at least one equivalent martingale measure Q, which
is also structure preserving. Then MQ is called an enlarged additive market
model.

The next theorem states that MQ is a complete market. The proof of this
theorem is based on the martingale representation property (15) and was given
in [9] for Lévy markets and then was generalized for the additive case in [1].

Theorem 2 The enlarged additive market model MQ is complete, in the sense
that any square-integrable contingent claim X ∈ L2 (Ω,FT ,Q) can be replicated
in L2 (Q).

This completeness concept (in the L2 sense) corresponds to the concept of
quasi-completeness defined in [1], [2] and [17].

5 Hedging portfolios
In this section we obtain hedging formulas that allow us to compute explicitly
the hedging portfolio which replicates a contingent claim X whose payoff is a
function of the value, at maturity, of the stock price S, of an absolutely continu-
ous process V 1 =

©
V 1t , t ∈ [0, T ]

ª
and of a jump process V 2 =

©
V 2t , t ∈ [0, T ]

ª
,

defined by

V 1t :=

Z t

0

l (Ss) ds,

V 2t :=

Z t

0

Z +∞

−∞
g(x)M̃(ds,dx)

where l (x) is a continuous function, g is a smooth function such that g(0) =
g0(0) = 0,

R t
0

R +∞
−∞ |g(x)|ν̃s(dx)ds < ∞ and M̃(ds,dx) = Q(ds,dx) − ν̃s(dx)ds

is the compensated Poisson Random measure. The reason why we assume
processes of this particular form is that they allow us to include in our theory
contingent claims so popular as the asian options and other related derivatives
whose payoff depend on the paths of the risky asset in the period [0, T ]. The
jump process V 2t allow us to consider also the portfolio optimization problem,
which will be discussed in detail in Section 6. The payoff is therefore a function
of the form f(ST , V

1
T , V

2
T ). Using the independence of

ST
St
and V 2T − V 2t with

respect to Ft, the price function of the contingent claim X, at time t, is given

7



by

exp

Ã
−
Z T

t

rsds

!
EQ
£
f(ST , V

1
T , V

2
T )|Ft

¤
= exp

Ã
−
Z T

t

rsds

!
EQ

"
f

Ã
ST
St
St,

Z T

t

l

µ
Ss
St
St

¶
ds+ V 1t , V

2
T − V 2t + V 2t

!
|Ft

#

= exp

Ã
−
Z T

t

rsds

!

EQ

"
f

Ã
ST
St
x1,

ÃZ T

t

l

µ
Ss
St
x1

¶
ds+ x2, V

2
T − V 2t + x3

!!#
x1=St,x2=Vt

:= F (t, St, V
1
t , V

2
t ).

As in Lévy market models (see [8] and [9]) or in the classical Black-Scholes
model, the price function F must satisfy a partial differential integral equation
(PIDE). Let us introduce the notation x := (x1, x2, x3), D0 := ∂

∂t , Dk :=
∂
∂xk

and Di
1 :=

∂i

∂xi1
. The price function F (t, x) is a solution of the PIDE

D0F (t, x) + l(x1)D2F (t, x) + rtx1D1F (t, x) +
1

2
c2tx

2
1D

2
1F (t, x) (16)

−D3F (t, x)
Z
R
g(y)ν̃t (dy) +DF (t, x) = rtF (t, x), (17)

F (T, x) = f(x),

where

DF (t, x) :=
Z +∞

−∞
(F (t, x1 (1 + y) , x2, x3 + g(y))− F (t, x)− x1yD1F (t, x)) eνt (dy) .

This equation is a straightforward generalization of the PIDE obtained in [8],
Theorem 3.1, page 290.
In order to simplify the notation, we set Vt :=

¡
V 1t , V

2
t

¢
. The explicit hedging

portfolio which replicates a contingent claim X = f (ST , VT ) , with a price func-
tion F (t, St, Vt) satisfying some regularity conditions, is given in the following
theorem.

Theorem 3 Let us consider a contingent claim X ∈ L2 (Ω,FT ,Q) with payoff
X = f (ST , VT ) and a price function F (t, St, Vt) of class C1,∞,2,∞. Consider
the function h : [0, T ]×R4 → R given by

h(t, x, y) := F (t, x1(1 + y), x2, x3 + g (y))− F (t, x)− x1yD1F (t, x). (18)

Assume that h(t, x, y) is an analytic function in y for all x ∈ R4, t ∈ [0, T ] and
that we have the Taylor series representation

h (t, x, y) =
∞X
i=2

1

i!

∂ih

∂yi
(t, x, 0) yi, (19)

for all y ∈ R.
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Then X has a self-financing replicating portfolio, which is given, at time t,
by:

number of bonds = αt = B
−1
t (F (t, St−,Vt−)− St−D1F (t, St−,Vt−)) (20)

number of stocks = β
(1)
t = D1F (t, St−, Vt−) (21)

number of shares of the Y i-asset = β
(i)
t =

∂i

∂yih(t, St−,Vt−, 0)

i!
, i = 2, 3, . . . .

(22)

Remark 4 Theorem 3 is simply a version, for the additive case, of Theorem
3.2 in [8]. Note that if the payoff depends only on the stock at maturity then
F = F (t, St) and h(t, x, y) = F (t, x(1 + y)) − F (t, x) − xyD1F (t, x). In this
case, we have

h(t, x, 0) = 0

∂

∂y
h(t, x, 0) = 0

∂n

∂yn
h(t, x, 0) = xnDn

1F (t, x), n = 2, 3, . . .

and (see [9])

number of bonds = αt = B
−1
t (F (t, St−)− St−D1F (t, St−)) (23)

number of stocks = βt = D1F (t, St−) (24)

number of shares of Y i-asset = β
(i)
t =

Sit−D
i
1F (t, St−)

i!
, i = 2, 3, . . . . (25)

We want to have hedging formulas in terms of call options with the same
maturity and different strikes. In order to pursue this goal, we begin by studying
the relationship between the power-jump assets and the pricing functions of
derivatives with payoff X(k) = SkT , k ≥ 2. The following Proposition gives us a
representation formula for the discounted price function of these derivatives, in
terms of the risky asset and the power-jump processes.

Proposition 5 Denote by F̃ (k)(t, St) the discounted price function of the con-
tingent claims with payoff X(k) = SkT , k ≥ 2 and set F̃ (1)(t, St) := S̃t. Then we
have the representation formula:

F̃ (k)(t, St) = F̃
(k)(0, S0) +

kX
i=1

Z t

0

F (k)(s, Ss−)

Bs

µ
k

i

¶
dY (i)s , k ≥ 1 (26)

and its inverse representation

dY
(i)
t = (−1)iBt

Ã
iX

k=1

µ
i

k

¶
(−1)k 1

F (k)(t, St−)
dF̃ (k)(t, St)

!
, i ≥ 1. (27)

Proof. Clearly, by the independence of (ST /St)
k with respect to Ft, the

9



price function of the derivatives X(k), is given by

F (k)(t, St) = exp

Ã
−
Z T

t

rsds

!
EQ(SkT |Ft)

= exp

Ã
−
Z T

t

rsds

!
Skt EQ

Ãµ
ST
St

¶k!
= ϕ(k)(t, T )Skt ,

where ϕ(k)(t, T ) is a deterministic function. Applying Theorem 3 with F (t, x) =
ϕ(k)(t, T )xk, we obtain

dF (k)(t, St) = rtF
(k) (t, St−)

Ã
1− k − 1

Bt

kX
i=2

µ
k

i

¶
Y
(i)

t

!
dt (28)

+
kF (k)(t, St−)

St−
dSt +

1

Bt

kX
i=2

µ
k

i

¶
dY

(i)

t . (29)

Clearly, we have that
dSt = BtdS̃t + rtBtS̃t−dt,

where eS = {eSt := exp
³
−
R t
0
rsds

´
St, t ∈ [0, T ]} is the discounted stock price

process. Moreover

dF̃ (k)(t, St) =
1

Bt
dF (k)(t, St)−

rt
Bt
F (k)(t, St)dt

and
dY

(i)

t = BtdY
(i)
t + rtBtY

(i)
t dt.

Replacing all these differentials in (28)-(29) and using the identity Y (1)t = Zt −R t
0
rsds =

R t
0
Bs
Ss−

dS̃s, we obtain

dF̃ (k)(t, St) =
kF (k)(t, St−)

St−
dS̃t +

F (k)(t, St−)

Bt

kX
i=2

µ
k

i

¶
dY

(i)
t

=
kX
i=1

F (k)(t, St−)

Bt

µ
k

i

¶
dY

(i)
t . (30)

By a combinatorial argument, we now use (30) in order to obtain a represen-
tation formula for Y (i)t in terms of the price functions F̃ (k)(t, St), with k ≤ i.
Indeed, if Xk =

Pk
i=1

¡
k
i

¢
Yi then Yi =

Pi
k=1

¡
i
k

¢
(−1)i−kXk for any k ≥ 1.

Therefore, we obtain (27).
Note that, since we are assuming that Q is an equivalent martingale measure,eS and the processes ©Y (i), i ≥ 1ª are Q-martingales. Hence, by (30), F̃ (k)(t, St)

is also a Q-martingale, as expected.

Consider the deterministic function ϕ(k)(t, T ) = exp
³
−
R T
t
rsds

´
EQ
∙³

ST
St

´k¸
.

Lemma 6 We have that

ϕ(k)(t, T ) = exp

(Z T

t

Ã
k (k − 1)

2
c2s + (k − 1) rs +

kX
i=2

µ
k

i

¶emi (s)

!
ds

)
. (31)
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Proof. Using the decompositions (4)-(5) and the stock price process (9)
under the risk-neutral measure Q, where Z is replaced by Z̃ = {Zt −

R t
0
rsds,

0 ≤ t ≤ T}, we have that (see [8])

Skt = exp

µZ t

0

µ
kcsdfWs −

k

2
c2s + krs +

Z
R
kx
³ eQ(ds,dx)− eνs(dx)´¶ds¶Y

0<s≤t
(1 +∆ eXs)k exp(−k∆ eXs).

It is clear that

exp

µZ t

0

µZ
R
kx
³ eQ(ds,dx)− eνs(dx)´¶¶ Y

0<s≤t
(1 +∆Xs)

k exp(−k∆Xs)

= exp

µZ t

0

Z
R
kx
³ eQ(ds,dx)− eνs(dx)´ds¶

× exp
µ
−
Z
R

³
log (1 + x)

k − 1− kx
´ eνs(dx)ds¶Y

0<s≤t
(1 +∆ eXs)k exp(−k∆ eXs) expµZ t

0

Z
R

³
log (1 + x)k − 1− kx

´ eνs(dx)ds¶
and, by a simple generalization of Proposition 2.1 of [8], the process

Ut = exp

Z t

0

Z
R
kx
³ eQ(ds,dx)− eνs(dx)´ds

× exp
µ
−
Z
R

³
log (1 + x)

k − 1− kx
´ eνs(dx)ds¶Y

0<s≤t
(1 +∆ eXs)k exp(−k∆ eXs)

is a local martingale (see also Lemma 3.1 in [6]). Indeed, by Itô’s formula, we
have

Ut = 1 +

Z t

0

Z
R
Us−

³
(1 + x)k − 1

´³ eQ(ds,dx)− eνs(dx)´
and since eQ((0, t] ,Λ)− eνt(Λ) is a martingale, where Λ ⊂ R is measurable, then
Ut is a local martingale. Moreover, using the exponential moment condition (6),
simple processes and a monotone class argument, it is easy to show that

E [Ut] = 1, ∀t ∈ [0, T ] .

Then, using the independence of the jump process Xt and the Brownian motion
Wt, we have

ϕ(k)(t, T ) = exp

Ã
−
Z T

t

rsds

!
EQ

"µ
ST
St

¶k#

= exp

(Z T

t

µ
k (k − 1)

2
c2s + (k − 1) rs +

Z +∞

−∞

³
(1 + x)k − 1− kx

´ eνs (dx)¶ds)

= exp

(Z T

t

Ã
k (k − 1)

2
c2s + (k − 1) rs +

kX
i=2

µ
k

i

¶emi (s)

!
ds

)
.
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Let us now introduce the hedging formula for contingent claims in terms
of call options with the same maturity and different strikes. This formula was
obtained and proved in [4] and further exploited in [1]. Let f(x) be a real
function of class C2 in (0,∞) and let C̃t(K) := 1

BT
EQ [(ST −K)+|Ft] be the

discounted price function of a call option with maturity T and strike K. Then

EQ
£
B−1T f(ST )|Ft

¤
= B−1T f(0) + f 0(0)S̃t +

Z ∞
0

f
00
(K)C̃t(K)dK. (32)

This formula provides a static hedge of the payoff f(ST ).
The next theorem gives us the dynamic hedging formula in terms of call

options and of the discounted real risky asset for the type of contingent claims
considered in Theorem 3.

Theorem 7 Let U be a contingent claim with payoff U = g (ST , VT ) and a price
function G(t, St, Vt) such that G(t, x) ∈ C1,∞,2,∞ and

h(t, x, y) := G(t, x1(1 + y), x2, x3 + g (y))−G(t, x)− x1yD1G(t, x).

is analytic in y for all x ∈ R4 and t ∈ [0, T ]. Set

R(t,K) :=
∞X
k=2

∂k−1

∂yk−1h(t, St−,Vt−,−1)
(k − 2)!ϕ(k)(t, T )

µ
K

St−

¶k−2
. (33)

and let us assume that

Z ∞
0

∞X
k=2

¯̄̄
∂k−1

∂yk−1h(t, St−,Vt−,−1)
¯̄̄

(k − 2)!ϕ(k)(t, T )

µ
K

St−

¶k−2
Cs(K)dK <∞. (34)

Then, we have the representation

∞X
i=2

Z t

0

β(i)s dY
(i)
s =

Z t

0

Z ∞
0

Bs
S2s−

R(s,K)dC̃s(K)dK−
Z t

0

Bsh(s, Ss−,Vs−,−1)
Ss−

dS̃s

(35)
and the hedging portfolio, in terms of bonds, stocks and call options, is given by

αt = B
−1
t [G(t, St−, Vt−)− St−D1G(t, St−, Vt−)]

+B−1t

∙
h(t, St−,Vt−,−1)−

Z ∞
0

R(t,K)

S2t−
Ct−(K)dK

¸
βt = D1G(t, St−, Vt−)−

h(t, St−,Vt−,−1)
St−

β
(K)
t =

R(t,K)

S2t−
,

where β(K)t is the number of call options in the hedging portfolio, at time t, with
strike K.

12



Proof. By application of (27), the value of the hedging portfolio in the first
m discounted power-jump assets Y (i)t , 2 ≤ i ≤ m, is given by

mX
i=2

β
(i)
t dY

(i)
t = Bt

mX
i=2

β
(i)
t (−1)i

Ã
iX

k=1

µ
i

k

¶
(−1)k 1

F (k)(t, St−)
dF̃ (k)(t, St)

!
.

Hence,

mX
i=2

β
(i)
t dY

(i)
t = Bt

mX
k=1

(−1)k
F (k)(t, St−)

Ã
mX

i=k∨2

µ
i

k

¶
(−1)iβ(i)t

!
dF̃ (k)(t, St).

Moreover, since

β
(i)
t =

∂i

∂yih(t, St−,Vt−, 0)

i!
,

we have

mX
i=2

β
(i)
t dY

(i)
t

= Bt

mX
k=1

(−1)k
F (k)(t, St−)

Ã
mX

i=k∨2

µ
i

k

¶
(−1)i

∂i

∂yih(t, St−,Vt−, 0)

i!

!
dF̃ (k)(t, St).

The assumption (19) implies that the series
P∞
i=2 β

(i)
t dY

(i)
t converges for every

ω ∈ Ω , and therefore
∞X
i=2

β
(i)
t dY

(i)
t

= lim
m→∞

Bt

"
mX
k=1

1

k!F (k)(t, St−)

Ã
mX

i=k∨2
(−1)i−k

∂i

∂yih(t, St−,Vt−, 0)

(i− k)!

!
dF̃ (k)(t, St)

#
.

(36)

Let us now consider the representation formula (32) with f(x) = xk, k ≥ 2.
Then we have

dF̃ (k)(t, St) =

Z ∞
0

k(k − 1)Kk−2dC̃t(K)dK. (37)

Hence

∞X
i=2

β
(i)
t dY

(i)
t =

Z ∞
0

Bt
S2t−

R (t,K) dC̃t(K)dK −
Bt
St−

h(t, St−,Vt−,−1)dS̃t. (38)

Clearly, the series

R(t,K) =
∞X
k=2

∂k−1

∂yk−1h(t, St−,Vt−,−1)
(k − 2)!ϕ(k)(t, T )

µ
K

St−

¶k−2

13



is absolutely convergent for each t and each K since, by Lemma 6, we have that¯̄
ϕ(2)(t, T )

¯̄
≤
¯̄
ϕ(k)(t, T )

¯̄
for all t ∈ [0, T ] and using the fact that h(t, x, y) is an

analytic function in y, we obtain

∞X
k=2

¯̄̄̄
¯̄ ∂k−1

∂yk−1h(t, St−,Vt−,−1)
(k − 2)!ϕ(k)(t, T )

¯̄̄̄
¯̄ ¯̄̄̄ KSt−

¯̄̄̄k−2

≤
¯̄̄̄

1

ϕ(2)(t, T )

¯̄̄̄ ∞X
k=2

¯̄̄̄
¯̄ ∂k−1

∂yk−1h(t, St−,Vt−,−1)
(k − 2)!

¯̄̄̄
¯̄ ¯̄̄̄ KSt−

¯̄̄̄k−2
<∞,

for all t ∈ [0, T ]. Moreover, by assumption (34) we can apply Fubini’s theorem
to (38) in order to obtain
∞X
i=2

Z t

0

β(i)s dY
(i)
s =

Z t

0

Z ∞
0

Bs
S2s−

R(s,K)dC̃s(K)dK−
Z t

0

Bsh(s, Ss−,Vs−,−1)
Ss−

dS̃s.

The hedging portfolio is now a simple consequence of this representation and
(20)-(22).
Note that replacing (37) in (27), we obtain

dY
(i)
t = (−1)iBt

Ã
iX

k=1

µ
i

k

¶
(−1)k 1

F (k)(t, St−)

Z ∞
0

k(k − 1)Kk−2dC̃t(K)dK

!
,

which gives us the replication formula for the power-jump artificial assets in
terms of call options with the same maturity T and with a continuum of strikes.
The hedging formula (35) gives us the dynamic hedging portfolio in terms of call
options and of the discounted stock, which is equivalent to the hedging portfolio
in terms of the power-jump assets.

Remark 8 If the payoff depends only on the stock at maturity then G = G(t, St),
the representation formula in terms of call options of Theorem 7 is given by

∞X
i=2

Z t

0

β(i)s dY
(i)
s (39)

=

Z t

0

Z ∞
0

Bs
Ss−

Ã ∞X
k=2

Dk−1
1 G(s, 0)

ϕ(k)(s, T ) (k − 2)!K
k−2

!
dC̃s(K)dK (40)

−
Z t

0

∙
Bs
Ss−

¡
G (s, 0)−G (s, Ss−) + Ss−D1

1G(s, Ss−)
¢
dS̃s

¸
. (41)

Moreover, the hedging portfolio is given by

αt = B
−1
t [G(t, St−, Vt−)− St−G(t, St−, Vt−) + h(t, St−,Vt−,−1)]

−B−1t
∞X
k=2

Z ∞
0

Ã
Dk−1
1 G(t, 0)

St−ϕ(k)(t, T ) (k − 2)!
Kk−2

!
Ct−(K)dK,

βt = D1G(t, St−, Vt−)−
G (t, 0)−G (t, St−) + St−D1

1G(t, St−)

St−
,

β
(K)
t =

1

St−

Ã ∞X
k=2

Dk−1
1 G(t, 0)

ϕ(k)(t, T ) (k − 2)!K
k−2

!
.
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Remark 9 We now discuss the relationship between the geometric Lévy model
(or stochastic exponential model) and the usual exponential Lévy model. Let us
assume that our stock price process S = {St, t ∈ [0, T ]} is given by the usual
exponential:

St = S0e
eZt , S0 > 0, (42)

where eZ = { eZt, t ∈ [0, T ]} is a Lévy process. The process S can also be modelled
as a stochastic exponential of a Lévy process, which is defined as the solution of
the linear SDE (1)(see [20]) and denoted by St = S0E (Zt), where Z = {Zt, t ∈
[0, T ]} is a Lévy process related to eZ. This relationship was rigorously described
in [14] (Lemma A.8., pages 46-47), where the reader can find the proofs of the
following properties.

1. If eZ is a Lévy process with characteristic triplet given by
¡ec2, eν, eγ¢ then

the usual exponential e eZt is of the form E (Zt) (stochastic exponential) for
some Lévy process Z with characteristic triplet given by

¡
c2, ν, γ

¢
, where

γ = eγ + ec2
2
+

Z ¡
1{|ex−1|≤1} (e

x − 1)− x1{|x|≤1}
¢ eν (dx) ,

c2 = ec2,
ν (G) =

Z
R
1G (e

x − 1) eν (dx) , G ∈ B (R) .

Note that the Lévy measure ν has support in (−1,+∞) .

2. If Z is a Lévy process with characteristic triplet given by
¡
c2, ν, γ

¢
then

the stochastic exponential E (Zt) is of the form e
eZt for some Lévy processeZ with characteristic triplet given by ¡ec2, eν, eγ¢, where

eγ = γ − ec2
2
+

Z ¡
1{|log(1+x)|≤1} (log (1 + x))− x1{|x|≤1}

¢
ν (dx) ,

ec2 = c2,
eν (G) = Z

R
1G (log (1 + x)) ν (dx) , G ∈ B (R) .

It is clear from (9) and (42) that

eSt = eSt− exp³∆ eXt´ ,
St = St− (1 +∆Xt)

where eX is the jump part of eZ and X is the jump part of Z.

Let us now consider the hedging portfolio of a contingent claim X when the
stock dynamics is defined by (42). In this case,the pricing function F (t, x) is a
solution of the PIDE

D0F (t, x) + l(x1)D2F (t, x) + rtx1D1F (t, x) +
1

2
c2tx

2
1D

2
1F (t, x)

−D3F (t, x)
Z
R
g(y)ν̃ (dy) +DF (t, x) = rtF (t, x),

F (T, x) = f(x),
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where

DF (t, x) :=
Z +∞

−∞
h (t, x, y) eνt (dy)

and

h(t, x, y) := F (t, x1e
y, x2, x3 + g(y))− F (t, x)− x1 (ey − 1)D1F (t, x1, x2, x3).

In the particular case where the contingent claim has a payoff which depends
only on the stock at maturity, we have that h(t, x, y) = F (t, xey) − F (t, x) −
x (ey − 1)D1F (t, x) and

h(t, x, 0) = 0,

∂

∂y
h(t, x, 0) = 0,

∂n

∂yn
h(t, x, 0) =

X
k1,k2,...,kn,2≤k≤n

n!

k1!k2! · · · kn! (2!)k2 (3!)k3 · · · (n!)kn
D
(k)
1 F (t, x)xk,

n = 2, 3, . . .

where the sum is over all the partitions of n, that is, over all the n-tuples
(k1, k2, . . . , kn) such that

1k1 + 2k2 + 3k3 + · · ·+ nkn = n

and we use the notation

k := k1 + k2 + · · ·+ kn

The hedging portfolio in the power-jump assets is then given by

β
(i)
t =

P
k1,k2,...,kn,2≤k≤i

n!
k1!k2!···kn!(2!)k2 (3!)k3 ···(n!)kn

D
(k)
1 F (t, St−)S

k
t−

i!
, i = 2, 3, . . . .

(43)

Remark 10 If the payoff function X = g (ST ) depends only on the stock at
maturity and g(u) is analytic in u then we can recover the static hedging (32)
from the dynamic hedging (40)-(41). In order to show this, let us begin by using
the independence of STSt with respect to Ft to explore the relationship between the
derivatives of the price function and the conditional expectation of the derivatives
of g (u). Indeed, we have that

G(t, St) =
Bt
BT
EQ [g(ST )|Ft]

=
Bt
BT

EQ
∙
g

µ
ST
St
x

¶¸¯̄̄̄
x=St

.

Hence

Di
1G(t, x) =

Bt
BT

EQ

"
g(i)

µ
ST
St
x

¶µ
ST
St

¶i#¯̄̄̄¯
x=St

=
Bt
BT

x−iEQ
h
g(i) (ST )S

i
T |Ft

i
(44)
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Now, recall the dynamic hedging formula (36) and the identity

∂i

∂yi
h(t, x, 0) = xiDi

1G(t, x).

Using (44), we have that

∞X
i=k

µ
i

k

¶
(−1)i−k

Sit−D
i
1G(t, St−)

i!

=
Bt
BT

∞X
i=k

µ
i

k

¶
(−1)i−k

EQ
£
g(i) (ST )S

i
T |Ft

¤
i!

=
Bt
BT

EQ

" ∞X
i=k

µ
i

k

¶
(−1)i−k g

(i) (ST )S
i−k
T SkT

i!
|Ft

#

=
g(k) (0)

k!
F (k)(t, St−), (45)

Therefore, replacing (37) and (45) in (36), for k ≥ 2, we obtain

Bt

∞X
k=2

Z ∞
0

(−1)k
F (k)(t, St−)

Ã ∞X
i=k

µ
i

k

¶
(−1)i

Sit−D
i
1G(t, St−)

i!

!
k(k − 1)Kk−2dC̃t(K)dK

= Bt

∞X
k=2

Z ∞
0

µ
1

F (k)(t, St−)

¶
g(k) (0)

k!
F (k)(t, St−)k(k − 1)Kk−2dC̃t(K)dK

= Bt

Z ∞
0

g00 (K) dC̃t(K)dK (46)

and this is precisely the undiscounted integral term of the static hedging formula
(32). Consider now the term k = 1 of the sum in the hedging formula (36).
This term is given by

−Bt

"
1

St

Ã ∞X
i=2

i(−1)i
Sit−D

i
1G(t, St−)

i!

!
dS̃t

#

= Bt

"Ã ∞X
i=0

(−1)i
Sit−D

i+1
1 G(t, St−)

i!
−D1G (t, St−)

!
dS̃t

#

= Btg
0 (0)

µ
Bt
BT

¶
1

St−
EQ [ST |Ft] dS̃t −BtD1G (t, St−) dS̃t

= Btg
0 (0) dS̃t −BtD1G (t, St−) dS̃t (47)

On the other hand, we have from (24) that the number of stocks of the hedging
portfolio (or the delta hedging term) is

β
(1)
t = D1G (t, St−) .

Considering the undiscounted version of this quantity and adding it to (47), we
have

−Bt

"
1

St

Ã ∞X
i=2

i(−1)i
Sit−D

i
1G(t, St−)

i!

!
dS̃t

#
= Btg

0 (0) dS̃t. (48)
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Note that the undiscounted delta hedging and the term BtD1G (t, St−) dS̃t cancel
out. Finally, adding (46) and (48) we get the undiscounted static hedging for-
mula (32) for the stocks and call options. Note that the static hedging in bonds
term, which is given by B−1T g(0), can be deduced from the dynamic hedging
formula (23).

Until now, we have considered contingent claims with a price function G(t, x)
satisfying the analytic assumptions in Theorem 7. These regularity assumptions
are rather strong and we would like to obtain hedging formulas for more general
contingent claims. In order to get such formulas, we will consider the discounted
orthonormalized power-jump processes

©
H(i), i ≥ 2

ª
. Recall the orthonormal-

ization coefficients from the orthonormalization procedure which leads to (13)
and consider the orthonormal real polynomials p(i)t (x), i ≥ 1, with these time
dependent coefficients:

p
(i)
t := ci,i (t)x

i + ci,i−1 (t)x
i−1 + · · ·+ ci,1 (t)x, i ≥ 1

Let us begin by stating an important Lemma, which is a simple generaliza-
tion of Lemma 5 in [19].

Lemma 11 Let f : [0, T ]×R4→ R be a measurable function such that

E
∙Z t

0

Z
R
|f (s, x, y)|2 ν̃s(dy)ds

¸
<∞.

Then we haveX
0<s≤t

f(s, Ss−, Vs−,∆Xs) =
∞X
i=1

Z t

0

D
f (s, x, ·) , p(i)s (·)

E
L2(ν̃s)

dH(i)
s

+

Z t

0

Z
R
f (s, x, y) ν̃s(dy)ds.

We now state and prove a theorem that will enable us to hedge a general
contingent claim (in the L2-sense) in terms of call options, bonds and the risky
asset.

Theorem 12 Let U be a contingent claim with payoff U = g (ST , VT ) and a
price function G(t, St, Vt) such that G(t, x) is of class C1,2,2,2 in [0, T ] × R3.
Consider the function

h(t, x, y) := G(t, x1(1 + y), x2, x3 + g (y))−G(t, x)− x1yD1G(t, x). (49)

and assume that

E
∙Z t

0

Z
R
|h (s, x, y)|2 ν̃s(dy)ds

¸
<∞.

Set

N (m)(s,K) :=
mX
i=2

iX
k=2

(−1)i−kβ(i,m)s

¡
i
k

¢
k(k − 1)

ϕ(k)(s, T )

µ
K

Ss−

¶k−2
,
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where β
(i)
s :=

R
R h(s, Ss−, Vs−, y)p

(i)
s (y)ν̃s(dy) and β

(i,m)
s :=

Pm
i=j ci,j (s)β

(i)
s .

Then we have the representation formula (the series converge in the L2 sense)

∞X
i=1

Z t

0

β(i)s dH
(i)
s

= lim
m→∞

"Z ∞
0

Z t

0

BsN
(m)(s,K)

S2s−
dC̃s(K)dK −

mX
i=1

Z t

0

i(−1)iβ(i,m)s Bs
Ss−

deSs# .
(50)

Moreover, the hedging portfolio in terms of bonds, stocks and call options is
given by

αt =
1

Bt
[G(t, St−,Vt−)− St−D1G(t, St−,Vt−)]

+
1

Bt
lim
m→∞

"
mX
i=1

i(−1)iβ(i,m)t

St−
−
Z ∞
0

N (m)(t,K)

S2t−
Ct−(K)dK

#
,

βt = D1G(t, St−, Vt−)− lim
m→∞

mX
i=1

Z t

0

i(−1)iβ(i,m)t

St−
,

β
(K)
t = lim

m→∞

N (m)(t,K)

S2t−

Proof. Applying Itô’s formula to G(t, St, Vt) we obtain

G(t, St, Vt) = G(0, S0, V0) +

Z t

0

D1G(s, Ss−, Vs−)dSs

+

Z t

0

µ
D0G(s, Ss−, Vs−) +

1

2
c2sS

2
s−D

2
1G(s, Ss−, Vs−) + l (Ss−)D2G(s, Ss−, Vs−)

¶
ds

+
X
0<s≤t

[G(s, Ss, Vs−)−G(s, Ss−, Vs−)−D1G(s, Ss−, Vs−)∆Ss]

Clearly, ∆Ss = Ss−∆Xs and thereforeX
0<s≤t

[G(s, Ss, Vs−)−G(s, Ss−, Vs−)− Ss−∆XsD2G(s, Ss−, Vs−)]

= h(s, Ss−, , Vs−,∆Xs).

If we now use the PIDE (16)-(17), then we have that

G(t, St, Vt) = G(0, S0, V0) +

Z t

0

D1G(s, Ss−, Vs−)dSs

+

Z t

0

(G(s, Ss−,Vs−)− Ss−D1G(s, Ss−,Vs−))
Bs

dBs

+
X
0<s≤t

h(s, Ss−, Vs−,∆Xs)−
Z t

0

Z
R
h (s, Ss−, Vs−, y) ν̃s(dy)ds, (51)

and this gives us the representation of the hedging portfolio in terms of bonds
and stocks.
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Moreover, note that

Mt :=
X
0<s≤t

h(s, Ss−, Vs−,∆Xs)−
Z t

0

Z
R
h (s, Ss−, Vs−, y) ν̃s(dy)ds

=
X
0<s≤t

h(s, Ss−, Vs−,∆Xs)− E(
X
0<s≤t

h(s, Ss−, Vs−,∆Xs))

is a square-integrable Q-martingale and, by Lemma 11, we have that

Mt =
∞X
i=1

Z t

0

β(i)s dH
(i)
s

where

β(i)s =

Z
R
f(s, Ss−, Vs−, y)p

(i)
s (y)ν̃s(dy).

and

E

"Z t

0

∞X
i=1

¯̄̄
β(i)s

¯̄̄2
ds

#
<∞.

By (13), we have

β(i)s dH
(i)
s = β(i)s

iX
j=1

ci,j (s) dY
(j)
s

In general, we can write
∞X
i=1

Z t

0

β(i)s dH
(i)
s = lim

m

mX
i=1

Z t

0

β(i)s dH
(i)
t

= lim
m

mX
j=1

Z t

0

⎛⎝ mX
i=j

ci,j (s)β
(i)
s

⎞⎠dY (j)s = lim
m

mX
j=1

Z t

0

β(j,m)s dY (j)s ,

where β(j,m)s :=
Pm
i=j ci,j (s)β

(i)
s . Recalling (27), we obtain

∞X
i=1

Z t

0

β(i)s dH
(i)
s = lim

m

mX
i=1

Z t

0

β(i,m)s dY (i)s

= lim
m

mX
i=1

Z t

0

Bsβ
(i,m)
s (−1)i

iX
k=1

µ
i

k

¶
(−1)k 1

F (k)(s, Ss−)
dF̃ (k)(s, Ss)

= lim
m

mX
k=1

(−1)k
Z t

0

Bs
F (k)(s, Ss−)

mX
i=k

β(i,m)s (−1)i
µ
i

k

¶
dF̃ (k)(s, Ss)

The representation (37) yields
∞X
i=1

Z t

0

β(i)s dH
(i)
s

= lim
m

"
mX
i=2

(−1)i
Z ∞
0

Z t

0

Bsβ
(i,m)
s

iX
k=2

(−1)k
µ
i

k

¶
k(k − 1) Kk−2

ϕ(k)(s, T )Sks−
dC̃s(K)dK

−
mX
i=1

Z t

0

i(−1)iβ(i,m)s Bs
Ss−

deSs# .
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Combining this representation with (51), we obtain the hedging portfolio.
We now present two concrete hedging examples for a call option and an asian

option.

Remark 13 Consider a call option struck at K∗ in an additive market with
bond price process is Bt. Its price function is given by

G(t, St) =
Bt
BT

EQ
£
(ST −K∗)+ |Ft

¤
=
Bt
BT

StEQ

"µ
ST
St
− K∗
x

¶
+

#
x=St

=
Bt
BT

Stψ (t, x) |x=St ,

where ψ(t, x) := EQ
∙³

ST
St
− K∗

x

´
+

¸
. The price function G(t, x) = Bt

BT
xψ (t, x)

must satisfy the PIDE (16)-(17) and therefore

∂

∂t
ψ (t, x)− rx ∂

∂x
ψ(t, x) +

c2t
2
x2

∂2

∂x2
ψ(t, x) + rψ(t, x)

+

Z ∞
−1

µ
(1 + y)

µ
ψ

µ
t,

x

1 + y

¶
− ψ (t, x)

¶
+ yx

∂

∂x
ψ (t, x)

¶
ν̃t(dy) = 0,

ψ(T, x) = (x−K∗)+ .

Assume that G(t, x) = e−r(T−t)xψ (t, x) is analytic in x for all x > 0 and
t ∈ [0, T ]. By Theorem 7, the portfolio in the power-jump assets Y (i), i ≥ 2 can
be represented by

∞X
i=2

Z t

0

β(i)s dY
(i)
s =

Z ∞
0

Z t

0

Bs
S2s−

R(s,K)dC̃s(K)dK−
Z t

0

Bsh(s, Ss−,Vs−,−1)
Ss−

dS̃s

We can approximate the call option payoff g(u) = (u−K∗)+ by a regularizing
sequence of analytic functions gn (u) in such a way that g0n (u) converges to the
Heaviside function H (u−K∗) and g00n (u) converges to the Dirac delta function
δ (u−K∗), in the sense of distributions, when n → ∞. Therefore, by Remark
10, it is clear that

∞X
i=2

Z t

0

β(i)s dY
(i)
s =

= Bt

Z ∞
0

g00n (K) dC̃t(K)dK −→n→∞ Bt
Z ∞
0

δ (K −K∗) dC̃t(K)dK

= BtdC̃t(K∗).

Moreover, g(0) = g0(0) = 0 and the hedging portfolio is simply given by the call
option with maturity T and strike K∗, as expected.

Example 14 Consider an Asian option struck at K, that is an option with
payoff

X =

Ã
1

T

Z T

0

Sudu−K
!
+

.
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in an additive market. Then, the price process is

G(t, St, Vt) =
Bt
BT

EQ [X|Ft] ,

where Vt := 1
T

R t
0
Sudu and X = (VT −K)+. In fact, we have

EQ [X|Ft] = EQ

"Ã
1

T

Z T

0

Sudu−K
!
+

¯̄̄̄
¯Ft

#

= StEQ

"Ã
1

T

Z T

t

Su
St
du+ x

!
+

#
x=

Vt−K
St

= Stφ

µ
t,
Ut
St

¶
,

where Ut := Vt −K and φ (t, x) := EQ
∙³

1
T

R T
t

Su
St
du+ x

´
+

¸
is a deterministic

function. Hence,

G(t, St, Vt) =
Bt
BT
Stφ

µ
t,
Ut
St

¶
.

In order to obtain this price function we can solve the PIDE (16)-(17), i. e.,

D0G(t, x1, x2) +
1

T
x1D2G(t, x1, x2) + rtx1D1G(t, x1, x2) +

1

2
c2tx

2
1D

2
1G(t, x1, x2)

+DG(t, x1, x2) = rtG(t, x1, x2),
G(T, x1, x2) = (x2 −K)+ .

In terms of the function φ (t, x), the PIDE can be written as

∂

∂t
φ (t, x) +

µ
1

T
− rtx

¶
∂

∂x
φ (t, x) +

c2tx
2

2

∂2

∂x2
φ (t, x) + rtφ (t, x)

+

Z ∞
−∞

µ
(1 + y)

µ
φ

µ
t,

x

1 + y

¶
− φ (t, x)

¶
+ yx

∂

∂x
φ (t, x)

¶
ν̃t(dy) = 0,

φ (T, x) = x+.

Let G(t, x1, x2) =
³
Bt
BT

´
x1φ

³
t, x2−Kx1

´
be the price function of the asian

option. Then, by Theorem3, the hedging portfolio in terms of the power-jump
assets is given by

αt = B
−1
T

µ
St−φ

µ
t,
Ut−
St−

¶
− St−φ

µ
t,
Ut−
St−

¶
+ Ut−

∂

∂x
φ

µ
t,
Ut−
St−

¶¶
β
(1)
t =

Bt
BT

∙
φ

µ
t,
Ut−
St−

¶
−
µ
Ut−
St−

¶
∂

∂x
φ

µ
t,
Ut−
St−

¶¸

β
(i)
t =

Bt
BT

⎡⎢⎣Sit− ∂i

∂xi1

³
x1φ

³
t, Utx1

´´¯̄̄
x1=St−

i!

⎤⎥⎦ , i = 2, 3, . . . .
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On the other hand, using Theorem 7, the portfolio in the power-jump assets
Y (i), i ≥ 2, is equivalent to the following portfolio in terms of discounted call
options and discounted stocks:

∞X
i=2

Z t

0

β(i)s dY
(i)
s =

Z ∞
0

Z t

0

Bs
S2s−

R(s,K)dC̃s(K)dK−
Z t

0

B2sUs−
∂
∂xφ

³
t, Ut−St−

´
BT

dS̃s,

where R(t,K) is given by (33) and

h(t, St−,Vt−, y) =

µ
Bt
BT

¶
St− (1 + y)

µ
φ

µ
t,

Ut−
St− (1 + y)

¶
− φ

µ
t,
Ut−
St−

¶¶
+

µ
Bt
BT

¶
yUt−

∂

∂x
φ

µ
t,
Ut−
St−

¶
.

6 Optimal portfolios
Let us now consider the problem of portfolio optimization in a Lévy market
driven by the Lévy process Z = {Zt, t ∈ [0, T ]} with Lévy triplet

¡
γ, c2, ν

¢
. In

order to simplify the notation, we shall consider that the riskless asset has the
simple dynamics

Bt = e
rt,

where r is a constant.
Let Q be an equivalent martingale measure which is structure preserving.

We would like to have a characterization of structure preserving, P-equivalent
martingale measures Q, under which Z remains a natural additive process and
the discounted price process S̃ = {S̃t = St

Bt
, 0 ≤ t ≤ T} is an {Ft}-martingale.

We have the following result (see Theorems 33.1 and 3.32 in [21])

Theorem 15 Let Z = {Zt, 0 ≤ t ≤ T} be a Lévy process with Lévy triplet¡
γ, c2, ν

¢
under some probability measure Q. Then, the following conditions are

equivalent:
(a) There is a probability measure Q equivalent to P, such that Z is a Q-Lévy

process with triplet
¡eγ,ec2, eν¢.

(b) We have for all t ∈ [0, T ]:
(i) ν̃(dx) = H(x)ν(dx) for some Borel function H : R→ R+

(ii) eγ = γ +
R +∞
−∞ x1{|x|<1}(H(x)− 1)ν(dx) +Gc2 for some real number G.

(iii) ec = c.
(iv)

R +∞
−∞

³
1−

p
H (x)

´2
ν(dx) <∞.

If the previous equivalent assumptions hold, then the density process ξ :=n
ξt =

dQt
dPt

o
t∈[0,T ]

is given by

ξt = exp

µ
cGWt −

1

2
c2G2t+

Z +∞

−∞
logH(x) (Q((0, t] ,dx)− tν(dx))

− t
Z +∞

−∞
(H(x)− 1− logH(x))ν(dx)

¶
(52)

with EP[ξt] = 1.

23



The previous theorem implies that the process fW = {fWt, 0 ≤ t ≤ T} defined
by fWt =Wt − cGt (53)

is a Brownian motion under Q and the process X is a Lévy process with Doob-
Meyer decomposition (with respect to Q)

Xt = eLt + tµa+ Z +∞

−∞
x(H(x)− 1)ν(dx)

¶
, (54)

where eL = {eLt}t∈[0,T ] is a Q-martingale.
The discounted price process S̃ can be written as

S̃t = S0 exp

µ
cW̃t + L̃t + t

µ
a− r + c2G− c

2

2

¶¶
× exp

µ
t

Z +∞

−∞
x(H(x)− 1)ν(dx)

¶ Y
0<s≤t

(1 +∆L̃s) exp(−∆L̃s).

The process

exp

µ
cW̃t + L̃t −

c2t

2

¶ Y
0<s≤t

(1 +∆L̃s) exp(−∆L̃s)

is a martingale (see Proposition 2.1 in [8]). Then, a necessary and sufficient
condition for S̃ to be a Q-martingale is the existence of G and H(x), for which
the process ξ is a positive martingale and such that

c2G+ a− r +
Z +∞

−∞
x(H(x)− 1)ν(dx) = 0. (55)

Hence, by (53), (54) and (55), we have

Zt = cW̃t + L̃t + rt

and therefore Zt − rt is a Q-martingale. Moreover, the dynamics of eS under Q
is given by

eSt = S0 expµcW̃t + L̃t −
c2t

2

¶ Y
0<s≤t

(1 +∆L̃s) exp(−∆L̃s) (56)

or

deSt = ct eSt−dW̃t + eSt−dL̃t
= ct eSt−dW̃t + eSt− Z +∞

−∞
xM(dt,dx)− eSt− Z +∞

−∞
x(H(x)− 1)ν(dx)dt.

We now describe the portfolio optimization problem. Given an initial wealth
w0 and an utility function U we want to find the optimal terminal wealth WT ,
that is, the value of WT that maximizes EP(U(WT )). Let Q be an equivalent
martingale measure which is structure preserving and let us assume that the
random variable WT ∈ L1 (Ω,FT ,Q) can be strongly replicated in our enlarged
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market MQ (see section 4 in [8]). Then the initial wealth is given by w0 =

EQ
³
WT

BT

´
. Therefore, we will consider the optimization problem

argmax
WT∈L1(Q)

½
EP(U(WT )) : EQ

µ
WT

BT

¶
= w0

¾
.

The Lagrangian for this optimization problem is given by

EP(U(WT ))− λEQ
µ
WT

BT
− w0

¶
= EP

µ
U(WT )− λT

µ
dQT
dPT

WT

BT
− w0

¶¶
.

Then, the optimal terminal wealth is

WT = (U
0)
−1
µ
λT
BT

dQT
dPT

¶
,

where λT is the solution of the equation

EQ
∙
1

BT
(U 0)

−1
µ
λT
BT

dQT
dPT

¶¸
= w0. (57)

In [8] (pages 296-297) it is shown that

WT = (U
0)
−1 ¡

m (T )SGT e
VT
¢
,

where

m (t) :=
λt
Bt
S−G0 exp

µ
−1
2
G2c2t−G

µ
a+ b− c

2

2

¶
t

+t

Z +∞

−∞
((logH(x)−G log (1 + x))H(x)−H(x) + 1 +Gx) ν(dx)

¶
and

Vt =

Z +∞

−∞
g(x)M̃((0, t],dx),

with
g(x) := logH(x)−G log (1 + x) .

The real number G and the positive Borel function H must satisfy the equation
(55).
In order to replicate the optimal wealth WT , we need to know its price

process

EQ

∙
Bt
BT
WT |Ft

¸
= EQ

∙
Bt
BT

(U 0)
−1
µ
λT
BT

dQT
dPT

¶
|Ft
¸

and this depends on the utility function considered. Suppose that the utility
function satisfies

(U 0)−1(xy) = a1(x)(U
0)−1(y) + a2(x), for any x, y ∈ R,

for certain C∞ functions a1(x), a2(x). Then (see [8], page 298)

EQ

∙
Bt
BT

WT |Ft
¸
= φ(t, T )Wt + χ(t, T ),
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for certain deterministic functions φ(t, T ) and χ(t, T ). On the other hand

(U 0)−1(xy) = a1(x)(U
0)−1(y) + a2(x), for any x, y ∈ R,

for certain C∞ functions a1(x), a2(x) if and only if
U 0(x)
U 00(x) = ax + b, for any

x ∈ dom(U) and for some constants a, b ∈ R (see Lemma 4.1. in [8]). These
kind of utility functions include the logarithm and the HARA utilities as partic-
ular cases. So, if U

0(x)
U 00(x) = ax+b then EQ

h
Bt

BT
WT |Ft

i
= φ(t, T )Wt+χ(t, T ) and

we are able to characterize the equivalent martingale measures Q such that the
wealth dynamics associated to the ”jump” part of the original Lévy process van-
ishes in such a way that the optimization problem is solved using only portfolios
of bonds and stocks (see [8] for a rigorous presentation of this topic).

Example 16 Consider the logarithm utility function Ul(x) := log x. Then, by
solving (57), we have

WT = w0BT
dPT
dQT

=
¡
m(T )SGT e

VT
¢−1

.

Moreover, the price function of WT at time t is given by

F (t, St, Vt) = EQ
∙
Bt
BT
WT |Ft

¸
= w0BtEQ

∙
dPT
dQT

|Ft
¸
= w0Bt

dPt
dQt

=
¡
m(t)SGt e

Vt
¢−1

:=Wt

It follows from Theorem 3 that the fraction of optimal wealth invested in stocks,
at time t, is constant and is given by

βtSt−
Wt−

= −G

and the number of power-jump assets in the optimal portfolio, at time t, is

β
(i)
t =

Wt−
i!

∂i

∂yi

µ
1

H (y)

¶¯̄̄̄
y=0

, i = 2, 3, ...

If we require the optimal portfolio to involve only bonds and stocks, we should
consider an equivalent martingale measure Q such that

H(y) =
1

1−Gy .

and where G satisfies the equation

c2G+ a+ b− r +G
Z +∞

−∞

x2

1−Gxν(dx) = 0.

On the other and, if we consider an equivalent martingale measure Q such that
∂i

∂yi

³
1

H(y)

´¯̄̄
y=0

6= 0 for infinitely many values of i then, in order to obtain
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the optimal portfolio, we can apply our hedging formulas given in Theorem 7.
Hence, the optimal portfolio is given by

αt = B
−1
t

∙
Wt− +

G

St−
Wt− +Wt−

µ
1

H(−1) − 1−G
¶¸

−B−1t
Z ∞
0

R(t,K)

S2t−
Ct−(K)dK

βt = −
G

St−
Wt− −

Wt−
St−

µ
1

H(−1) − 1−G
¶

β
(K)
t =

R(t,K)

S2t−
,

where βKt gives the number of call options with strike K at instant t and

R(t,K) :=
∞X
k=2

Wt−
∂k−1

∂yk−1

³
1

H(y)

´¯̄̄
y=−1

(k − 2)!ϕ(k)(t, T )

µ
K

St−

¶k−2
.

Example 17 If we now consider the HARA utilities U(x) = x1−p

1−p with p ∈
R+ \ {0, 1} and apply Theorem 3, we obtain the optimal dynamic portfolio

βt = −
GWt−
pSt−

β
(i)
t =

Wt−
i!

∂i

∂yi

³
H (y)−

1
p

´¯̄̄̄
y=0

, i = 2, 3, ...

and we will have an optimal portfolio based in bonds and stocks (with no power-
jump assets) if and only if

H(y) =
1³

1− G
p y
´p ,

where G satisfies

c2G+ a+ b− r +
Z ∞
−∞

x

⎛⎝ 1³
1− G

p x
´p − 1

⎞⎠ ν(dx) = 0.

If Q is an equivalent martingale measure Q such that ∂i

∂yi

³
H (y)−

1
p

´¯̄̄
y=0

6= 0

for infinitely many values of i then, by the hedging formulas in Theorem 7, we
obtain the optimal portfolio

αt = B
−1
t

∙
Wt− +

G

pSt−
W

1
p

t− +Wt−

µ
(H(−1))−

1
p − 1− G

p

¶¸
−B−1t

Z ∞
0

R(t,K)

S2t−
Ct−(K)dK

βt = −
G

pSt−
W

1
p

t− −
W

1
p

t−
St−

µ
(H(−1))−

1
p − 1− G

p

¶
β
(K)
t =

R(t,K)

S2t−
,
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where

R(t,K) :=
∞X
k=2

Wt−
∂k−1

∂yk−1 (H(y))
−1/p

¯̄̄
y=−1

(k − 2)!ϕ(k)(t, T )

µ
K

St−

¶k−2
.

Similar results on the optimization problem can be obtained if we consider an
additive market model, where the stock price satisfies the stochastic differential
equation (1). This problem is studied in detail in [7].

References
[1] Balland, P. (2002) Deterministic implied volatility models. Quantitative Fi-

nance 2, 31-44.

[2] Bjork, T., Masi, D. G., Kabanov, Y., Runggaldier, W. (1997) Towards a
general theory of bond markets. Finance and Stochastics 1, 141-174.

[3] Carr, P., Geman, H., Madan, D.H. and Yor, M. (2002) Pricing Options on
Realized Variance. Prépublications du Laboratoire de Probabilités et Mod-
èles Aléatoires 768, Universités de Paris 6 & Paris 7, Paris.

[4] Carr, P., and Madan, D. (1998), Towards a Theory of Volatility Trading. In:
Volatility, Risk Publications, R. Jarrow, ed., 417–427. Reprinted in: Option
Pricing, Interest Rates, and Risk Management, Musiella, Jouini, Cvitanic,
ed., Cambridge University Press, 2001 , 458–476.

[5] Carr, P., Geman, H., Madam, D., Yor, M. (2007) Self-Descomposability and
Option Pricing. Mathematical Finance, 17(1), 31-57.

[6] Chan, T. (1999) Pricing contingent claims on stocks driven by Lévy
processes. Annals of Applied Probability 9, 504—528.

[7] Corcuera, J.M., Guerra, J. Nualart, D., Schoutens, W. (2006) Optimal in-
vestment in a Lévy Market. Applied Mathematics and Optimization 53, 270-
309.

[8] Corcuera, J.M., and Guerra, J. (2007) Optimal investment in an additive
market. Preprint.

[9] Corcuera, J.M., Nualart, D., Schoutens, W. (2005) Completion of a Lévy
Market by Power-Jump-Assets. Finance and Stochastics 9(1), 109-127.

[10] Eberlein, E., and Jacod, J. (1997) On the range of option prices. Finance
and Stochastics, 1, 131-140.

[11] Eberlein, E., Jacod, J. Raible, S. (2005) Lévy term structure models: No-
arbitrage and completeness, Finance and Stochastics, 9, 67-88.

[12] Föllmer, H. and Leukert, P. (1999) Quantile hedging. Finance and Stochas-
tics 3, 251-273.

[13] Föllmer, H. and Schweizer, (1991) Hedging of contingent claims under in-
complete information. In: Applied Stochastic Analysis, M.H.A. Davis and
R.J. Elliot, eds. Gordon and Breach, London New York, pp. 389-414.

28



[14] Goll, T. and Kallsen, J. (2000) Optimal Portfolios for logarithmic utility.
Stochastic Processes and Their Applications 89, 31-48.

[15] Jacod, J. and Protter, P. (2006) Risk Neutral Compatibility with Option
Prices. Preprint.

[16] Jacod, J. and Shiryaev, A. N. (1987) Limit Theorems for Stochastic
Processes. Springer-Verlag, Berlin.

[17] Jarrow, R. and Madan, D. (1999) Hedging contingent claims on semimartin-
gales. Finance and Stochastics 3, 111-134.

[18] Nualart, D. and Schoutens W. (2000) Chaotic and predictable representa-
tions for Lévy processes. Stochastic Processes and their Applications 90 (1),
109—122.

[19] Nualart, D. and Schoutens W. (2001) Backward stochastic differential equa-
tions and Feynman-Kac formula for Lévy processes, with applications is
finance. Bernoulli 7 (5), 761—776.

[20] Protter, Ph. (1990) Stochastic Integration and Differential Equations.
Springer-Verlag, New York.

[21] Sato, K. (2000) Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge Studies in Advanced Mathematics 68. Cambridge University Press,
Cambridge.

[22] Sato, K. (2004) Stochastic integrals in additive processes and application
to semi-Lévy processes. Osaka Journal of Mathematics 41, 211-236.

29


