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Abstract

In this paper, it is demonstrated by simulation that, contrary to a

widely held belief, pure seasonal mean shifts — i.e., seasonal structural

breaks which affect only the seasonal cycle — really do matter for Dickey-

Fuller long-run unit root tests. Both size and power properties are af-

fected by such breaks but using the t-sig method for lag selection induces

a stabilizing effect. Although most results are reassuring when the t-

sig method is used, some concern with this type of breaks cannot be

disregarded.

Further evidence on the poor performance of the t-sig method for

quarterly time series in standard (no break) cases is also presented.
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1 Introduction

In an attempt to improve the quality of inferences produced by Dickey-Fuller

(1979) (DF) tests, these are very often applied to infra-annual, seasonally un-

adjusted or raw data. Power properties are particularly envisaged with such

larger sample sizes. On the other hand, a recent strand of research has been

investigating the effects of breaks in the seasonal pattern of economic time series

on tests for seasonal unit roots; see, e.g., Smith and Otero (1997), Franses and

Vogelsang (1998), Balcombe (1999), Lopes (2001), Montañés and Sansó (2001),

Harvey et al. (2002), Hassler and Rodrigues (2004), and Lopes and Montañés

(2005).

However, it has been assumed more or less explicitly that pure seasonal mean

shifts (PSMSs) – i.e., structural breaks in the deterministic seasonal cycle that

leave the level and the slope of the trend function unchanged – should not

affect the properties of tests designed for analysing the long-run properties of

the series. This assumption is rooted in the traditional trend-cycle-seasonal

decomposition approach, which has evolved towards “conventional wisdom”,

common belief or intuition. According to this intuition, such breaks change the

behaviour of the series at seasonal frequencies only, and hence only seasonal

unit root tests are expected to have their performance disturbed.

In this paper, it is shown that this intuition is incorrect. The key for this

argument builds on Lopes (2006) and it is based on the perspective of viewing

seasonal mean shifts as neglected systematic additive outliers (AOs). This sheds

a different light over the subject, making clear that the performance of long-run

(A)DF unit root tests is also disturbed by such mere seasonal breaks.

For the simple AR(1) model, the shift of the DF distribution to the left in-

duced by PSMSs imparts straightforward effects: a spurious rejection problem

under the null hypothesis, and a corresponding improvement of the power prop-

erties under the alternative. The intuition is simple: in both cases PSMSs may

be seen as highly transitory shocks and hence weaken (strengthen) the evidence

for (against) the null hypothesis. However, the analysis is further complicated

when more realistic processes and testing strategies are entertained, as is usually

the case in practice. In particular, data dependent methods for lag selection

are known to induce a counter-effect to that of AOs. Hence, evaluating the
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final effects in small samples requires a somewhat extensive Monte Carlo study.

Although most results are reassuring, some concern with PSMSs cannot be

disregarded.

The remainder of this paper is organized as follows. The next section in-

troduces the model of pure seasonal mean shifts and develops the main ideas.

Section 3 contains the results of the Monte Carlo study, both for the I(1) and

I(0) cases. Section 4 concludes.

2 Dickey-Fuller tests and pure seasonal mean

shifts

Consider the case of quarterly, seasonally unadjusted and trending data, and

the standard (non-augmented) DF test regression for a unit root:

∆yt =
4X

j=1

θ̂j Dtj + β̂ t+ φ̂ yt−1 + ût, t = 2, 3, ..., T, (1)

where Dtj (j = 1, 2, 3, 4) denote the usual seasonal dummy variables, estimated

by OLS to produce the usual t-ratio, φ̂/σ̂φ̂. Suppose that the data generating

process (DGP) is

yt = α+ [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + β t+ t, (2)

where
P4

j=1 γj = 0, I(t > τ) is an indicator function equal to 1 when t > τ = λT

and 0 otherwise, λ denoting the fraction break parameter, δj (j = 1, ..., 4)

represent the parameters of the seasonal mean shifts, and t is iid N(0, σ2).

Hence, the seasonal cycle is represented by the γj parameters until the time of

the break and by γj + δj after that time.

When
P4

j=1 δj 6= 0, the neglected seasonal break changes the level of the

series too. From the work of Perron (1989) and the research that followed, it

is known that, despite remaining consistent, standard DF tests may become

rather powerless in small samples.

On the other hand, in the case where the DGP is the unit root process,

∆yt = β + [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + t, (3)
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with y0 fixed, when
P4

j=1 δj 6= 0, the “converse Perron phenomenon” emerges:
Leybourne et al. (1998) and Leybourne and Newbold (2000) have shown that

DF tests that disregard the break may produce spurious evidence against the

(true) null hypothesis.

Consider now that
P4

j=1 δj = 0, i.e., the structural break is constrained

to affect the deterministic seasonal cycle only, the level and the slope of the

trend remaining unchanged. In this paper, this case is termed as a pure sea-

sonal mean shifts (PSMSs) case. It is commonly believed that neglecting such

a break produces no effect on the asymptotic and finite sample distribution

of DF statistics. The intuition is that since only the seasonal cycle changes,

contamination remains confined to the seasonal frequencies, and hence, as it

does not go through the long run or zero frequency properties of the data, the

behaviour of DF statistics should remain unchanged. This reasoning, however,

neglects the crucial importance of correctly accounting for deterministic terms

in DF regressions.

A similar problem occurs when deterministic seasonality is present in the

DGP but it is neglected in the testing strategy. Based in the work by Franses

and Haldrup (1994), Lopes (2006) 1 addresses the consequences of neglecting

deterministic seasonality in DF regressions considering the effect of the omitted

usual set of seasonal dummy regressors as systematic additive outliers (AOs).

The same approach is used here, extending it to the case of PSMSs 2. Consid-

ering these as systematic AOs opens a very different and insightful perspective:

neglected PSMSs induce a negative “MA-like” component in the errors of the

test regression whose effects on DF tests are well known since the work of Schw-

ert (1989). Intuitively, the mechanism is also simple: neglected PSMSs spuri-

ously inflate the transitory dynamics of the series, shifting the DF distribution

1Demetrescu and Hassler (2007) address the same problem following a different route.
2The connection between omitted seasonal dummies and systematic AOs in DF regressions

was established in Lopes (2006) for a particular case of the seasonal pattern to facilitate

deriving the asymptotic distribution of DF statistics. The same connection can be easily

established here for the case where the (pure) seasonal break is of the type
P4

j=1 δj =P4
j=1 (−1)jδ = 0 (see Lopes, 2006, pp. 168-9); i.e., neglecting deterministic terms unrelated

with the break, equation (3) can be written using the framework of Franses and Haldrup

(1994) for the post-break period. Hence, now the problem is further complicated due to the

presence of a parameter representing the fraction of the sample where the break occurs (τ/T ).
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to the left, both under the null and the alternative hypothesis. In particular,

under the null hypothesis, unmodeled PSMSs induce a spurious mean reverting

behaviour into the deterministic component of the series. Therefore, spurious

unit root rejections are predicted when the DGP is given by equation (3), and

boosted power properties are expected when the DGP is a trend stationary

process 3.

In practical terms, analysing the failure to account for PSMSs presents fur-

ther difficulties. First, DGPs as simple as the ones of equations (2) and (3)

are overly simplistic and are rarely (if ever) seriously considered in empirical

work. Second and most important, even when the DGP coincides with (2) or

(3), empirical work usually begins with an autoregressive model whose order is

a function of T , and then proceeds using some rule for lag selection. That is,

instead of (1) above, (A)DF statistics usually result from equations such as

∆yt =
4X

j=1

θ̂j Dtj + β̂ t+ φ̂ yt−1 +
k̂X
i=1

ψ̂i∆yt−i + êt, (4)

where k̂ is selected using some data dependent method.

Previous research has found that, at least in small samples, this procedure

is liable to produce further distortions, albeit in the opposite direction of the

one resulting from PSMSs. In particular, the popular general-to-specific (GS)

t-sig method tries to capture the “MA-like” effect of AOs through inflated lag

augmentation; see, e.g., Perron and Rodŕıguez (2003) and Lopes (2006). As a

result, since the distribution tends to shift to the right, a kind of counter-effect

is observed, both in terms of size and power. Determining the final, combined

outcome in empirically relevant cases and sample sizes demands an extensive

simulation study.

3See Franses and Haldrup (1994) for the asymptotic and numerical analysis of the effect

of AOs on DF tests under the null hypothesis. For the alternative, besides Lopes (2006), the

closest study addressing this issue appears to be Nelson et al. (2001), containing numerical

evidence for a case where a Markov regime switching process is assumed for the transitory

component of the series (see their subsection 1.2).
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3 Simulation results

To simplify the analysis, a single break parameter, δ, is considered, and the

results for the following cases are presented:

case A δ = δ1 = −δ2, δ3 = δ4 = 0;

case B δ = δ1 = −δ3, δ2 = δ4 = 0;

case C δ = δ1 = δ3 = −δ2 = −δ4, and
case D δ = δ1 = δ2 = −δ3 = −δ4.

For instance, for case A and when δ > 0, a boom in the first quarter is

balanced by a crash in the second quarter. Two other cases were considered

(δ = δ1, −δ/3 = δ2 = δ3 = δ4 and δ = δ1, −δ/2 = δ2 = δ3, δ4 = 0) but

their evidence adds little to the analysis. For the cases reported the relevant

magnitude is the “standardized break”, δ/σ , i. e., the relative size of the break.

Hence, with no loss of generality, σ = 1 and δ = 0 (no break), 1, 3, and 5. As

usual, the study concentrates on frequency rejections of nominal 5% level tests,

the small samples critical values taken from MacKinnon (1991).

Unless stated otherwise, the reported results concern a break in the middle

of the sample, i.e., λ = 0.5. For each experiment 10, 000 replications were

generated using TSP 4.5. The sample sizes considered are for T = 48, 96, and

160. For the ADF tests, the GS t-sig procedure is initiated with kmax = 4, 8,

and 12, respectively, and the reduction tests are based on a 5% asymptotic level

critical region.

3.1 The I(1) case: size

Table 1 contains the results for the case when the DGP is given by equation (3).

While the left panel addresses the case for DF (non-augmented) tests [equation

(1)], the right panel contains the results for ADF tests [equation (4)],
¯̂
k denoting

the average fitted lag length.

Table 1 around here

As expected, for DF tests a clear picture of size distortions emerges; the

over-rejections grow with δ (and T ) and become rather dramatic when δ = 5.
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Additional (unreported) simulations for all types of breaks and for the cases

when T = 96, 160 and δ = 3 reveal that spurious rejections are more severe for

breaks located around the middle of the sample (i.e., for λ ∈ [0.45; 0.55]).
A quite different picture is observed for ADF tests. The GS t-sig method

clearly helps in restoring size close to its nominal level, particularly for large

δ (and T ). This occurs because, as expected, the increase in δ is generally

associated with larger lag lengths. Hence, although size distortions still subsist,

with the exception of a few cases when T = 48 only, in general they seem

tolerable for the sample sizes analysed.

Table 2 contains the size estimates for three additional, more realistic and

demanding DGPs:

∆yt = β + [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + t − 0.8 t−1, (5)

∆yt = β + [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + t − 0.8 t−4, (6)

and

(1 + 0.9L)(1 + 0.4L2)∆yt = β + [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + t. (7)

While the DGP from equation (5) is well known since the work by Schwert

(1989), the one of equation (6) represents its traditional “seasonal twin”. The

DGP of equation (7) is purely autoregressive, i.e., it is less demanding than

the previous two. Its interest derives from the fact that it is a near-semiannual

unit root case, i.e., it allows some instability in the seasonal pattern involving

adjacent quarters.

Table 2 around here

In order to facilitate the comparison with the frequency rejections for the no

break case (δ = 0), these are presented in bold. The following main conclusions

may be drawn:

i) a generalized picture of size distortions emerges, even for the no-break

case and particularly for the DGPs containing negative MA terms. This
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results from the poor performance of the t-sig method in small samples

when deterministic regressors are needed to achieve similarity of DF tests;

see Taylor (2000) and Lopes (2006).

ii) Somewhat unexpectedly, the presence of the break increases the frequency

of spurious rejections only in about 1/3 of the cases. That is, the most

frequent outcome of PSMSs is to improve, not to worsen, the size per-

formance of ADF tests. This results from the lag augmentation inflation

effect, which is clearly visible. A quite interesting, although extreme, ex-

ample occurs for the DGP of equation (5) when T = 48: when there is no

break the estimated size is 87.9% and
¯̂
k = 0.53; when δ = 5 the estimated

size is reduced to only 0.6% and
¯̂
k = 2.49.

iii) Most of the cases where size behaviour deteriorates occur with the DGP

of equation (6). This is worrying because the presence of negative sea-

sonal MA error terms is frequently reported in empirical studies; see, e.g.,

Ghysels et al. (1994).

3.2 The I(0) case: power

The power analysis begins with the simple DGP of equation (1), with β = 0.05,

ρ ≡ φ = 0.90 and ut ≡ t ∼ iid N(0, 1). The results are presented in table 3.

Table 3 around here

As predicted, a boosted power performance is now observed for the DF

test. For the more realistic setting of ADF tests, however, power reductions

are observed in 50% of the cases, and these are more frequent and significant

when T = 160, as kmax is permitted to attain 12 and a very large lag truncation

parameter is usually selected. Gains in power tend to be relatively large only

when T = 48.

A similar unclear picture is observed when the following DGPs are consid-

ered:

yt = α+ [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + 0.05 t+ 0.90 yt−4 + t, (8)
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(1−0.9L)(1+0.9L)(1+0.4L2)yt = α+[
4X

j=1

γj+I(t > τ)
4X

j=1

δj]Dtj+0.05 t+ t, i.e.,

yt = α+ [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + 0.05 t+ 0.41 yt−2 + 0.324 yt−4 + t, (9)

and

yt = α+ [
4X

j=1

γj + I(t > τ)
4X

j=1

δj]Dtj + 0.05 t+ 0.90 yt−4 + t − 0.4 t−4. (10)

The costs of the generally satisfactory size performance, achieved through liberal

lag lengths, now emerge from table 4:

i) power gains resulting from the additional “transitory dynamics” tend to

evaporate, and in about 50% of the cases, power is actually reduced;

ii) in particular, large power reductions are observed for the DGP of equation

(9), which acts as the stationary version of the one from equation (7);

iii) significant power gains tend to occur only when T = 48, i.e., when k̂ is

constrained to be low.

Table 4 around here

4 Concluding remarks

The widely held belief that pure seasonal mean shifts do not matter for Dickey-

Fuller tests is incorrect. When they are not accommodated, transitory fluc-

tuations in the errors of the test regressions are spuriously inflated, distorting

inference not only about seasonal cycles but also about the long-run properties

of economic time series.

In the AR(1) case and for the non-augmented version of the test, both the

deterioration in size behaviour and the jump in the power function can be quite

dramatic. In more realistic settings the consequences are usually milder and

uncertain due to the stabilizing, inflationary lag augmentation, effect produced

by the general-to-specific t-sig procedure. However, relying on this to cope

with the problem can also be hazardous. In some cases where a unit root is
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present the frequency of spurious rejections may increase significantly. Under

the alternative, for some cases power may be reduced. A method designed to

detect such seasonal breaks and to account for them in the testing strategy is

called for.

On the other hand, although the t-sig method can be very helpful in re-

dressing size behaviour in the presence of breaks, additional evidence on its

poor performance in small samples for standard (no break) cases was also ob-

tained. A better method for lag selection is needed to complement Dickey-Fuller

tests when they are used with quarterly data. Both issues are left for future

research.
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Table 1. Size estimates of nominal 5% level (A)DF tests for the random walk case

DF tests ADF tests

T T

δ 48 96 160 48 (
¯̂
k) 96 (

¯̂
k) 160 (

¯̂
k)

case A: δ = δ1 = −δ2, δ3 = δ4 = 0

1 5.7 6.2 7.1 8.0 (0.58) 8.1 (2.01) 7.6 (4.72)

3 28.0 32.4 34.6 13.6 (2.92) 9.3 (1.89) 8.1 (9.83)

5 65.4 72.3 74.5 7.1 (3.83) 9.0 (1.85) 7.3 (9.41)

case B: δ = δ1 = −δ3, δ2 = δ4 = 0

1 5.4 6.0 6.8 7.8 (0.57) 7.6 (2.15) 7.3 (4.91)

3 21.7 29.6 32.6 8.2 (2.52) 7.6 (5.52) 6.7 (8.69)

5 51.9 67.2 71.5 4.2 (2.82) 7.8 (5.26) 6.0 (7.94)

case C: δ = δ1 = δ3 = −δ2 = −δ4
1 8.3 9.1 10.0 10.3 (1.04) 9.4 (3.40) 7.2 (6.60)

3 57.1 61.6 62.3 10.6 (2.14) 8.9 (4.18) 7.3 (6.52)

5 91.2 93.6 94.3 8.3 (1.95) 9.2 (3.46) 7.2 (5.42)

case D: δ = δ1 = δ2 = −δ3 = −δ4
1 6.9 8.3 9.4 8.8 (0.82) 8.0 (3.29) 7.0 (7.00)

3 35.0 51.4 56.1 5.6 (2.89) 7.6 (5.47) 6.6 (8.29)

5 65.9 85.5 90.1 3.0 (2.74) 8.3 (4.78) 6.2 (6.97)
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Table 2. Size estimates of nominal 5% level ADF tests for more realistic I(1)

processes

T T

δ 48 (
¯̂
k) 96 (

¯̂
k) 160 (

¯̂
k) 48 (

¯̂
k) 96 (

¯̂
k) 160 (

¯̂
k)

DGP: ∆yt = β + [
P4

j=1 γj + I(t > τ)
P4

j=1 δj ]Dtj + t − 0.8 t−1

0 87.9 (0.53) 65.1 (2.07) 46.1 (4.52) 87.9 (0.53) 65.1 (2.07) 46.1 (4.52)

Case A Case B

1 88.1 (0.47) 64.8 (2.02) 44.0 (4.63) 88.3 (0.45) 61.8 (2.11) 40.7 (4.88)

3 69.9 (1.12) 24.3 (4.54) 11.8 (8.45) 63.7 (1.31) 21.5 (4.40) 14.5 (7.67)

5 20.7 (2.65) 12.7 (5.54) 6.8 (9.07) 24.5 (2.26) 10.4 (4.60) 8.4 (7.67)

Case C Case D

1 83.2 (0.56) 62.9 (2.34) 37.1 (5.23) 86.5 (0.47) 51.1 (2.59) 31.6 (5.74)

3 41.0 (1.36) 29.6 (3.89) 16.4 (6.81) 22.6 (2.16) 6.7 (4.67) 6.7 (7.80)

5 18.0 (1.42) 17.3 (3.70) 10.7 (6.08) 0.6 (2.49) 1.0 (4.54) 1.5 (7.03)

DGP: ∆yt = β + [
P4

j=1 γj + I(t > τ)
P4

j=1 δj ]Dtj + t − 0.8 t−4

0 31.6 (2.80) 25.6 (6.41) 27.1 (10.12) 31.6 (2.80) 25.6 (6.41) 27.1 (10.12)

Case A Case B

1 39.4 (1.80) 51.7 (3.79) 68.0 (6.11) 38.6 (1.84) 49.4 (4.22) 51.9 (7.57)

3 56.5 (0.85) 50.0 (6.99) 41.6 (11.66) 51.1 (1.04) 23.8 (6.19) 23.3 (10.32)

5 55.6 (2.91) 37.8 (7.72) 37.1 (11.33) 21.7 (2.21) 16.1 (6.33) 18.6 (9.90)

Case C Case D

1 49.2 (1.79) 54.7 (5.46) 48.8 (9.59) 39.9 (1.27) 57.3 (3.95) 32.1 (9.23)

3 56.3 (2.03) 46.8 (5.89) 43.9 (9.39) 29.5 (1.95) 13.8 (6.37) 14.2 (10.12)

5 49.6 (2.03) 36.1 (5.62) 41.6 (8.52) 7.4 (2.40) 5.5 (6.22) 7.0 (9.39)

DGP: (1 + 0.9L)(1 + 0.4L2)∆yt = β + [
P4

j=1 γj + I(t > τ)
P4

j=1 δj ]Dtj + t

0 29.4 (1.25) 13.9 (3.27) 7.1 (4.89) 29.4 (1.25) 13.9 (3.27) 7.1 (4.89)

Case A Case B

1 27.1 (1.58) 7.7 (3.50) 5.9 (5.06) 32.7 (1.62) 7.6 (3.66) 5.9 (5.50)

3 8.8 (2.91) 6.6 (4.41) 7.1 (7.23) 6.6 (2.93) 6.7 (4.44) 7.1 (7.38)

5 5.9 (3.16) 7.0 (4.93) 7.9 (7.43) 4.4 (2.98) 5.6 (4.04) 7.5 (6.44)

Case C Case D

1 20.2 (1.57) 9.5 (3.42) 6.4 (4.92) 28.2 (2.05) 6.0 (3.97) 6.3 (6.38)

3 28.6 (1.32) 18.0 (3.60) 8.5 (5.53) 3.8 (3.01) 5.9 (4.24) 7.4 (6.85)

5 41.3 (1.50) 14.0 (4.21) 7.9 (6.00) 4.3 (3.01) 3.6 (3.62) 6.3 (5.31)
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Table 3. Power estimates of nominal 5% level (A)DF tests for the trend stationary

AR(1) case with ρ = 0.90

DF tests ADF tests

T T

δ 48 96 160 48 (
¯̂
k) 96 (

¯̂
k) 160 (

¯̂
k)

0 6.6 15.6 42.6 10.9 (0.57) 20.2 (1.65) 40.5 (3.22)

case A: δ = δ1 = −δ2, δ3 = δ4 = 0

1 10.2 23.7 55.9 13.4 (0.58) 24.7 (2.02) 42.0 (4.69)

3 44.3 75.4 97.2 19.7 (2.94) 21.7 (6.26) 28.7 (9.84)

5 84.5 98.6 100.0 9.5 (3.83) 20.3 (6.21) 27.1 (9.39)

case B: δ = δ1 = −δ3, δ2 = δ4 = 0

1 10.1 24.4 55.6 13.3 (0.56) 23.7 (2.13) 38.4 (4.87)

3 36.9 72.8 96.6 12.3 (2.52) 18.4 (5.50) 24.4 (8.68)

5 72.2 97.6 100.0 6.3 (2.83) 19.7 (5.23) 24.9 (7.89)

case C: δ = δ1 = δ3 = −δ2 = −δ4
1 15.3 33.4 68.3 16.6 (1.05) 24.4 (3.42) 34.0 (6.55)

3 76.9 95.9 99.9 15.9 (2.16) 22.4 (4.17) 31.7 (6.49)

5 98.3 100.0 100.0 12.6 (1.94) 25.0 (3.39) 32.9 (5.34)

case D: δ = δ1 = δ2 = −δ3 = −δ4
1 13.0 32.5 66.8 15.0 (0.80) 23.8 (3.31) 30.9 (6.91)

3 52.8 91.7 99.7 7.7 (2.90) 19.6 (5.47) 24.3 (8.30)

5 80.6 99.8 100.0 4.7 (2.72) 21.2 (4.72) 26.9 (6.90)
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Table 4. Power estimates of nominal 5% level ADF tests for more realistic trend

stationary processes

T T

δ 48 (
¯̂
k) 96 (

¯̂
k) 160 (

¯̂
k) 48 (

¯̂
k) 96 (

¯̂
k) 160 (

¯̂
k)

DGP: yt = α+ [
P4

j=1 γj + I(t > τ)
P4

j=1 δj ]Dtj + 0.05 t+ 0.90 yt−4 + t

0 4.5 (3.05) 5.3 (3.73) 16.0 (5.03) 4.5 (3.05) 5.3 (3.73) 16.0 (5.03)

Case A Case B

1 5.1 (3.05) 6.2 (3.99) 15.8 (5.77) 4.1 (3.06) 5.9 (3.74) 16.8 (4.95)

3 6.8 (3.21) 6.5 (5.63) 14.1 (8.17) 6.3 (3.04) 6.2 (4.66) 15.9 (7.13)

5 14.9 (3.29) 6.0 (6.79) 13.0 (9.19) 13.4 (3.05) 6.3 (5.87) 14.7 (8.53)

Case C Case D

1 7.5 (3.05) 5.5 (4.92) 14.8 (7.09) 3.7 (3.06) 5.5 (3.71) 16.3 (4.98)

3 11.4 (3.48) 6.0 (5.99) 15.0 (8.12) 8.3 (3.09) 6.5 (5.67) 15.1 (8.36)

5 8.1 (3.80) 6.0 (5.74) 16.0 (7.43) 21.3 (3.23) 6.1 (6.11) 14.2 (8.51)

DGP: yt = α+ [
P4

j=1 γj + I(t > τ)
P4

j=1 δj ]Dtj + 0.05 t+ 0.41 yt−2 + 0.324 yt−4 + t

0 41.7 (1.16) 35.0 (3.10) 40.0 (4.87) 41.7 (1.16) 35.0 (3.10) 40.0 (4.87)

Case A Case B

1 39.5 (1.42) 21.2 (3.42) 35.2 (5.01) 44.7 (1.45) 20.0 (3.59) 34.7 (5.44)

3 14.0 (2.84) 17.7 (4.37) 32.9 (7.15) 10.0 (2.88) 17.7 (4.42) 33.6 (7.29)

5 9.8 (3.12) 19.0 (4.91) 36.4 (7.35) 7.1 (2.95) 15.8 (4.00) 35.8 (6.37)

Case C Case D

1 31.1 (1.50) 26.6 (3.32) 38.0 (4.88) 37.9 (1.88) 16.7 (3.93) 33.6 (6.36)

3 42.8 (1.25) 41.8 (3.49) 42.9 (5.35) 5.9 (2.98) 16.4 (4.25) 35.5 (6.79)

5 57.3 (1.37) 30.5 (4.10) 36.3 (5.89) 6.7 (2.99) 11.9 (3.61) 33.5 (5.24)

DGP: yt = α+ [
P4

j=1 γj + I(t > τ)
P4

j=1 δj ]Dtj + 0.05 t+ 0.90 yt−4 + t − 0.4 t−4

0 14.1 (2.87) 3.5 (5.83) 18.9 (8.38) 14.1 (2.87) 3.5 (5.83) 18.9 (8.38)

Case A Case B

1 8.2 (3.02) 4.3 (5.83) 19.8 (8.48) 6.4 (3.09) 4.4 (6.39) 20.9 (8.41)

3 8.5 (3.09) 4.1 (5.26) 20.6 (9.19) 9.4 (3.08) 4.4 (4.53) 20.3 (8.53)

5 18.8 (3.12) 5.1 (5.99) 18.9 (10.39) 18.7 (3.09) 3.5 (5.12) 22.3 (9.24)

Case C Case D

1 29.6 (2.30) 3.7 (5.09) 19.9 (8.77) 6.0 (3.09) 3.7 (6.06) 19.8 (7.98)

3 38.0 (2.47) 5.1 (6.46) 22.6 (9.52) 12.7 (3.15) 4.5 (4.98) 23.6 (9.16)

5 34.0 (2.93) 5.4 (6.41) 23.2 (8.86) 29.3 (3.30) 4.6 (5.23) 23.1 (9.24)
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