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Abstract

Efficiency of estimators in additive fixed-effects models is investigated. Asymp-

totically, panel data are more efficient in case of strong residual autocorrelation; in

small samples, variances are comparable, but repeated cross-sections show larger bias

for some parameter values.
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1. Introduction

The value of repeated cross-sections (RCS) to identifiability of structural pa-

rameters in fixed-effects models is known since Heckman and Robb (1985). At the

same time, Deaton (1985) stressed that a measurement error problem, peculiar to

RCS inference, arises in finite samples due to the need to estimate some nuisance

parameters. He also showed that the resulting bias can be dealt with exploiting sam-

ple information. A line of research originated out of these seminal papers; among

several contributions, see, for instance, Verbeek (1992), Moffit (1993), Verbeek and

Nijman (1993), Collado (1997), Girma (2000), McKenzie (2004) and Verbeek and

Vella (2005).
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A still unsettled issue to our knowledge is the derivation of a benchmark for

the amount of precision we might expect in an RCS based inference, which would

also be useful to compare the potential of RCS to that of genuine panel information.

Heckman and Robb (1985) made an informal contention that even if panel estimators

are often claimed to be asymptotically more efficient than the RCS ones, in finite

samples this might not happen since sample size is by far larger in cross-sectional

surveys.

In this paper we derive a lower bound on the asymptotic variance of a RCS

estimator by exploiting a set of moment restrictions implied by the fixed-effects as-

sumption. Under suitable regularity conditions, we allow for a general nonlinear

model, provided that unobservables enter the model additively. The lower bound

is obtained by applying standard results of inference under conditional moment re-

strictions (see, for instance, Chamberlain, 1987). Small sample behaviour is studied

through simulation.

2. The model

Applied sciences often deal with panel data, namely a vector of variables zit ob-

served at times t = 1, . . . , T on the units i = 1, . . . , N . One of the advantages of

panel data is the possibility to control for unobserved heterogeneity among individ-

uals due to time-invariant effects, since repeated observations on each sampling unit

are available. When panel data are not available, identification and estimation of

the parameters is still possible - under suitable conditions - based on repeated cross-

sections, where sample averages are computed from individual observations within

pre-defined time-invariant classes (cohorts), playing the role of “macro-individuals”

in a pseudo-panel dataset. Estimating techniques are basically the same in both

cases. In the case of panel data they are applied directly to individual observations,

while in the case of repeated cross-sections they are applied to the class sample aver-

ages. The sample averages are considered as error-ridden measurements of the true

class means, and therefore the estimators are corrected for the presence of response
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and covariate measurement error. When the sample size for each class is sufficiently

large, the measurement error can be neglected, i.e. no correction is necessary.

To simplify notation, from now on let i indicate the sampling unit or the synthetic

macro-individual, according to the sampling scheme (panel or pseudo-panel). For

instance, yi would indicate the response for individual i in a panel, but represents the

sample average of the response for class i in a pseudo-panel (i-th macro-individual),

the only difference being the presence of (possibly negligible) measurement error in

the second case. Consider models where the unobservable component has the form:

uit = g(zit; β) (1)

where g( . ) is known, zit = (yit, xit) where yit is the response variable and xit is a

vector of explanatory variables, and E(uit|xit) = 0. Our interest is in estimation of

β, which is both time- and individual-invariant. The error uit is assumed to be such

that we can represent it as:

uit = ηi + vit

E{uit|wi, xit} = 0 ∀wi ∈ W
(2)

where ηi is an unobservable individual effect, wi is a vector of observable time-

invariant variables and W is its support. In the case of multiplicative effects other

transformations can be used in order to eliminate the individual effect.

Notice that in the case of RCS the individual effects depend on time too, i.e.

ηi = ηi(t), being the sample average of the effects for the specific cohort sample at

time t. However, its conditional expectation remains time-invariant within cohort i,

i.e. E{ηi(r)|wi} = E{ηi(s)|wi}, ∀r 6= s. This, together with assumption (2), implies

among other things that for two time periods r 6= s the following condition holds

E{g(zir; β)− g(zis; β)|wi, xir, xis} = 0 (3)

This equation specifies a conditional moment restriction upon which inference on β

can rest. The lower bound we shall derive exploits such restriction.
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3. Asymptotic efficiency

Suppose one is choosing whether to collect a panel data set or a sequence of cross-

sections. Since sampling costs are rather different, it is often the case that the panel

sample is of much smaller size than the cross-sectional samples (which we assume -

for the sake of simplicity - to be all of the same size). Therefore, we aim at answering

the following question: to estimate the parameter of interest, is it more convenient

to use panel or RCS information?

An answer to this question can be obtained comparing the optimal asymptotic

variance attainable in the two cases; such a comparison can be derived directly from

the results in Chamberlain (1987), which we briefly recall here.

Consider a random sample of size N from variables z and w, a parameter β and a

function m(z, β) such that the following moment condition holds: E {m(z, β0)| w } =

0; suppose also that function m satisfies the following regularity conditions:

(i) β is in an open set B ⊂ IRp such that m(z, β) and ∂m(z, β)/∂β> are continuous
for (z, β) ∈ Z × B.

(ii) E{m(z, β0)|w} = 0 ∀ w ∈ W.

(iii) Σ(w) = E{ m(z, β) m(z, β)>|w} is positive-definite for all w ∈ W.

(iv) Let D(w) = E{ ∂m(z, β)/∂β>|w} for w ∈ W. Matrix E{D>(w)Σ−1(w)D(w)}
is positive-definite.

Then a lower bound on asymptotic variance for any regular consistent asymptotically

normal estimator is given by

Λ =
{

E
[
D>(w)Σ−1(w)D(w)

] }−1
(4)

where matrices D(w) and Σ(w) are evaluated at β = β0.

To apply Chamberlain’s results to our case, consider the following function

m(zi, β) = g(zi1; β)− g(zi2; β) (5)

Equation (3) guarantees that this m(z, β0) satisfies the moment condition above:

in the case of panel data this is true at individual level, while observing repeated
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cross-sections this holds at cohort level (macro-individuals). It follows that a lower

bound on asymptotic variance of GMM estimators based on this moment condition

can be obtained from (4), if the appopriate regularity conditions hold.

It is easy to verify that if the function m defined in (5) satisfies conditions (i)-(iv)

above for panel data, then this happens for RCS too, so that the asymptotic lower

bound can be applied to our problem. Asumptotics here refers to large N , where N

represents the number of individuals in the panel data and the number of cohorts in

the repeated cross-sectional data, respectively.

Substituting function m into the definition of D(w) and Σ(w), we obtain:

D(wi) = E[∂g(zi1, β)/∂β′|wi]− E[∂g(zi2, β)/∂β′|wi]

and

Σ(wi) = Var{g(zi1, β)− g(zi2, β)| wi } = Var{ui1 − ui2| wi }

To specify the expression of the lower bound in the two sampling schemes, recall

that in the case of RCS the variables represented the cohort sample average. Making

this explicit, this yields:

D(wi) = E

[
∂ḡ(zi1, β)

∂β′

∣∣∣∣ wi

]
− E

[
∂ḡ(zi2, β)

∂β′

∣∣∣∣ wi

]

= E

[
1
N

N∑

i=1

∂g(zi1, β)
∂β′

∣∣∣∣∣wi

]
− E

[
1
N

N∑

i=1

∂g(zi2, β)
∂β′

∣∣∣∣∣ wi

]

= E

[
∂g(zi1, β)

∂β′

∣∣∣∣ wi

]
− E

[
∂g(zi2, β)

∂β′

∣∣∣∣ wi

]

This expression coincides with the case of panel data, so that it is not affected by the

sampling scheme. Consider now the difference ui1 − ui2 appearing in the definition

of Σ(wi). From assumption (2), in the case of panel data ui1 − ui2 = vi1 − vi2 so

that in case of homoskedasticity of the residuals

ΣP (wi) = Var(vi1|wi) + Var(vi2|wi)− 2Cov(vi1, vi2|wi)

= 2[Var(vi|wi)− Cov(vi1, vi2|wi)]
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In the case of RCS, instead, ūi1 − ūi2 = v̄i1 − v̄i2 + η̄i1 − η̄i2. This implies that, if v

is orthogonal to the other variables in the model

ΣRCS(wi) = Var(v̄i1|wi) + Var(v̄i2|wi)− 2 Cov(v̄i1, v̄i2|wi) +

+Var(η̄i1|wi) + Var(η̄i2|wi)− 2Cov(η̄i1, η̄i2|wi)

=
2
n∗

[Var(vi|wi) + Var(ηi|wi)]

where n∗ = 2ni1ni2/(ni1 + ni2), being nit the sample size at time t for cohort i. If

a cohort has always the same number of sampled individuals at all times, then this

coincides with n∗. Notice that all covariances are zero, as the samples in the two

time periods are independent.

In the linear case g(zit, β) = yi−x′itβ, so that m(zi, β) = (yi1−yi2)−(xi1−xi2)′β

and ∂g(zit, β)/∂β′ = −x′it. Quantity Σ(wi) is the same as in the general case, while

D(wi) = E{x′i2| wi } −E{x′i1| wi } = E[∆xi|wi], where ∆xi = xi2 − xi1. Note that,

as E[∆xi|wi] gets closer to zero (non-identifiable model), the variance grows larger

and larger.

Analysing the expression for Σ(wi) is enough to compare the asymptotic lower

bound under the two sampling schemes, since the term D(wi) is not affected. The

lower bound for panel data is larger than that for RCS iff:

Var(vi|wi)− Cov(vi1, vi2|wi) ≥ 1
n∗

[Var(vi|wi) + Var(ηi|wi)]

that is iff

Var(vi|wi)
(

1− 1
n∗

)
≥ Cov(vi1, vi2|wi) +

1
n∗

Var(ηi|wi)

If the sample size for each cohort is sufficiently large, then the terms multiplied by

1/n∗ become negligible, showing that panel is superior to RCS only if the serial corre-

lation of the residuals vit is positive and sufficiently large (Var(vi|wi)/ Cov(vi1, vi2|wi)

< 1). Notice that this is never the case for both the AR(1) and the MA(1) specifi-

cations for vit. In case of uncorrelated residuals, RCS is clearly better, showing that

there is no potential efficiency gain using panel data.

The cases of small n∗ with large N , and small n∗ with small N are analysed

through simulation, as shown in the next Section.
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4. Simulation study for small sample efficiency

A simulation study has been conducted with the following data generating pro-

cess:

yit = αyit−1 + βxit + ηi + vit i = 1, ..., N t = 1, 2

Let yi0 = 0 and ηi ∼ N(0, σ2
η). The error follows an AR(1) model specified as

vit = θ0 + θ1vit−1 + ξit, where ξit ∼ N(0, 1). The regressors are also AR(1) and

are correlated with the individual effects, the generating process being specified as

xit = ρxit−1 + γηi + εit, with εit ∼ N(0, σ2
ε) independent of ηi.

The j-th instrument z
(j)
it is generated as z

(j)
it = ρz

(j)
it−1 + εitω

(j)
it , for j = 1, . . . , J ,

were ρ and εit are the same as in the xit equation above, z
(j)
i0 = xi0 and ω

(j)
it ∼

N(1, σ2
ω) independent of εit. The expression of ρ

(j)
xz = Corr(xit, z

(j)
it ) is the same for

all j, is approximately constant over time for t = 2, 3, and depends on parameters

ρ, σ2
ε , σ2

η, γ and σ2
ω.

Estimation of β is performed using the difference-based moment condition (3),

where the g function is now given by g(zit;β) = yit−αyit−1−βxit. The corresponding

orthogonality condition is given by

E[(∆ηi + ∆vit)∆xit] = 0

In the case of panel data, i represents the individual, and therefore ∆ηi = 0, which

gives the condition E[∆vit∆xit] = 0. This is always true for any set of parameter

values, therefore the first-differences ordinary-least-squares (FD-OLS) estimator is

consistent.

For RCS i represents the cohort, and therefore as noted at the beginning ηi = ηi(t),

so the expected value above becomes E[(∆ηi(t) +∆vit)∆xit] = σ2
ηγ(2−ρ). It follows

that FD-OLS is inconsistent if both γ and σ2
η are non-zero, although the estimator

has a good behaviour for any combination of the parameters for which the product

σ2
ηγ is approximately zero. If σ2

ηγ is large, consistent estimates can be obtained

through first-differences instrumental-variables (FD-IV) estimation.
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4.1. Experimental design

Denote by n̄ = N−1
∑N

i=1 ni1 = N−1
∑N

i=1 ni2 the average number of individuals

within each cohort, where N is the number of cohorts (equal in period one and two)

and nit is the number of individuals sampled from cohort i in period t. Several cases

are considered, for N ∈ {50, 100, 150, 200, 300} and n̄ ∈ {8, 16, 24}.
The results are compared to panel data where n̄ = 1, that is a panel data-set

with a number of individuals equal to the number of cohorts in the RCS data-set.

Simulations were not performed for combinations where the total number of RCS

observations n̄ ∗N was very large (> 2400).

At each simulation, n̄ ·N observations are generated, split into cohorts according

to a time invariant variable, and the cohort means are computed.

The parameter of interest is β, which is set equal to one. Some of the other

parameters are held fixed, with values respectively α = 0, θ0 = 1, ρ = 0.5 and

σ2
ε = 1. Various sets of studies are performed, according to different values for θ1,

σ2
η, and γ as reported in Table 1. In Groups 1 and 2 OLS is consistent for both panel

and RCS, so the simulations are performed using the FD-OLS estimator illustrated

above. Inconsistent FD-OLS estimates for RCS in Group 3 are compared with FD-

IV results, obtained with J instruments, J ∈ {1, 5, 10}, using a common correlation

ρ
(j)
xz ∈ {0.5, 0.8} for all intruments in a simulation.

4.2. Results

All simulation results presented below are based on 200 replications.

Results for FD-OLS estimation are reported in Table 2. For the case of γ = 0

(Group 1) the panel and RCS estimators show comparable efficiency, with slight

superiority of panel data. The top panel in Table 2 shows results for θ1 = 0.1 and

σ2
η = 0.5, but the other simulations in this group yielded analogous evidence.

In Group 2, where the product σ2
ηγ is small, the choice of the value for parameter

θ1 does not affect the results. The middle panel in Table 2 shows the evidence for

γ = σ2
η = 0.1. The RCS estimates show a small bias (around 1-2%), and standard
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Table 1: Parameter values chosen for simulation and their influence on the variances and covariances
of some design variables, for ρ = 0.5.

Group θ1 σ2
η γ Var(x) Var(y) Corr(x,η) Var(v) r1

∗ r2
∗ R2∗

1 0.5 0.1 0.0 1.47 2.90 0.00 1.33 0.07 0.06 0.51
0.1 0.1 0.0 1.47 2.58 0.00 1.01 0.09 0.06 0.57
0.1 0.5 0.0 2.00 3.51 0.00 1.01 0.33 0.20 0.57

2 0.1 0.1 0.1 1.49 2.64 0.05 1.01 0.09 0.06 0.56
0.5 0.1 0.1 1.49 2.97 0.05 1.33 0.07 0.06 0.50

3 0.5 0.1 0.5 4.00 8.33 0.50 1.33 0.43 0.14 0.48
0.1 0.1 0.5 1.60 2.91 0.25 1.01 0.09 0.05 0.55
0.1 0.5 0.1 2.13 3.84 0.10 1.01 0.33 0.18 0.56

* r1 = σ2
η/(Var(v) + σ2

η), r2 = σ2
η/ Var(βx + η), R2 = Var(βx)/ Var(y).

errors slightly lager than the panel estimates. The panel standard errors are smaller

in Group 2 than in Group 1.

Group 3 considers the case where σ2
ηγ is larger, namely five times the value in

Group 2, being either γ = 0.1 and σ2
η = 0.5 or γ = 0.5 and σ2

η = 0.1. This case yields

bias for the RCS case reaching values aroud 7-8%, as shown in the bottom panel in

Table 2 for γ = 0.5 and σ2
η = 0.1. Again, the value for parameter θ1 is irrelevant.

Comparison based on MSE shows superiority of panel data for this specific case.

In general, increasing the number of observations within each cohort, for a fixed

number of cohorts, does not improve efficiency nor reduces the bias, while increasing

the number of cohorts helps reducing the variance.

Consistent IV estimation for larger σ2
ηγ achieves bias correction, but for most

sets of instruments is far from OLS efficiency. For the sake of comparison with the

bottom panel of Table 2, results for the case γ = 0.5 and σ2
η = 0.1 are shown in Table

3 with J = 5 and ρ
(j)
xz = 0.5. Table 4 compares efficiency for the case N = 50 and

n̄ = 8 for different sets of instruments, and shows how standard errors closer to the

OLS ones can be obtained by changing the number and strength of the instruments.

However, such a large number of instruments or such a high correlation with the

covariates might be difficult to achieve in real data applications.
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Table 2: FD-OLS simulation results for 200 replications. True value β = 1; standard errors in
parentheses.

Group 1: θ1 = 0.1, σ2
η = 0.5 and γ = 0

n̄
1 8 16 24

50 0.9911 (0.1296) 0.9912 (0.1618) 1.0028 (0.1562) 0.9986 (0.1538)
100 0.9981 (0.0832) 0.9978 (0.1140) 1.0023 (0.0909) 0.9922 (0.1153)

N 150 1.0053 (0.0703) 0.9995 (0.0827) 0.9907 (0.0877) –
200 0.9993 (0.0639) 0.9978 (0.0796) – –
300 1.0016 (0.0518) 0.9987 (0.0606) – –

Group 2: θ1 = 0.5, σ2
η = 0.1 and γ = 0.1

n̄
1 8 16 24

50 0.9908 (0.1099) 1.0117 (0.1502) 1.0186 (0.1508) 1.0219 (0.1472)
100 0.9974 (0.0675) 1.0145 (0.1023) 1.0129 (0.1024) 1.0160 (0.1076)

N 150 1.0025 (0.0610) 1.0139 (0.0927) 1.0107 (0.0844) –
200 0.9995 (0.0543) 1.0132 (0.0806) – –
300 1.0001 (0.0438) 1.0155 (0.0576) – –

Group 3: θ1 = 0.1, σ2
η = 0.1 and γ = 0.5

n̄
1 8 16 24

50 0.9911 (0.1297) 1.0850 (0.1468) 1.0606 (0.1357) 1.0634 (0.1277)
100 0.9981 (0.0833) 1.0567 (0.0895) 1.0600 (0.0901) 1.0654 (0.0861)

N 150 1.0053 (0.0702) 1.0564 (0.0746) 1.0521 (0.0687) –
200 0.9994 (0.0639) 1.0740 (0.0652) – –
300 1.0016 (0.0517) 1.0699 (0.0557) – –
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Table 3: Simulation results for 200 replications, with θ1 = 0.1, σ2
η = 0.1 and γ = 0.5. True value

β = 1; standard errors in parentheses. FD-OLS for n̄ = 1, FD-IV with J = 5 and ρ
(j)
xz = 0.5 for

other values of n̄.

n̄
1 8 16 24

50 0.9911 (0.1297) 0.9998 (0.1872) 0.9838 (0.1661) 0.9996 (0.1613)
100 0.9981 (0.0833) 0.9725 (0.1185) 0.9933 (0.1127) 1.0007 (0.1108)

N 150 1.0053 (0.0702) 0.9793 (0.0976) 0.9925 (0.0862) –
200 0.9994 (0.0639) 0.9981 (0.0818) – –
300 1.0016 (0.0517) 0.9950 (0.0708) – –

Table 4: FD-IV simulation results for 200 replications, with θ1 = 0.1, σ2
η = 0.1 and γ = 0.5. True

value β = 1; standard errors in parentheses. Case of N = 50 and n̄ = 8. For comparison to FD-OLS
results: β̂ = 1.0850, SE=0.1468.

J
1 5 10

ρ
(j)
xz 0.5 1.0108 (0.3465) 0.9998 (0.1872) 1.0180 (0.1662)

0.8 1.0115 (0.1811) 1.0091 (0.1560) 1.0227 (0.1525)

5. Concluding remarks

It is well known that estimation of models with unobservable individual-specific

effects is possible not only if repeated measurements on sampling units are available,

but also with data collected in repeated cross-sections. This latter alternative, al-

ready investigated in the case of linear models, has been extended in this paper to

more general models imposing only that unobservables enter the model additively.

The main result we obtain is a lower bound on the asymptotic variance of RCS

estimators. This is derived from known results on estimation with conditional mo-

ment restrictions, which we build on to take into account that available information

comes from two (or more) independent samples. Using the bound, asymptotic effi-

ciency of RCS and panel data estimators is compared, showing that panel data are

more efficient only in case of strong residual autocorrelation; a simulation study is

performed in order to study the finite sample behaviour, finding comparable vari-
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ances, but larger bias in repeated cross-sections for some sets of parameter values.

IV estimation achieved bias correction, although variances comprable to OLS are

obtained only for many and strong instruments.
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