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Abstract: This paper deals with classi�cation and clustering analysis for indepen-
dent time series with unequal length. A periodogram-based statistic is used to determine
whether the time series at hand are generated by the same stochastic mechanism. To
deal with the problem of di¤erent lengths and consequently that the periodograms com-
pared are calculated at di¤erent Fourier frequencies, an interpolation method is proposed.
This method consists of a linear interpolation of the individual periodogram ordinates at
Fourier frequencies. Nonparametric and parametric test statistics are proposed to test
the hypothesis that the two series are generated by the same stochastic mechanism and
their random behavior under null are investigated. The performance of the methods is
investigated by a Monte Carlo simulation study. As an illustrative example, the inter-
polated periodogram method is applied to classify industrial production indices series of
European and some developed countries.
Keywords: Classi�cation; Cluster analysis; Euclidean metric; Periodogram; Spectral

analysis; Time series.

1. Introduction

The classi�cation analysis of time series has useful applications in several �elds. In Man-
agement, we may be interested in identifying similarities in �nancial assets for investment
and risk management purposes. In Finance, we may interested in identifying dependences
in �nancial market returns for classifying and grouping stocks. In Economics, an applica-
tion would be the cluster analysis of some countries by looking at the main macroeconomic
time series indicators.
The comparison of time series has been studied in literature using both time and fre-

quency domain methods. The classi�cation of time series using spectral analysis ap-
proaches were considered by Coates and Diggle (1986), Diggle and Fisher (1991), Dargahi-
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Noubary (1992), Diggle and al Wasel (1997), Kakizawa, Shumway and Taniguchi (1998),
Maharaj (2002), Caiado, Crato and Peña (2006), among others. However, existing spec-
tral methods for discrimination and clustering analysis of time series cannot be applied
directly to series with unequal length.
Our interest in this problem arose from the business cycle study of some industrialized

countries done by Camacho, Pérez-Quiróz and Saiz (2004). They had time series of
unequal length and had to truncate data in order to compare them. Therefore they used
information about truncated time series spectra to compute the distances across countries.
This is a common problem with real time series data. We then try and develop a method
without this drawback.
Caiado, Crato and Peña (2006) proposed a periodogram based metric for classi�cation

of time series and used it to compare near nonstationary and nonstationary time series.
We now extend this method for classifying times series with di¤erent lengths. For such
cases, we know that the Euclidean distance between the periodogram ordinates cannot
be used. One possible way to deal with this problem is to interpolate linearly one of the
periodograms in order to estimate ordinates of the same Fourier frequencies.
The remainder of the paper is organized as follows. In Section 2, we introduce the

interpolation procedure. In Section 3, we present nonparametric and parametric tests
of hypothesis to determine whether two series have the same generating process. In
Section 4, we present the results of a Monte Carlo simulation study on the performance
of the methods. In Section 5, we apply the classi�cation method for clustering some
industrialized countries from the information about their industrial production. Section
6 summarizes the paper.

2. Interpolation of the periodogram

Let fxt; t = 1; :::; nxg and fyt; t = 1; :::; nyg be two stationary processes with di¤erent
sample sizes nx 6= ny. The periodogram ordinates of xt are given by

Px(!j) = (2�nx)
�1

�����
nxX
t=1

xte
�it!j

�����
2

, (1)

where !j = 2�j=nx, for j = 1; :::;mx, with mx = [nx=2], the largest integer less or equal
to nx=2, and the frequency ! is in the range [��; �]. Similar expression is de�ned for
Py(!p), with !p = 2�p=ny, for p = 1; :::;my, with my = [ny=2].
The Euclidean distance between the periodogram ordinates Px(!j) and Py(!p) is not

adequate for comparison of series xt and yt since mx 6= my. One way to obtain an
adequate distance measure is to interpolate the periodogram ordinates of the series with
longer (shorter) length from the series with the shorter (longer) length. Without loss of
generatility, let r = [pmx

my
] be the largest integer less or equal to pmx

my
for p = 1; :::;my, and

my < mx. We estimate the periodogram ordinates of xt as

P 0x(!p) = Px(!r) + (Px(!r+1)� Px(!r))�
!p;y � !r;x
!r+1;x � !r;x

= Px(!r)

�
1� !p;y � !r;x

!r+1;x � !r;x

�
+ Px(!r+1)

�
!p;y � !r;x
!r+1;x � !r;x

�
. (2)
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Since, asymptotically, Px(!j) � fx(!j)�2(2)=2 where fx(!j) is the spectral density for each
j = 1; :::;mx, it follows that

E [P 0x(!p)] �
�
1� !p;y � !r;x

!r+1;x � !r;x

�
fx(!r) +

�
!p;y � !r;x
!r+1;x � !r;x

�
fx(!r+1). (3)

Noting that Px(!r) and Px(!s), r 6= s are asymptotically independently distributed
(Priestley, 1981), we have

V ar [P 0x(!p)] �
�
1� !p;y � !r;x

!r+1;x � !r;x

�2
f 2x(!r) +

�
!p;y � !r;x
!r+1;x � !r;x

�2
f 2x(!r+1). (4)

Since the two series fxtg and fytg are independent realizations, Px(!j) and Py(!p) must
be independently distributed as well. Thus, we get

E [P 0x(!p)� Py(!p)] �

�
�
1� !p;y � !r;x

!r+1;x � !r;x

�
fx(!r) +

�
!p;y � !r;x
!r+1;x � !r;x

�
fx(!r+1)� fy(!p), (5)

and, since Cov [P 0x(!p); Py(!p)] = 0,

V ar [P 0x(!p)� Py(!p)] �

�
�
1� !p;y � !r;x

!r+1;x � !r;x

�2
f 2x(!r) +

�
!p;y � !r;x
!r+1;x � !r;x

�2
f 2x(!r+1) + f

2
y (!p). (6)

Assuming the processes are purely nondeterministic, jfx(!r+1)� fx(!r)j ! 0 asmx !1,
for �xed my. Then, following Eq. (3),�����1� !p;y � !r;x

!r+1;x � !r;x

�
fx(!r) +

�
!p;y � !r;x
!r+1;x � !r;x

�
fx(!r+1)

���� � fx(!r) (7)

and hence

E [P 0x(!p)� Py(!p)] � fx(!p)� fy(!p). (8)

Following Eq. (4), !p;y�!r;x
!r+1;x�!r;x ! 1 as mx !1, for �xed my, and we have�����

�
1� !p;y � !r;x

!r+1;x � !r;x

�2
f 2x(!r) +

�
!p;y � !r;x
!r+1;x � !r;x

�2
f 2x(!r+1)

����� � f 2x(!r), (9)

and hence

V ar [P 0x(!p)� Py(!p)] � f 2x(!p) + f 2y (!p). (10)

We then propose the following distance between the periodogram ordinates of the two
series,

dP (x; y) =

vuut 1

m

mX
p=1

(P 0x(!p)� Py(!p))
2, (11)
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where m is the number of periodogram ordinates of the series with shorter length (in this
case, m = my). This distance seems to be computationally competitive with other spec-
trum based distances such as the Cramér-von Mises statistic (Diggle and Fisher, 1991) and
the smoothed spectrum distance discussed in Maharaj (2002). If we are not interested in
the process scale, before the interpolation procedure we can normalize the periodograms,
dividing by the sample variances so that they capture only the autocorrelation struc-
tures, NP 0x(!p) = P 0x(!p)=b0;x and NPy(!p) = Py(!p)=b0;y. Then, since the variance
of the periodogram is proportional to the spectrum at the same Fourier frequencies, we
may use a distance measure between the logarithms of the normalized periodograms, as
recommended by Caiado, Crato and Peña (2006),

dLNP (x; y) =

vuut 1

m

mX
p=1

(logNP 0x(!p)� logNPy(!p))
2. (12)

3. Hypotheses testing procedures

3.1. Nonparametric approach
A test of hypotheses to determine whether two time series are realizations of the same

stochastic mechanism is suggested. Given two independent stationary series fxtg and
fytg, let Px(!j); j = 1; :::;m and Py(!j); j = 1; :::;m denote the underlying periodograms,
the null hypothesis to be tested is H0 : fx(!j) = fy(!j), that is, there is no di¤erence
between the underlying spectra of the series fxtg and fytg.
We know that if bfx(!j); j = 1; :::;m is the sample spectrum of fxtg, thenE h bfx(!j)=b0;xi =

fx(!j)=�
2
x and V ar

h bfx(!j)=b0;xi = f 2x(!j)=�4x. A good approximation toE hlog � bfx(!j)=b0;x�i
and V ar

h
log
� bfx(!j)=b0;x�i is the sample mean and sample variance of the log normalized

periodogram, that is,

E
h
log
� bfx(!j)=b0;x�i � 1

m

mX
p=1

logNPx(!p) = xLNP (13)

and

V ar
h
log
� bfx(!j)=b0;x�i � 1

m

mX
p=1

(logNPx(!p)� xLNP )2 = s2LNP;x. (14)

Similar expressions are given for E
h
log
� bfy(!j)=b0;y�i and V ar hlog � bfy(!j)=b0;y�i.

Therefore, we have

E
h
log
� bfx(!j)=b0;x�� log � bfy(!j)=b0;y�i � xLNP � yLNP , (15)

and

V ar
h
log
� bfx(!j)=b0;x�� log � bfy(!j)=b0;y�i � s2LNP;x + s2LNP;y. (16)
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Under some suitable conditions, the logarithmic transformation of the sample spectrum
will be closer to the normal distribution than to a chi-square distribution (Jenkins and
Priestley, 1957). A test of signi�cance for comparison of the log normalized periodograms
of the two series is based on the statistic,

DNP =
1
m

Pm
p=1 (logNPx(!p)� logNPy(!p))q�

s2LNP;x + s
2
LNP;y

�
=m

, (17)

with asymptotically normal distribution with zero mean and unit variance. For di¤erent
lengths, mx 6= my, the proposed statistic is similarly de�ned using the interpolated pe-
riodogram approach. Jenkins (1961) suggested a similar test. However, he assumes that
spectral estimates are based on the same number of autocorrelation lags, even for series
with unequal sample data.

3.2. Parametric approach
The problem of comparison of series of unequal length can also be analyzed by a para-

metric approach in the time domain. Suppose we have two independent time series fxtg
and fytg generated by the same ARMA(p,q) process, but with di¤erent parameter val-
ues. Let the k = p + q estimated parameters be grouped in the vectors b�x and b�y with
estimated covariance matrices Vx and Vy, respectively. We want to check whether they
are di¤erent realizations of the same stochastic mechanism, so that E[b�x] = E[b�y] = �.
Then � = b�x � b�y for large samples will be a normally distributed vector with zero mean
and covariance matrix

V� = Vx + Vy, (18)

and therefore, we can use the statistic

DP = �
0V �1� �, (19)

which is asymptotically a chi-square distribution with k degrees of freedom under the null
�x = �y. Hamilton (1994, Section 14.3) suggested a similar statistic to test for structural
stability of autoregressive and moving average (ARMA) models over di¤erent subperiods.
In order to test if two generating ARMA processes are equal, the model for each time

series is selected by Akaike�s Information Criterion (AIC) or Bayesian�s Information Cri-
terion (BIC) selection criterions. If the model obtained is the same for the two time series,
then the statistic DP is computed by using the parameters estimated in each time series.
However, if the models selected are di¤erent two methods have been proposed:
(i) Fit a large ARMA model to both processes which encompass the two models to

be compared, for instance the larger of two AIC or BIC selected models. This method
has two main problems: (1) the estimated parameters will in general be highly correlated
for the overparametrized estimated model (or models) and the corresponding covariance
matrix (or matrices) may be close to singular; (2) we have to be very careful to avoid
possible near cancellation of the AR and MA roots on both sides.
(ii) In order to avoid the serious problem of near cancellation of roots, use AR approx-

imations and thus �t to both processes the larger AR model selected and compare the
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estimated parameters. This method has the problem that we may need a large AR model
and very correlated estimated parameters when we have MA generating processes.
Given these problems we propose an alternative approach to apply the parametric

test when the selected models are di¤erent. We �t both models to both time series
and compute the statistic DP in these two situations. If with the two models the null
hypothesis is not rejected, we accept that the processes are generated by the same model.
If the hypothesis is rejected in one of the models, or in both, then we conclude that
the generating processes are di¤erent. Since we have two comparison statements to be
made, the Bonferroni inequality suggests each test with a signi�cance level �=2 to ensure
that the overall signi�cance level is at least �. In our simulation study, we will use this
alternative.

4. Monte Carlo simulations

4.1. Performance study
To illustrate the performance of the interpolated periodogram based metric, two series of

di¤erent sample sizes, (n1; n2) = f(50; 100), (100; 100), (200; 100), (500; 250), (1000; 500),
(2000; 1000)g, were simulated from each of the following processes. So four di¤erent series
were simulated for each replication on each of the following (a) through (i) comparisons:
(a) AR(1), � = 0:9 versus AR(1), � = 0:5;
(b) MA(1), � = �0:9 versus MA(1), � = �0:5;
(c) ARMA(1,1), � = 0:5, � = �0:2 versus ARMA(1,1), � = 0:2, � = �0:8;
(d) AR(1), � = 0:9 versus ARIMA(0,1,0);
(e) IMA(1,1), � = 0:8 versus ARMA(1,1), � = 0:95, � = 0:74;
(f) ARFIMA(0,0.45,0) versus white noise;
(g) ARFIMA(0,0.45,0) versus ARMA(1,0), � = 0:95;
(h) ARFIMA(1,0.45,0), � = 0:3 versus ARIMA(1,1,0), � = 0:3;
(i) Determinist trend, xt = 1 + 0:02t + "t versus stochastic trend, xt = 0:02 + xt�1 +

(1� 0:9B)"t.
In cases (a), (b) and (c), we compare models of similar type, but with low order pa-

rameters and similar autocorrelation functions. In case (d), we compare a nonstationary
process and a stationary process with AR parameter value very close to the random
walk model. In case (e), we compare nonstationary and near nonstationary processes of
Whichern (1974). In cases (f), we compare stationary processes with di¤erent charac-
teristics of persistence. In case (g), we compare long-memory and short-memory near
nonstationary processes. In case (h), we compare a near nonstationary process with long
memory and a nonstationary process. In case (i), we compare the trend-stationary and
di¤erence-stationary processes of Enders (1995, p. 252), but with a near unit root in
the MA component of the stochastic formulation in order to have the two processes with
similar properties. The rational for these choices was to generate processes with similar
sample characteristics. Case (f) is an apparent exception to this rule. In this case, we
were simply interested in knowing whether our methods could succeed in distinguishing
long memory from no memory models.
The fractional noise were simulated using the �nite Fourier method of Davies and Harte

(1987). The four generated series with zero mean and unit variance white noise were
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Table 1
Percentages of success on the comparison between AR(1) and AR(1)

AR(1): � = 0:5
AR(1): � = 0:9 (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 61.2 58.6 73.4 98.4 100.0 100.0
(100,100) 73.2 72.1 71.9 95.6 100.0 100.0
(200,100) 84.8 81.1 87.9 95.4 99.9 100.0
(500,250) 99.1 98.0 98.6 99.2 99.9 100.0
(1000,500) 100.0 100.0 100.0 99.9 100.0 100.0
(2000,1000) 100.0 100.0 100.0 100.0 100.0 100.0

Table 2
Percentages of success on the comparison between MA(1) and MA(1)

MA(1): � = �0:5
MA(1): � = �0:9 (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 43.3 39.2 58.6 95.5 100.0 100.0
(100,100) 36.0 43.9 42.0 88.1 100.0 100.0
(200,100) 58.0 43.1 64.2 85.8 99.6 100.0
(500,250) 93.3 86.6 82.5 92.0 95.3 99.2
(1000,500) 100.0 99.8 99.4 96.3 99.4 99.6
(2000,1000) 100.0 100.0 100.0 99.7 100.0 100.0

grouped into two clusters by hierarchical method of complete linkage using the Euclidean
mean distance between the log normalized periodogram ordinates de�ned in (8). This
was repeated 1000 times. The mean percentages of success on the comparison in cases (a)
to (i) are provided in Tables 1 to 9, respectively. For instance, in Table 1, the value 61.2
in the upper-left cell means that 61.2% of the times the two AR(1), � = 0:9; n1 = 50 and
n2 = 100 processes were grouped into one cluster and the two AR(1), � = 0:5; n1 = 50
and n2 = 100 processes were grouped into another cluster.
In the comparisons among stationary processes with ARMA and ARFIMA formula-

tions, the interpolated periodogram based metric shows a remarkable good performance.
The simulations results on the comparison between ARMA versus ARIMA processes show
a performance that increases signi�cantly with the sample size. The exception to this is
case (i), in which the metric is unable to distinguish successfully between trend-stationary
and di¤erence-stationary processes of similar length, in particularly for large data samples.
This can be easily explained by noting that periodogram of both processes are dominated
by a divergence at low frequencies that conceals di¤erences when the sample size is large.
For unequal length, the discrimination between the two models works well.

4.2. Power and size of the tests
We obtained the estimates of the power and size of the proposed tests for simulated

series from the following processes:
(a) AR(1), � = 0:5 versus AR(1), � = 0:1, 0:3, 0:5, 0:7, 0:9;
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Table 3
Percentages of success on the comparison between ARMA(1,1) and ARMA(1,1)

ARMA(1,1): ARMA(1,1): � = 0:2; � = �0:8
� = 0:5; � = �0:2 (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 36.6 26.3 48.7 92.8 100.0 100.0
(100,100) 30.1 31.4 33.8 84.4 100.0 100.0
(200,100) 50.7 32.4 54.7 77.5 98.2 100.0
(500,250) 93.7 82.7 74.5 84.9 92.1 98.7
(1000,500) 100.0 99.8 98.1 91.5 97.1 98.3
(2000,1000) 100.0 100.0 100.0 99.0 98.5 99.8

Table 4
Percentages of success on the comparison between AR(1) and ARIMA(0,1,0)

ARIMA(0,1,0)
AR(1): � = 0:9 (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 16.4 26.2 42.4 88.0 99.7 100.0
(100,100) 11.6 22.7 30.8 78.9 98.3 100.0
(200,100) 22.8 19.4 36.0 76.6 96.4 100.0
(500,250) 82.4 59.8 58.2 74.8 92.0 97.7
(1000,500) 99.8 100.0 96.4 79.4 89.0 96.8
(2000,1000) 100.0 100.0 100.0 99.5 95.3 95.0

Table 5
Percentages of success on the comparison between IMA(1,1) and ARMA(1,1)
IMA(1,1): ARMA(1,1): � = 0:95; � = 0:74
� = 0:8 (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)
(50,100) 14.6 11.2 26.6 84.8 100.0 100.0
(100,100) 11.6 11.1 8.2 60.7 100.0 100.0
(200,100) 26.9 10.2 20.6 46.2 92.7 100.0
(500,250) 81.8 60.1 48.7 41.1 54.4 90.3
(1000,500) 99.6 97.3 90.4 62.6 60.4 77.6
(2000,1000) 100.0 100.0 100.0 88.5 76.1 74.1

Table 6
Percentages of success on the comparison between ARFIMA(0,0.45,0) and white noise

White noise
ARFIMA(0,0.45,0) (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 45.5 35.1 54.6 95.3 100.0 100.0
(100,100) 34.8 41.0 40.1 88.1 100.0 100.0
(200,100) 63.8 44.5 66.7 82.8 99.4 100.0
(500,250) 95.5 87.4 87.0 93.7 95.9 99.4
(1000,500) 100.0 100.0 99.1 98.2 99.5 99.5
(2000,1000) 100.0 100.0 100.0 99.9 100.0 100.0
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Table 7
Percentages of success on the comparison between ARFIMA(0,0.45,0) and ARMA(1,0)

ARMA(1,0): � = 0:95
ARFIMA(0,0.45,0) (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 63.5 82.9 86.3 98.2 100.0 100.0
(100,100) 57.7 83.1 86.0 96.0 99.8 100.0
(200,100) 74.9 82.5 85.2 95.2 99.7 100.0
(500,250) 98.7 95.1 93.4 93.9 97.6 99.9
(1000,500) 100.0 100.0 99.9 96.5 97.8 99.6
(2000,1000) 100.0 100.0 100.0 100.0 99.4 99.5

Table 8
Percentages of success on the comparison between ARFIMA(1,0.45,0) and ARIMA(1,1,0)
ARFIMA(1,0.45,0): ARIMA(1,1,0): � = 0:3

� = 0:3 (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)
(50,100) 49.9 70.4 79.0 95.4 99.8 99.9
(100,100) 43.1 67.6 75.1 94.2 98.7 100.0
(200,100) 56.1 64.0 73.0 92.3 97.6 99.9
(500,250) 95.3 85.4 84.0 91.1 95.1 99.4
(1000,500) 100.0 99.8 98.8 93.0 96.0 98.9
(2000,1000) 100.0 100.0 100.0 99.8 97.9 98.8

Table 9
Percentages of success on the comparison between deterministic trend and stochastic trend

xt= 0:02 + xt�1+(1� 0:9B)"t
xt= 1 + 0:02t+ "t (50,100) (100,100) (200,100) (500,250) (1000,500) (2000,1000)

(50,100) 16.6 10.0 26.7 84.7 99.9 100.0
(100,100) 9.3 9.8 14.4 58.4 97.8 100.0
(200,100) 24.8 7.0 14.4 36.9 93.7 100.0
(500,250) 80.1 46.2 18.3 2.3 18.3 78.5
(1000,500) 99.9 99.9 88.5 7.8 0.2 6.2
(2000,1000) 100.0 100.0 100.0 57.6 3.8 0.0



10

(b) ARMA(1,1), � = 0:2, � = �0:5 versus ARMA(1,1), � = 0:2, � = �0:1, �0:3, �0:5,
�0:7, �0:9;
(c) White noise versus AR(1), � = 0, 0:2, 0:4, 0:6, 0:8;
(d) ARMA(1,0), � = 0:5 versus ARFIMA(1,d,0), � = 0:5, d = 0, 0:1, 0:2, 0:3, 0:4;
(e) AR(1), � = 0:7 versus AR(1), � = 0:7, 0:8, 0:9, 1:0.
From these comparisons we are able to see how the tests work for distinguishing similar

models with di¤erent parameters. From the considerable set of values for the parameters,
we can verify whether an increasing di¤erence leads to better test power. The results were
based on 1000 replications of each pair of processes. For the parametric approach, we
�tted ARMA(m,n) models to the series, with the orders m = 0; 1; 2; 3 and n = 0; 1; 2; 3
selected by BIC (the AIC does not work in selecting models for hypothesis testing, as
noted by Peña and Rodriguez, 2005). Tables 10, 11, 12 and 13 give the results for cases
(a), (b), (c) and (d) (stationary versus stationary) for 10% level of signi�cance using the
nonparametric test DNP and the parametric test DP . Table 14 gives the estimated powers
and sizes in the case (e) (stationary versus near nonstationary) for 5% level of signi�cance
using tests DNP and DP .
As expected, the tests for large samples are more powerful than the tests for small sam-

ples. The power of the parametric test for small samples is larger than the nonparametric
test when the processes are distinct. Since the hypothesis testing procedures have as-
ymptotic distribution, the poor performance of the nonparametric test for series of short
length is not surprising. For the parametric test, overall estimates of the size for small
samples exceed slightly the signi�cance levels when the two series were simulated from
the same process, whereas for the nonparametric test the estimated sizes were very close
to the signi�cance levels and do not change signi�cantly with the increasing sample. For
all the cases, the tests for equal and unequal length give similar results.

5. Application

Monthly data (seasonally adjusted) of industrial production indices series of European
economies and some of the most industrialized countries are reported in Table 15 (source:
Camacho, Pérez-Quiróz and Saiz, 2004).

5.1. Multidimensional scaling
The technique of multidimensional scaling, also known as principal coordinates analy-

sis, creates a con�guration of k points in a map of p dimensions (ideally, two or three
dimensions) which gives the Euclidean distances among objects using the information
about the similarity (or dissimilarity) matrix. In our application, we have the Euclid-
ean distances between the log normalized interpolated periodogram ordinates of k = 30
production series shown in Figure ??.
Figure 2 represents the map of distances using the 2-dimensional metric scaling. The

�rst dimension seems to be related to development of the countries. The interpretation
of the second dimension is not straightforward. However, looking at the interpolated
periodograms of the distinct countries Cyprus and Ireland, we see that they have some
peaks at di¤erent frequencies from each other. Moreover, the interpolated LNP of Ireland
series reaches the minimum value at frequencies !29 = 2�(29)=85 = 2:14367 and !38 =
2�(38)=85 = 2:80895, whereas the interpolated LNP of Cyprus series is dominated by
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Table 10
Estimates of power and size of 0.10 test of signi�cance for AR(1), �=0.5 versus AR(1),
�=0.1, 0.3, 0.5, 0.7, 0.9

Nonparametric test DNP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.1 0.15 0.29 0.56 0.90 0.99 1.00
0.3 0.11 0.17 0.31 0.63 0.90 1.00
0.5 0.08 0.09 0.08 0.09 0.09 0.09
0.7 0.23 0.41 0.62 0.95 1.00 1.00
0.9 0.67 0.96 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.1 0.18 0.22 0.30 0.71 0.93 1.00
0.3 0.09 0.17 0.16 0.37 0.63 0.87
0.5 0.08 0.06 0.07 0.08 0.05 0.08
0.7 0.22 0.27 0.38 0.77 0.96 1.00
0.9 0.72 0.85 0.96 1.00 1.00 1.00

Parametric test DP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.1 0.67 0.84 0.99 1.00 1.00 1.00
0.3 0.26 0.39 0.54 0.90 0.99 1.00
0.5 0.19 0.12 0.10 0.06 0.04 0.06
0.7 0.27 0.37 0.68 0.98 1.00 1.00
0.9 0.75 0.96 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.1 0.72 0.85 0.89 1.00 1.00 1.00
0.3 0.34 0.34 0.34 0.80 0.97 1.00
0.5 0.12 0.08 0.10 0.06 0.04 0.06
0.7 0.33 0.48 0.50 0.88 1.00 1.00
0.9 0.93 0.98 0.98 1.00 1.00 1.00
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Table 11
Estimates of power and size of 0.10 test of signi�cance for ARMA(1,1), �=0.2 and �=-0.5
versus ARMA(1,1), �=0.2 and �=-0.1, -0.3, -0.5, -0.7, -0.9

Nonparametric test DNP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
-0.1 0.21 0.34 0.59 0.96 1.00 1.00
-0.3 0.08 0.15 0.23 0.50 0.79 0.96
-0.5 0.05 0.05 0.07 0.05 0.06 0.06
-0.7 0.08 0.14 0.25 0.48 0.80 0.97
-0.9 0.18 0.30 0.58 0.95 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
-0.1 0.19 0.30 0.34 0.71 0.95 1.00
-0.3 0.08 0.11 0.12 0.29 0.50 0.85
-0.5 0.04 0.04 0.03 0.03 0.03 0.05
-0.7 0.06 0.06 0.10 0.22 0.46 0.76
-0.9 0.12 0.12 0.28 0.70 0.97 1.00

Parametric test DP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
-0.1 0.64 0.80 0.98 1.00 1.00 1.00
-0.3 0.40 0.26 0.47 0.70 1.00 1.00
-0.5 0.18 0.10 0.11 0.10 0.05 0.06
-0.7 0.28 0.46 0.62 0.91 1.00 1.00
-0.9 0.80 0.97 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
-0.1 0.59 0.84 0.87 1.00 1.00 1.00
-0.3 0.28 0.30 0.37 0.70 0.98 1.00
-0.5 0.15 0.13 0.12 0.10 0.04 0.06
-0.7 0.49 0.55 0.59 1.00 1.00 1.00
-0.9 0.95 0.98 1.00 1.00 1.00 1.00
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Table 12
Estimates of power and size of 0.10 test of signi�cance for white noise versus AR(1), �=0,
0.2, 0.4, 0.6, 0.8

Nonparametric test DNP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.0 0.03 0.04 0.03 0.05 0.05 0.04
0.2 0.05 0.05 0.05 0.08 0.10 0.20
0.4 0.10 0.15 0.26 0.59 0.87 0.99
0.6 0.33 0.57 0.87 1.00 1.00 1.00
0.8 0.73 0.97 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.0 0.04 0.03 0.04 0.03 0.04 0.03
0.2 0.05 0.05 0.05 0.06 0.07 0.12
0.4 0.10 0.09 0.16 0.35 0.60 0.88
0.6 0.33 0.37 0.60 0.93 1.00 1.00
0.8 0.76 0.89 0.98 1.00 1.00 1.00

Parametric test DP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.0 0.15 0.19 0.17 0.15 0.10 0.05
0.2 0.32 0.31 0.56 0.89 0.99 1.00
0.4 0.60 0.84 0.98 1.00 1.00 1.00
0.6 0.89 1.00 1.00 1.00 1.00 1.00
0.8 0.97 1.00 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.0 0.16 0.15 0.16 0.11 0.10 0.04
0.2 0.30 0.44 0.49 0.80 0.96 1.00
0.4 0.68 0.84 0.96 1.00 1.00 1.00
0.6 0.96 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00
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Table 13
Estimates of power and size of 0.10 test of signi�cance for ARMA(1,0), �=0.5 versus
ARFIMA(1,d,0), �=0.5, d=0, 0.1, 0.2, 0.3, 0.4

Nonparametric test DNP (equal and unequal lengths)
d (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.0 0.08 0.09 0.10 0.10 0.10 0.09
0.1 0.13 0.16 0.24 0.45 0.76 0.89
0.2 0.22 0.36 0.59 0.92 1.00 1.00
0.3 0.38 0.64 0.90 1.00 1.00 1.00
0.4 0.53 0.86 1.00 1.00 1.00 1.00
d (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.0 0.07 0.07 0.08 0.08 0.08 0.08
0.1 0.11 0.10 0.16 0.25 0.43 0.71
0.2 0.20 0.22 0.35 0.71 0.96 1.00
0.3 0.33 0.42 0.62 0.97 1.00 1.00
0.4 0.50 0.72 0.88 1.00 1.00 1.00

Parametric test DP (equal and unequal lengths)
d (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.0 0.20 0.18 0.11 0.08 0.10 0.10
0.1 0.22 0.23 0.29 0.44 0.72 0.95
0.2 0.33 0.39 0.69 0.91 1.00 1.00
0.3 0.38 0.74 0.91 1.00 1.00 1.00
0.4 0.60 0.85 1.00 1.00 1.00 1.00
d (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.0 0.11 0.16 0.12 0.08 0.06 0.04
0.1 0.22 0.20 0.23 0.39 0.60 0.87
0.2 0.24 0.32 0.46 0.81 0.99 1.00
0.3 0.49 0.60 0.68 0.99 1.00 1.00
0.4 0.62 0.89 0.91 1.00 1.00 1.00
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Table 14
Estimates of power and size of 0.05 test of signi�cance for AR(1), �= 0.7 versus AR(1),
�= 0.7, 0.8, 0.9, 1.0

Nonparametric test DNP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.7 0.05 0.08 0.08 0.07 0.08 0.08
0.8 0.13 0.21 0.36 0.67 1.00 1.00
0.9 0.30 0.64 0.93 1.00 1.00 1.00
1.0 0.50 0.91 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.7 0.05 0.06 0.05 0.05 0.05 0.06
0.8 0.08 0.11 0.16 0.41 0.73 0.95
0.9 0.26 0.43 0.63 0.96 1.00 1.00
1.0 0.46 0.74 0.91 1.00 1.00 1.00

Parametric test DP (equal and unequal lengths)
� (50,50) (100,100) (200,200) (500,500) (1000,1000) (2000,2000)
0.7 0.06 0.07 0.05 0.03 0.05 0.04
0.8 0.15 0.10 0.29 0.57 0.84 0.97
0.9 0.32 0.52 0.88 0.99 1.00 1.00
1.0 0.59 0.93 1.00 1.00 1.00 1.00
� (100,50) (150,75) (200,100) (500,250) (1000,500) (2000,1000)
0.7 0.13 0.07 0.06 0.04 0.03 0.05
0.8 0.15 0.13 0.24 0.38 0.73 0.98
0.9 0.45 0.54 0.71 0.99 1.00 1.00
1.0 0.87 0.95 1.00 1.00 1.00 1.00

Table 15
Industrial production indices series (countries and data avaibility)

Country Code Sample n Country Code Sample n
Austria OE 62:01-02:12 492 Canada CN 62:01-03:01 493
Belgium BG 62:01-03:01 493 Norway NW 62:01-03:01 493
Germany BD 62:01-03:01 493 Japan JP 62:01-03:01 493
Greece GR 62:01-03:01 493 USA US 62:01-03:01 493
Finland FN 62:01-03:01 493 Cyprus CY 90:01-03:01 142
France FR 62:01-03:01 493 Czech Republic CZ 90:01-03:01 142
Italy IT 62:01-03:01 493 Estonia ET 95:01-03:01 97
Ireland IR 75:07-03:01 331 Hungary HN 90:01-03:01 142
Luxembourg LX 62:01-03:01 493 Latvia LA 90:01-03:01 142
Netherlands NL 62:01-03:01 493 Lithuania LI 96:01-03:01 85
Portugal PT 62:01-03:01 493 Poland PO 90:01-03:01 142
Spain ES 65:01-03:01 457 Slovak Republic SK 93:01-03:01 121
Denmark DK 74:01-03:01 349 Slovenia SL 90:01-03:01 142
Sweden SD 62:01-03:01 493 Romania RO 90:01-03:01 142
United Kingdom UK 62:01-03:01 493 Turkey TK 90:01-03:01 142
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Figure 1. Log normalized interpolated periodograms of industrial production series of 30
European and some developed countries

large peaks at the same frequencies. It can be seen that the old European Union countries
(except Ireland) and the USA, Canada, Japan and Norway are close to each other and far
from the group of the new European Union countries and candidate countries (Estonia,
Turkey, Slovak Republic, Romania, Lithuania, Slovenia, Czech Republic and Latvia). The
picture shows a small group formed by Poland and Hungary that is very close to those
countries of the European Union before the enlargement. We found also in the map two
clear outliers Ireland and Cyprus.

5.2. Hierarchical clustering
We consider also the useful method of clustering the series by hierarchical clustering tree

(or dendrogram). Figure 3 shows the dendrogram for the industrial production indices
series by complete linkage method from which the clusters of countries can be identi�ed.
It can be seen at the tree that the interpolated periodogram based method can grouped
the series into three very reasonable clusters: Cluster 1=(CN, US, NL, IT, ES, FR, SD,
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Figure 2. Principal coordinates of 30 countries using the interpolated periodogram based
method
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Figure 3. Dendrogram of industrial production series of 30 countries using the interpolated
periodogram based method

BG, BD, LX, UK, DK, OE, FN, GR, IR, PT, JP, NW), Cluster 2=(CY, CZ, SL, LI)
and Cluster 3=(ET, SK, RO, TK, HN, PO, LA). Cluster 1 includes all the old European
Union countries and the USA, Canada, Japan and Norway. Cluster 2 grouped four new
European Union countries (Cyprus, Czech Republic, Slovenia and Lithuania). Cluster 3
includes the other new European Union countries (Estonia, Slovak Republic, Hungary,
Poland, Latvia) and the candidate countries (Romania and Turkey).
These results di¤er slightly from the ones of Camacho, Pérez-Quiróz and Saiz (2004).

They found a cluster that includes most of the old European countries and the new
European countries Cyprus, Lithuania, Slovenia and Hungary together, a cluster formed
by the industrialized countries USA, Canada, United Kingdom, Japan, and a cluster
formed by the other new European countries, the candidates countries Latvia, Estonia,
Slovenia, Czech Republic, Romania, Turkey and Poland, and the industrialized country
Norway.



19

6. Concluding remarks

This paper focus on development of a periodogram-based method and a hypothesis
testing procedure for comparison of time series with unequal length. The proposed method
is based on the linear interpolation of the individual periodogram ordinates at di¤erent
Fourier frequencies. It can perform very well for comparing stationary processes with
similar sample properties, for comparing nonstationary and near nonstationary processes,
and for comparing short-memory and long-memory processes. The estimated power and
sizes of the tests for both equal and unequal lengths give similar results, which shows the
robustness of the proposed approach. One application to industrial production series also
demonstrates the merits of the method.
We also consider a time domain parametric approach based on the distance between

parameter estimates of the same model. We found that the parametric test had very
high power to distinguish between two distinct processes. However, contrarily to the
periodogram-based test, which is easy to implement and computational fast, the para-
metric approach needs ad-hoc ARMA modelling of several time series.
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