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Abstract

In this paper we present a method for the numerical evaluation of the ruin
probability in continuous and finite time for a classical risk process where the
premium can change from year to year. A major consideration in the development
of this methodology is that it should be easily applicable to large portfolios. Our
method is based on the simulation of the annual aggregate claims and then on
the calculation of the ruin probability for a given surplus at the start and at the
end of each year. We calculate the within-year ruin probability assuming first a
Brownian motion approximation and, secondly, a translated gamma distribution
approximation for aggregate claim amounts.

We illustrate our method by studying the case where the premium at the
start of each year is a function of the surplus level at that time or at an earlier
time.

1 Introduction

This paper presents a method for calculating the probability of ruin in continuous and
finite time for a compound Poisson risk process where the premium rate is constant
throughout each year but can change at the start of each year. We are interested in
the case where the premium depends on the past aggregate annual claims experience
and, in particular, where it depends on the surplus level at the end of the previous year
or at some earlier time.

Our method involves simulating the aggregate claims for each year, calculating the
premium to be charged each year given the past aggregate claim amounts, and then
calculating the within year probability of ruin assuming either a Brownian motion or
translated gamma distribution approximation to the surplus process. The Brownian
motion approximation is well established, see for example Sections 8.6 and 8.7 of Klug-
man et al. (2004), and should work well if the expected number of claims in each year
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is reasonably large. The translated gamma approximation uses ideas which go back at
least to Seal (1978a) and has been used more recently by Dickson and Waters (1993,
2006). It has its roots in Bohman and Esscher (1963).

In Section 2 we set out our model and general procedure for calculating ruin prob-
abilities in continuous and finite time. In Section 3 we give details of the Brownian
motion and the translated gamma approximations we use to calculate the probability
of ruin within each year, given the surplus at the start and at the end of the year.
Details of our procedure to simulate ruin probabilities are given in Section 4.

Wikstad (1971) and Seal (1978b) give values for the probability of ruin in finite and
continuous time for some examples of a classical risk process (with constant premiums).
In Section 5 we check the accuracy of our methodology by applying it to these examples
and comparing our values with theirs.

In Section 7 we apply our method to a risk process where the premium at the
start of each year depends on the current or a past level of the surplus. We consider
several cases. We start by assuming that the premium for the coming year depends
on the surplus at the end of the preceding year, i.e. on the current surplus. This
is intuitively appealing but may not be practicable, since it requires the insurer to
determine and charge the new premium instantaneously. In practice there may be
some delay in setting a new premium rate so we also consider the case where the
premium in the coming year depends on the surplus one year ago. In both cases, the
higher the surplus, the lower will be the premium. The premium rate is set each year
so that the probability of ultimate ruin from that time is always (approximately) equal
to a pre-determined value. We do this using De Vylder (1978)’s approximation; details
are given in Section 6.

The problem of calculating the probability of ruin when the premium is a function
of the surplus level at the end of the year has been studied by many authors, in most
cases in infinite time. For example, Davidson (1969) let the safety loading decrease
with an increasing risk reserve. Taylor (1980) and Jasiulewicz (2001) considered the
case where the premium rate varies continuously as a function of the surplus. Petersen
(1989) illustrates with a simple numerical method how the probability of ruin can
be calculated when the general premium rate depends on the reserve. Dickson (1991)
considered the case where the premium rate changes when the surplus crosses an upper
barrier. More recently, Cardoso and Waters (2005) presented a numerical method for
calculating finite time ruin probabilities for the same problem.

The use of simulation to estimate ruin probabilities is not new. Dufresne and Gerber
(1989) observed that the probability of ruin is related to the stationary distribution of a
certain associated process and estimated it using simulation. Michaud (1996) simulated
the jumps and interjump times for two models in order to approximate the probability
of ultimate ruin. In his first model the surplus earns interest; in his second model the
premium changes continuously and depends on the current level of the surplus.
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2 The model

We consider a risk process over an n-year period. We denote by S(t) the aggregate
claims up to time t, so that S(0) = 0, and by Yi the aggregate claims in year i,
i = 1, . . . , n, so that Yi = S(i) − S(i − 1). We assume that {Yi}n

i=1 is a sequence
of i.i.d. random variables, each with a compound Poisson distribution whose first
three moments exist. We denote by λ the Poisson parameter for the expected number
of claims each year and by f(·, s) the probability density function (pdf) of S(s) for
0 < s ≤ 1.

Let Pi denote the premium charged in year i and let U(t) denote the insurer’s
surplus at time t, 0 ≤ t ≤ n. We assume premiums are received continuously at a
constant rate throughout each year. The initial surplus, u (= U(0)), and the initial
premium, P1, are known. For i = 2, . . . , n, we assume that Pi is a function of {U(j)}i−1

j=1,
the surplus at the end of each of the preceding years. For any time t, 0 ≤ t ≤ n, U(t)
is calculated as follows:

U(t) = u +
i−1∑
j=1

Pj + (t− i + 1)Pi − S(t) (2.1)

where i is such that t ∈ [i− 1, i), and where
0∑

j=1

Pj = 0.

For i ≥ 2, the premium Pi and surplus level U(i) are random variables since they
both depend on the claims experience in previous years. Where we wish to refer to a
particular realisation of these variables, we will use the lower case letters pi and u(i),
respectively.

The probability of ruin in continuous time within n years is denoted by ψ(u, n) and
defined as follows:

ψ(u, n)
def
= Pr(U(t) < 0 for some t ∈ (0, n])

Let ψ(u(i−1), 1, u(i)) be the probability of ruin within the year i, given the surplus
u(i − 1) at the start of the year and the surplus u(i) at the end. We will develop a
formula for ψ(u(i−1), 1, u(i)) following methods in Dickson and Waters (2006, Section
3.2).

Let ∆(u(i−1), 1, z) denote the probability that, starting from a surplus of u(i−1),
ruin does not occur in the year and the surplus at the end of the year is greater than z.
Then:

∆(u(i− 1), 1, y) =

∫ ∞

y

(1− ψ(u(i− 1), 1, z) f(u(i− 1) + pi − z, 1) dz

and so:

ψ(u(i− 1), 1, y) = 1 +
1

f(u(i− 1) + pi − y, 1)

d

dy
∆(u(i− 1), 1, y)
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Using formulae (3.11) and (3.13) from Dickson and Waters (2006) and writing y = u(i),
we have:

ψ(u(i− 1), 1, u(i)) =

∫ 1−u(i)/pi

s=0
f(u(i− 1) + pis, s)

u(i)
(1−s)

f(pi(1− s)− u(i), 1− s)ds

f(u(i− 1) + pi − u(i), 1)

+
f(u(i− 1) + pi − u(i), 1− u(i)/pi) exp(−λu(i)/pi)

f(u(i− 1) + pi − u(i), 1)
(2.2)

In principle, formula (2.2) can be used to calculate values of ψ(u(i − 1), 1, u(i)). We
require values of the pdf f(·, s) for values of s from 0 to 1. Although these values can
be calculated using well known recursive formulae, the number of values required can
be prohibitively large, particularly if λ is large, and so some approximate method of
calculation is required. In the next section we give details of two approximate methods
for calculating this probability.

3 Approximate calculation of the within year prob-

ability of ruin

In this section we give details of two methods for approximating the within year proba-
bility of ruin, ψ(u(i−1), 1, u(i)). The two methods, a Brownian motion approximation
and a translated gamma approximation, are both moment based; the former matching
two moments and the latter matching three.

3.1 The Brownian motion approximation

Let {W (s); s ≥ 0} be a Brownian motion process with drift and variance per unit time
denoted µ and σ2, respectively. For the given values u(i − 1) and pi, we approximate
the surplus process, {U(t)} over the time interval i−1 ≤ t ≤ i by the Brownian motion
process {u(i−1)+W (s)} over the time interval 0 ≤ s ≤ 1, with s = t− i+1 and with:

µ = pi − E[Yi] and σ2 = Var[Yi]

so that for 0 ≤ s (= t− i + 1) ≤ 1:

E[u(i− 1) + W (s)] = u(i− 1) + s(pi − E[Yi]) = E[U(t) | U(i− 1) = u(i− 1)]

Var[u(i− 1) + W (s)] = s.σ2 = Var[U(t)] | U(i− 1) = u(i− 1)]

Let T denote the time until ruin for this approximating process, so that:

T = inf(τ > 0 : u(i− 1) + W (τ) < 0)
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with the convention that T = ∞ if ruin never occurs. Klugman et al. (2004, Corollaries
8.25 and 8.27) show that the probability that ruin ever occurs, denoted ψBM(u(i− 1)),
is given by:

ψBM(u(i− 1)) = exp

(
−2µu(i− 1)

σ2

)
(3.1)

and the probability density of the time to ruin, given that ruin occurs, denoted fT (s),
is:

fT (s) =
u(i− 1)√

2πσ2
s−3/2 exp

(
− (u(i− 1)− µs)2

2σ2s

)
(3.2)

Hence, the probability density of the time to ruin, for finite s, without conditioning on
whether ruin occurs, is the product of (3.1) and (3.2), that is:

fT (s)ψBM(u(i− 1)) =
u(i− 1)√

2πσ2
s−3/2 exp

(
− (u(i− 1)− µs)2 + 4µsu(i− 1)

2σ2s

)
(3.3)

Klugman et al. (2004, page 259) also show that, for 0 < s < 1, the conditional
probability density of u(i− 1) + W (1) at y, given that T = s, denoted f(y|T = s), is:

f(y|T = s) = exp
(yµ

σ2

)exp
(
− y2+µ2(1−s)2

2σ2(1−s)

)
√

2πσ2(1− s)
(3.4)

Hence, for 0 < T < 1, the joint probability density of u(i − 1) + W (1) and T is
given by the product of (3.3) and (3.4) and the conditional probability density of T ,
given that u(i − 1) + W (1) = u(i), denoted fW (s), is the product of (3.3) and (3.4)
divided by the (marginal) density of u(i− 1)+W (1) at the point u(i). Since W (1) has
a normal distribution, we have:

fW (s) =
exp

(u(i)µ
σ2

)u(i− 1)s−3/2

2πσ2

1√
1− s

exp
(
− u(i)2 + µ2(1− s)2

2σ2(1− s)
− (u(i− 1)− µs)2

2σ2s
− 2µu(i− 1)

σ2

)

n(u(i)− u(i− 1), µ, σ2)

where n(·, µ, σ2) is the density function of the normal distribution.
Finally, the probability of ruin in the year, given that the surplus at the end of the

year is u(i), is given by the integral of this last conditional density from s = 0 to s = 1.
We denote this probability ψBM(u(i− 1), 1, u(i)), so that:

ψBM(u(i− 1), 1, u(i)) =

∫ 1

s=0

fW (s) ds (3.5)

In later sections we will use ψBM(u(i−1), 1, u(i)) as an approximation to ψ(u(i− 1), 1, u(i)).
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3.2 Translated gamma approximation

The translated gamma approximation to the probability ψ(u(i − 1), 1, u(i)) is based
on replacing each pdf in formula (2.2) by an approximating gamma density chosen
to match the first three moments. This is based on the methodology in Dickson and
Waters (2006, formulae (4.7) & (4.9)).

Let α, β and κ be such that:

2√
α

=
E[(Yi − E[Yi])

3]

Var[Yi]3/2

α

β2
= Var[Yi]

α

β
+ κ = E[Yi]

and let H(s) be a random variable with a gamma distribution with parameters αs
and β. Then for 0 < s ≤ 1 the random variable H(s) + κs has a translated gamma
distribution whose first three moments match those of S(s).

We can approximate ψ(u(i − 1), 1, u(i)) by replacing each compound Poisson pdf
in formula (2.2) by the pdf of H(s) + κs, with the appropriate value of s. Let FG(·, s)
and fG(·, s) denote the cumulative distribution function and pdf of H(s), respectively.
In particular, we need to replace:

f(x, s) by fG(x− κs, s)

exp(−λt) by FG(−κt, t)

For this last relationship, note that for the compound Poisson process exp(−λt) is the
probability of no claims in a time interval of length t. We approximate this by the
probability that H(t) + κt is negative, which is FG(−κt, t).

Our translated gamma approximation to ψ(u(i − 1), 1, u(i)), which we denote by
ψTG(u(i− 1), 1, u(i)), is given by:

ψTG(u(i− 1), 1, u(i)) =

∫ 1−u(i)/pi

s=0
fG(u(i− 1) + (pi − κ)s, s) u(i)

(1−s)fG((pi − κ)(1− s)− u(i), 1− s)ds

fG(u(i− 1) + pi − κ− u(i), 1)

+
fG(u(i− 1) + (pi − κ)(1− u(i)

pi
), 1− u(i)

pi
)FG(−κu(i)/pi, u(i)/pi)

fG(u(i− 1) + pi − κ− u(i), 1)
(3.6)

The advantage of using ψTG(u(i−1), 1, u(i)) as an approximation to ψ(u(i−1), 1, u(i))
is that there are well established and fast algorithms for calculating gamma densities
so that the former can be calculated far more quickly and easily than the latter.

4 Simulation of ruin probabilities

Our goal is to estimate ψ(u, n). To achieve this we simulate N paths of the surplus
process (2.1) at integer intervals, i.e. for t = 1, 2, . . . , n. Each path starts at u (= U(0)).
The premium in the first year, P1 (= p1), is given.
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Let ψj(u, n), j = 1, 2, . . . , N , denote the estimate of ψ(u, n) from the j − th simu-
lation. Our procedure for calculating ψj(u, n) is as follows:

(i) Simulate the values of {Yi}n
i=1 by assuming each Yi is approximately distributed

as H(1) + κ, where H(1) and κ are as defined in Section 3.2, so that H(1) has a
translated gamma distribution with parameters α, β and κ.

(ii) From the simulated values of {Yi}n
i=1, say {yi}n

i=1, calculate successively u(1)
(= u + p1 − y1), then p2 (as a function of u and u(1)), u(2) (= u(1)+p2−y2) and
so on until the surplus at the end of each year, {u(i)}n

i=0, has been calculated.

(iii) If u(i) < 0 for any i, i = 1, 2, . . . , n, then we set ψj(u, n) = 1 and we start
simulation j + 1.

(iv) If u(i) ≥ 0 for all i, i = 1, 2, . . . , n, we calculate ψj(u(i− 1), 1, u(i)), using either
a Brownian motion or translated gamma approximation, as in Sections 3.1 and
3.2, and then calculate ψj(u, n) as follows:

ψj(u, n) = 1−
n∏

i=1

(1− ψBM(u(i− 1), 1, u(i)))

ψj(u, n) = 1−
n∏

i=1

(1− ψTG(u(i− 1), 1, u(i)))

The mean of our N estimates, {ψj(u, n)}N
j=1, is then our estimate of ψ(u, n) and we

can use the sample standard deviation of the N estimates to calculate approximate
confidence intervals for the estimate. We will denote our estimates ψ̂BM(u, n) and
ψ̂TG(u, n).

A point to note about this procedure is that the size of the portfolio, as measured
by the Poisson parameter, λ, does not affect the scale of the calculations. Hence, this
methodology can be applied as easily to large as to small portfolios. In fact, the larger
the value of λ, the more accurate the approximations are likely to be.

5 Accuracy of the procedure

5.1 General comments

Our methodology for estimating the probability of ruin in finite and continuous time
is based on two approximations:

(i) We simulate the annual aggregate claims using a translated gamma approxima-
tion.

(ii) We estimate the within year probability of ruin, given the starting and final
surplus, using a Brownian motion or a translated gamma approximation.
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We would expect both to be reasonable approximations if the expected number of
claims each year, λ, is large and the individual claim size distribution does not have
too fat a tail. Note that if u = 0 we cannot use the Brownian motion approximation
to the within year probability of ruin since each simulation will give ψj(0, 1, u(1)) = 1.

Wikstad (1971) and Seal (1978b) provide values of ruin probabilities in finite and
continuous time for some compound Poisson risk processes, in all cases with a fixed
premium rate. We can test the accuracy of our method by applying it to their examples.
The ruin probabilities in their examples range from practically zero to almost 1. We
restrict our comparisons to cases where their value for the probability of ruin lies
between 0.001 and 0.05, which we consider covers all values of practical interest.

In all the examples in this section we use 50 000 simulations. For a given combina-
tion of term (n), claim size distribution and target probability of ruin (see Section 6)
we use the same 50 000 sets of simulated aggregate annual claims. This makes it easier
to compare results within each example.

5.2 Examples

Example 1:
Wikstad (1971) in his case IA considered exponentially distributed individual claims
with mean 1 and with one claim expected each year (λ = 1). Table 5.1 shows his values
for selected cases and our estimates, ψ̂BM(u, n) and ψ̂TG(u, n), of these values together
with the standard errors of these estimates.

In Table 5.1, ζ denotes the premium loading factor, so that the premium rate each
year is (1 + ζ), and ψ(u, n) denotes Wikstad’s value.

u n ζ ψ(u, n) ψ̂TG(u, n) SD[ψ̂TG(u, n)] ψ̂BM(u, n) SD[ψ̂BM(u, n)]
10 10 0.05 0.03670 0.03487 0.0008 0.03621 0.0008
10 10 0.15 0.02770 0.02832 0.0007 0.02808 0.0007
10 10 0.25 0.02090 0.02011 0.0006 0.01897 0.0006

Table 5.1: Values and estimates of ψ(u, n). Wikstad (1971, Case IA).

Example 2:
Wikstad (1971) in his case IIA considered a compound Poisson surplus model where
individual claim amounts have the following distribution:

P (x) = 1−0.0039793 exp(−0.014631x)−0.1078392 exp(−0.19206x)−0.8881815 exp(−5.514588x)

This is described by Wikstad as an attempt to model Swedish non-industrial fire in-
surance data from 1948-1951. He also describes the distribution as ‘extremely skew’.
Table 5.2 shows values of the probability of ruin, with λ = 1, in the same format as
Tables 5.1.
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u n ζ ψ(u, n) ψ̂TG(u, n) SD[ψ̂TG(u, n)] ψ̂BM(u, n) SD[ψ̂BM(u, n)]
10 1 0.05 0.0190 0.00831 0.0004 0.01706 0.0004
10 1 0.15 0.0188 0.00935 0.0004 0.01787 0.0004
10 1 0.25 0.0187 0.00861 0.0004 0.01672 0.0004
100 10 0.05 0.00940 0.01124 0.0005 0.01217 0.0005
100 10 0.15 0.00930 0.00876 0.0004 0.00950 0.0004
100 10 0.25 0.00920 0.00908 0.0004 0.00983 0.0004

Table 5.2: Values and estimates of ψ(u, n). Wikstad (1971, Case IIA).

Example 3:
Seal (1978b) also considered exponentially distributed individual claims with mean 1
and with one claim expected each year (λ = 1). Table 5.3 shows his values for selected
cases and our estimates using the same format as in Tables 5.1 and 5.2.

u n ζ ψ(u, n) ψ̂TG(u, n) SD[ψ̂TG(u, n)] ψ̂BM(u, n) SD[ψ̂BM(u, n)]
10 10 0.10 0.03190 0.03105 0.0008 0.03491 0.0008
22 50 0.10 0.01562 0.01448 0.0005 0.01577 0.0005
44 600 0.10 0.01348 0.01328 0.0005 0.01379 0.0005
66 600 0.10 0.00135 0.00162 0.0002 0.00172 0.0002

Table 5.3: Values and estimates of ψ(u, n). Seal (1978b).

Example 4:
Closed formulas for the probability of ultimate ruin, denoted ψ(u), exist when indi-
vidual claims have either an exponential or a mixed exponential distribution. See, for
example, Gerber (1979), pages 115-117. We can test our methodology by calculating
ψTG(u, n) and ψBM(u, n) for very large values of n and λ for both claim size distribu-
tions and comparing the results with the exact values of ψ(u). Results are shown in
Tables 5.4 and 5.5 for n = λ = 1000 for the following two claim size density functions:

f(x) = exp(−x) x > 0 (exponential, mean = 1)

f(x) =
3

2
exp(−3x) +

7

2
exp(−7x) x > 0

(mixed exponential, mean = 238.095, variance = 131.519)

5.3 Conclusions

It can be seen that in our examples in this section ψTG(u, n) is generally closer to
ψ(u, n) than is ψBM(u, n). This is as expected since the former approximation is based
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u ψ(u) ψTG(u, 1000) SD[ψ̂TG(u, 1000)] ψBM(u, 1000) SD[ψ̂BM(u, 1000)]
ζ = 0.05 1300 0.043109 0.044273 0.0007 0.042056 0.0007
ζ = 0.15 500 0.033352 0.033448 0.0002 0.023904 0.0002

700 0.009050 0.009124 0.0001 0.005506 0.0001
900 0.002456 0.002500 0.0001 0.001304 0.0000

ζ = 0.25 300 0.039830 0.039976 0.0001 0.023567 0.0001
500 0.005390 0.005463 0.000033 0.001953 0.000015

Table 5.4: Values and estimates of ψ(u): exponentially distributed claim amounts.

u ψ(u) ψTG(u, 1000) SD[ψ̂TG(u, 1000)] ψBM(u, 1000) SD[ψ̂BM(u, 1000)]
3 0.03414 0.03428 0.0001 0.01298 0.0000
4 0.01256 0.01272 0.0000 0.00305 0.0000
5 0.00462 0.00472 0.0000 0.00072 0.0000

Table 5.5: Values and estimates of ψ(u): mixed exponential claims.

on matching three moments and the latter is based on matching only two. The notable
exceptions are values for u = 10, n = 1 in Table 5.2. These are extreme cases since
one claim is expected each year and the probability that this claim on its own exceeds
the initial surplus is 0.0192, which is almost the same as the probability of ruin over
10 years in each case.

The standard errors of our estimates are almost identical for the two approximations
to the within year probability of ruin. This is not surprising since the major source of
randomness comes from the simulation of the aggregate annual claims and the same
simulations are used for the two approximations.

Since ψTG(u, n) generally produces more accurate values than ψBM(u, n), with no
significant difference in the standard errors, we will use the former approximation
throughout the rest of this paper.

6 The premium as a function of the surplus

In some of the applications of our methodology in Section 7 we will determine the
premium rate at the start of each year as a function of the surplus level. The higher
the surplus, the lower will be the premium. More precisely, for i ≥ 1 we write Pi, the
premium rate to be charged in the i − th year, as h(uτi

), where h is some function
which we will specify below and τi takes one of two values:

τi = i− 1; or τi = max(i− 2, 0)

In the first case, Pi depends on the surplus at the end of the preceding year, i.e. at
the current time. This is the most intuitively appealing case. However, it may not be
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reasonable to expect the insurer to adjust the premium rate instantaneously, as this
case requires. The other case allows for this by determining the premium as a function
of the level of surplus one year earlier. We will also show results for τi = 0. In this
case the premium is fixed throughout the term.

Given the surplus uτi
, we will determine Pi so that the probability of ultimate ruin,

assuming the premium rate does not change, is approximately some pre-determined
level, for example 0.005. We will use De Vylder’s (1978) approximation to achieve this.
For k = 1, 2, 3, let mk denote E[Y k

i ] and let:

ã =
3m2

m3

, λ̃ =
9λm3

2

2m2
3

, and P̃ = Pi − λm1 +
λ̃

ã

Then De Vylder’s approximation to the probability of ultimate ruin given initial surplus
uτi

, denoted ψDV (uτi
), is given by:

ψDV (uτi
) =

λ̃

ãP̃
exp

{
−

(
ã− λ̃

P̃

)
uτi

}
(6.1)

Given a pre-determined value for ψDV (uτi
), we can calculate numerically for any initial

surplus the corresponding value of P̃ and hence Pi and hence the premium loading
factor, ζ (= Pi/(λm1)− 1).

Formula (6.1) does not give a closed form solution for Pi. Since we are going to have
to calculate the premium for each year of each (of many) simulations, it is convenient to
have a simple formula for ζ in terms of uτi

. We achieve this using Excel by calculating
the values of uτi

for a range of values of the safety loading using formula (6.1) and then
fitting a power function (using Add trendline), so that;

ζ ≈ AuB

for some parameters A and B.
For small values of uτi

De Vylder’s approximation can give uncomfortably large
values for the premium loading factor. De Vylder (1978, page 118) says that for very
small values of u ‘the accuracy (of his approximation) is not so good’. For this reason
we put an upper bound of 100% on the premium loading factor, so that:

h(uτi
) = (1 + min(AuB

τi
, 1))λm1 (6.2)

In our applications in Section 7 we will use two ‘target’ probabilities of ultimate
ruin, 0.01 and 0.005, which we will denote T1 and T2, respectively, and three different
individual claim size distributions: exponential, gamma and lognormal with moments
as shown in Table 6.1.

Table 6.2 shows for each of the three distributions and for the two target proba-
bilities of ultimate ruin the values of the parameters A and B to be used in formula
(6.2).
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Exponential Gamma Lognormal
Mean 1 1 1

Variance 1 3 3
Skewness 2 3.46 10.39

Table 6.1: Mean, variance and skewness: Exponential, gamma and lognormal.

ψ(u) = 0.01 ψ(u) = 0.005
Distribution A B Distribution A B
Exponential 12.26914 −1.22917 Exponential 15.38387 −1.24137

Gamma 33.33404 −1.25689 Gamma 42.79712 −1.27121
Lognormal 95.87145 −1.44538 Lognormal 141.02398 −1.47958

Table 6.2: Parameters for the power function for formula (6.2).

Formula (6.2) is an attempt to control the surplus process by adjusting the premium
each year so that the probability of ultimate ruin has a given target value. This is
necessarily a somewhat crude attempt since a two parameter function does not fully
reflect the behavior of the premium loading, ζ, as the surplus varies. We can check the
accuracy of this formula by calculating the (approximate) probability of ultimate ruin
using formula (6.1) for selected values of the initial surplus, u, and the fitted premium
loading, ζ(u) (= AuB). The results should be close to the target value for ψ(u),
either 0.01 or 0.005. Some results are shown in Tables 6.3 and 6.4 for some values
of u of interest in our examples. The differences between the target and calculated
probabilities of ultimate ruin arise from the inaccuracy of the fit of the two parameter
power function (over a large range of values of u) and the sensitivity of ψ(u) to the
premium loading, ζ.

u T1 T2
40 0.0037 0.0084
50 0.0043 0.0096
60 0.0049 0.0109
70 0.0056 0.0121
80 0.0063 0.0134
90 0.0070 0.0147

Table 6.3: Exponential: Values for ψ(u) calculated using formula (6.1) and the safety
loadings of Table 6.2.
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T1 T2
u Gamma Lognormal u Gamma Lognormal

120 0.0047 0.0034 80 0.0081 0,0064
130 0.0051 0.0038 90 0.0087 0,0068
140 0.0054 0.0041 100 0.0093 0,0073
150 0.0058 0.0045 110 0.0100 0,0079
160 0.0062 0.0049 120 0.0107 0,0085
170 0.0066 0.0054 130 0.0113 0,0093

Table 6.4: Gamma & Lognormal: Values for ψ(u) calculated using formula (6.1) and
the safety loadings of Table 6.2.

7 Applications

7.1 Scenarios

In our numerical examples, we will consider:

(i) a finite term of 10 years, which we consider to be a reasonable planning horizon,

(ii) two target probabilities of ultimate ruin: 0.005 (T1) and 0.01 (T2),

(iii) three methods for calculating the premium, all of them with the same target for
the probability of ultimate ruin:

P1: τi = 0, so that the premium is fixed throughout the 10 years at the level
which would achieve (approximately) the target probability of ultimate ruin,

P2: τi = i−1, so that the premium is adjusted at the start of each year according
to the current level of the surplus, and,

P3: τi = max(i− 2, 0), so that the premium is adjusted at the start of each year
according to the level of the surplus one year ago.

(iv) two algorithms for calculating the Poisson parameter for the expected number of
claims. These are:

N1: λ = 1000 so that the Poisson parameter is constant from year to year.

N2: λ varies from year to year between 800 and 1200. More precisely, let λij

denote the Poisson parameter in the i − th year for the j − th simulation.
Then {λij} is a set of independent and identically distributed random vari-
ables, each with a uniform distribution on the interval [800, 1200]. In this
case, the premium is calculated using the mean value of λ, so that:

Pi = h(uτi
) = (1 + min(AuB

τi
, 1))E[λ]m1
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In our examples the Poisson parameter is simulated for each of the 10 years
for each of the 50 000 simulations and then these simulations of the aggregate
annual claims are used for a given combination of T and P.

Scenario N1 is the classical model for claim numbers. However, Daykin et al. (1996)
suggest that this scenario may not capture the full variability of the claim number
process in practice. They say on page 329, ‘each (claim number) process is a superim-
position of trends, cycles and short–term fluctuations’, and also that, ‘It seems clear
that business cycles are so common in general insurance, and their impact so pro-
found, that any risk theory model which claims to describe real–life situations must
permit the user to evaluate the impact of any cycles which may be present.’ Figure
12.2.1 of Daykin et al. (1996) shows some examples of the variability of the claim ratio
(claims/premiums) for general insurance. Our scenario N2 is an attempt to produce
this variability through a variable Poisson parameter.

7.2 Exponential claim amounts

Tables 7.1 and 7.2 show results for exponentially distributed claim amounts separately
for the two target probabilities of ruin, T1 and T2, and within each table for each
combination of scenarios N and P.

N1 N2
P1 P2 P3 P1 P2 P3

u ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10)
40 0.00370 0.00418 0.00388 0.11270 0.27753 0.23432
50 0.00422 0.00496 0.00467 0.18125 0.31909 0.30875
60 0.00497 0.00543 0.00584 0.23619 0.34073 0.35653
70 0.00569 0.00532 0.00693 0.27984 0.34818 0.38332
80 0.00630 0.00473 0.00769 0.31357 0.34834 0.39867
90 0.00686 0.00389 0.00804 0.33766 0.34342 0.40581

Table 7.1: Exponential: Values of ψ(u, 10), scenario T1.

We make the following comments about Tables 7.1 and 7.2:

(i) Standard deviations of our estimates of ψTG(u, 10) (not shown) are all very small.
For a given combination of scenarios T and N, the standard deviations increase
as the initial surplus u increases and also increase in the order P1 → P2 → P3.
For the combination T1/N1, the range of values is 3.42E-09 to 9.33E-08. The
ranges for the other combinations are: 1.48E-06 to 4.43E-06 (T1/N2), 1.79E-08
to 2.19E-07 (T2/N1), 2.37E-06 to 4.56E-06 (T2/N2).

(ii) For the combination N1/P1, the values of ψTG(u, 10) are very close to the values
in Table 6.3, as we would expect them to be.
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N1 N2
P1 P2 P3 P1 P2 P3

u ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10)
40 0.00848 0.01038 0.00942 0.17737 0.35190 0.31620
50 0.00976 0.01202 0.01177 0.24598 0.38497 0.38072
60 0.01116 0.01236 0.01419 0.29748 0.39903 0.41523
70 0.01247 0.01144 0.01606 0.33850 0.40168 0.43396
80 0.01394 0.00985 0.01715 0.36714 0.39799 0.44354
90 0.01532 0.00808 0.01736 0.38733 0.39043 0.44648

Table 7.2: Exponential: Values of ψ(u, 10), scenario T2.

(iii) For lower values of u we have the following ordering for ruin probabilities as
functions of the premium scenario: P2 > P3 > P1. As u increases, the ordering
switches to: P3 > P2 > P1, then to: P3 > P1 > P2, and eventually to: P1 >
P3 > P2. We can see this in detail in Afonso (2007).

(iv) Varying the Poisson parameter, scenario N2, increases the probability of ruin
considerably, as we would expect.

We can gain some insight into the causes of ruin, or at least end of year, as opposed
to within year, ruin, by recording some information from those simulations which result
in end of year ruin, i.e. for which u(i) < 0 for some i. Table 7.3 shows the following
information for scenarios T1/N1 and T2/N2 and for a low and a high value of the
initial surplus:

P The premium scenario.

Prop The proportion of the probability of ruin in Table 7.1 or 7.2 attributable to end
of year ruin.

Avg i The mean of the year in which end of year ruin occurs.

Avg u(i− 1) The mean of the surplus at the start of the year of ruin.

Avg λ The mean Poisson parameter in the year of ruin. This is always 1 000 for N1.

Avg pi The mean premium in the year of ruin.

Avg yi The mean aggregate claims in the year of ruin.

ryi−1,yi
The correlation between the aggregate claims in the year before ruin and the year
of ruin.
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All these items, except ryi−1,yi
, are recorded from the 50 000 simulations used as the

basis for Tables 7.1 and 7.2. The correlation coefficient, ryi−1,yi
, has been calculated

from a separate set of 200 000 simulations using data from simulations where end of
year ruin occurs after the first year. Also, we used 20 000 simulations from the referred
50 000 only for the N2 case because of the size of the file.

u P Prop Avg i Avg u(i− 1) Avg λ Avg pi Avg yi ryi−1,yi

1 0.024 1.0 50.0 1000.0 1119.7 1184.5 -
N1 50 2 0.081 3.0 98.0 1000.0 1065.6 1173.3 -0.47

3 0.043 4.4 61.2 1000.0 1074.5 1166.5 -0.57
1 0.254 2.0 55.6 1000.0 1057.7 1128.4 -0.58

N1 90 2 0.242 2.0 103.1 1000.0 1052.0 1166.5 -0.40
3 0.266 2.9 58.0 1000.0 1051.3 1125.7 -0.78
1 0.721 1.5 50.0 1162.9 1119.7 1207.6 -

N2 50 2 0.770 3.3 92.9 1163.0 1078.1 1209.0 -0.37
3 0.798 3.7 72.1 1153.9 1072.5 1192.0 -0.21
1 0.902 2.5 77.0 1151.7 1057.7 1184.3 -0.58

N2 90 2 0.836 2.9 104.1 1159.5 1055.6 1200.7 -0.28
3 0.870 3.1 83.5 1149.6 1046.2 1181.9 -0.19

Table 7.3: Exponential: Statistical information for ruin cases, scenario T1.

These statistics show the following for scenarios N1/T1 and N2/T1 (results for T2
are similar):

(a) The proportion of the probability of ruin due to end of year ruin does not de-
pend very much on the premium calculation scenario, but does depend on the
initial surplus. This proportion will depend on the Poisson parameter: a smaller
value for lambda, and hence fewer expected claims each year, will increase the
proportion of the probability of ruin due to end of year ruin.

(b) The average aggregate claims in the year of ruin is significantly higher than the
expected aggregate claims.

(c) The correlation between aggregate claims in the year before ruin, yi−1, and yi is
negative for all premium scenarios.

(d) The average surplus at the start of the year of ruin does not depend to any great
extent on the initial surplus. It is comparable for P1 and P3, but noticeably
higher for P2.

(e) The average premium in the year of ruin is comparable for all three premium
scenarios.
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(f) The average number of years until ruin is higher for P3 than for P2 and almost
always higher for P2 than for P1.

An additional point for scenario N2 is that:

(g) The average value of the Poisson parameter in the year of ruin, around 1 160, is
near the upper end of its range.

It is not surprising that, however the premium is calculated, heavier than expected
claims are associated with ruin (point (b)), or that, for N2, a large value for the
Poisson parameter can lead to a large value for the aggregate claims (point (g)) and
then to ruin.

Where the premium depends on the surplus at the start of the current year, scenario
P2, the implication of points (b), (c) and (d) is that a major factor causing (end of year)
ruin is a year of relatively light claims, and hence a lower premium in the following
year, followed by a year of heavier than expected claims.

The ‘ruin profile’ statistics for P1 and P3 are very similar. This is not surprising
since, typically, the average number of years until end of year ruin for P3 is four or less
and for the first two years the premiums will be the same for these two scenarios.

More details can be found in Afonso (2007).

7.3 Gamma and lognormal claim amounts

Tables 7.4, 7.5, 7.6 and 7.7 show results for gamma and lognormally distributed claim
amounts in the same format as Tables 7.1 and 7.2.

N1 N2
P1 P2 P3 P1 P2 P3

u ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10)
120 0.00493 0.00370 0.00595 0.14893 0.14487 0.20305
130 0.00527 0.00325 0.00617 0.16322 0.14204 0.20865
140 0.00558 0.00278 0.00626 0.17487 0.13771 0.21148
150 0.00591 0.00232 0.00621 0.18443 0.13242 0.21222
160 0.00624 0.00189 0.00605 0.19247 0.12664 0.21132
170 0.00660 0.00150 0.00578 0.19877 0.12064 0.20894

Table 7.4: Gamma: Values of ψ(u, 10), scenario T1.

17



N1 N2
P1 P2 P3 P1 P2 P3

u ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10)
80 0.00840 0.01015 0.01004 0.12681 0.19298 0.21022
90 0.00904 0.01013 0.01121 0.15168 0.20046 0.23212
100 0.00966 0.00965 0.01219 0.17381 0.20308 0.24694
110 0.01029 0.00885 0.01289 0.19262 0.20210 0.25681
120 0.01087 0.00790 0.01327 0.19262 0.20210 0.25681
130 0.01149 0.00691 0.01331 0.22132 0.19304 0.26531

Table 7.5: Gamma: Values of ψ(u, 10), scenario T2.

N1 N2
P1 P2 P3 P1 P2 P3

u ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10)
120 0.00342 0.00344 0.00451 0.09461 0.10225 0.14942
130 0.00370 0.00325 0.00488 0.11109 0.10321 0.16070
140 0.00401 0.00298 0.00518 0.12593 0.10245 0.16866
150 0.00441 0.00266 0.00540 0.13953 0.10026 0.17373
160 0.00489 0.00233 0.00551 0.15173 0.09717 0.17654
170 0.00542 0.00201 0.00553 0.16210 0.09349 0.17764

Table 7.6: Lognormal: Values of ψ(u, 10), scenario T1.

N1 N2
P1 P2 P3 P1 P2 P3

u ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10) ψTG(u, 10)
80 0.00678 0.00833 0.00776 0.06606 0.13088 0.13885
90 0.00720 0.00876 0.00878 0.08909 0.14188 0.16751
100 0.00773 0.00892 0.00993 0.11166 0.14912 0.18880
110 0.00834 0.00874 0.01095 0.13368 0.15283 0.20444
120 0.00906 0.00825 0.01177 0.15357 0.15344 0.21603
130 0.00985 0.00758 0.01238 0.17115 0.15155 0.22389

Table 7.7: Lognormal: Values of ψ(u, 10), scenario T2.

We make the following comments about Tables 7.4 to 7.7:

(i) Standard deviations of our estimates of ψTG(u, 10) (not shown) are all comparable
to those for exponential claims.

(ii) For the combination N1/P1, the values of ψTG(u, 10) are close to the values
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in Table 6.3, though not as close as in the case of exponential claim amounts.
This is to be expected since the values in Table 6.3 are based on De Vylder’s
approximation, which is exact for exponential claim amounts.

(iii) As for exponential claims, for lower values of u we have the following ordering
for ruin probabilities as functions of the premium scenario: P2 > P3 > P1. As u
increases, the ordering switches to: P3 > P2 > P1, then to P3 > P1 > P2, and
eventually to: P1 > P3 > P2. We can see this in detail in Afonso (2007).

(iv) Varying the Poisson parameter, scenario N2, increases the probability of ruin
considerably, as it did for exponential claims.

Tables 7.8 and 7.9 show statistics for end of year ruin for gamma and lognormal
claims, respectively, in the same format as Table 7.3. These statistics lead us to the
same conclusions about the major causes of ruin as those stated at the end of Section
7.2. Compared to the case with exponential claims, the increase in the average surplus
at the start of the year of ruin is linked directly to the increase in the average aggregate
claims, which, in turn, is linked to the greater variability of aggregate claims when
individual claims have a gamma or lognormal distribution. See Table 6.1.

More details can be found in Afonso (2007).

u P Prop Avg i Avg u(i− 1) Avg λ Avg pi Avg yi ryi−1,yi

1 0.211 1.4 99.8 1000.0 1097.4 1217.6 -0.65
N1 120 2 0.232 1.5 125.7 1000.0 1094.4 1239.4 -0.37

3 0.229 2.4 102.6 1000.0 1084.2 1209.9 -0.72
1 0.331 3.3 81.2 1000.0 1062.5 1169.7 -0.32

N1 170 2 0.253 2.1 164.8 1000.0 1067.4 1256.8 -0.44
3 0.253 2.2 96.7 1000.0 1059.7 1184.5 -0.73
1 0.728 2.2 92.8 1155.9 1097.4 1237.8 -0.39

N2 120 2 0.690 2.9 142.5 1163.9 1087.9 1269.9 -0.23
3 0.722 3.5 104.7 1152.8 1075.2 1232.4 -0.47
1 0.835 3.3 101.7 1147.0 1062.5 1218.1 -0.32

N2 170 2 0.717 3.1 165.7 1165.3 1072.2 1276.1 -0.24
3 0.765 3.6 114.5 1148.9 1056.2 1224.6 -0.48

Table 7.8: Gamma: Statistical information for ruin cases, scenario T1.
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u P Prop Avg i Avg u(i− 1) Avg λ Avg pi Avg yi ryi−1,yi

1 0.134 1.3 106.3 1000.0 1118.3 1243.6 -0.73
N1 120 2 0.169 2.2 146.3 1000.0 1100.4 1268.6 -0.45

3 0.182 3.1 109.0 1000.0 1089.4 1225.4 -0.75
1 0.292 2.8 90.9 1000.0 1070.7 1186.1 -0.55

N1 170 2 0.259 2.3 178.7 1000.0 1070.5 1272.0 -0.44
3 0.271 3.0 101.5 1000.0 1068.0 1197.1 -0.80
1 0.691 1.9 96.1 1159.0 1118.3 1259.9 -0.47

N2 120 2 0.664 2.8 152.0 1163.2 1097.1 1287.4 -0.25
3 0.695 3.7 107.5 1152.9 1083.8 1242.6 -0.51
1 0.809 3.1 103.8 1148.5 1070.7 1228.9 -0.34

N2 170 2 0.708 2.9 175.3 1163.3 1075.0 1288.5 -0.25
3 0.748 3.5 116.3 1149.6 1061.5 1231.2 -0.51

Table 7.9: Lognormal: Statistical information for ruin cases, scenario T1.
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Daykin, C., Pentikäinen, T., and Pesonen, M. (1996). Practical Risk Theory for Actu-
aries. Chapman and Hall, London.

20



De Vylder, F. (1978). A practical solution to the problem of ultimate ruin probability.
Scandinavian Actuarial Journal, pages 114–119.

Dickson, D. and Waters, H. (1993). Gamma processes and finite time survival proba-
bilities. ASTIN Bulletin, 23:259–272.

Dickson, D. and Waters, H. (2006). Optimal dynamic reinsurance. ASTIN Bulletin,
36(2):415–432.

Dickson, D. C. M. (1991). The probability of ultimate ruin with a variable premium
loading - a special case. Scandinavian Actuarial Journal, (1):75–86.

Dufresne, F. and Gerber, H. (1989). Three methods to calculate the probability of
ruin. ASTIN Bulletin, 19:7–90.

Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory. Huebner Foun-
dation for Insurance Education University of Pennsylvania, Philadelphia, Pa 19104
USA.

Jasiulewicz, H. (2001). Probability of ruin with variable premium rate in a Markovian
environment. Insurance: Mathematics and Economics, 29(2):291–296.

Klugman, S., Panjer, H., and Willmot, G. (2004). Loss models: from data to decisions.
John Wiley and Sons, Inc., 2nd edition.

Michaud, F. (1996). Estimating the probabilities of ruin for variable premiums by
simulation. ASTIN Bulletin, 26(1):93–105.

Petersen, S. S. (1989). Calculation of ruin probabilities when the premium depends on
the current reserve. Scandinavian Actuarial Journal, (3):147–159.

Seal, H. (1978a). From aggregate claims distribution to probability of ruin. ASTIN
Bulletin, 10(1):47–53.

Seal, H. L. (1978b). Survival probabilities, the goal of risk theory. Wiley, New York.

Taylor, G. (1980). Probability of ruin with variable premium rate. Scandinavian
Actuarial Journal, pages 57–76.

Wikstad, N. (1971). Exemplification of ruin probabilities. ASTIN Bulletin, 6(2):147–
152.

Lourdes B. Afonso Alfredo D. Eǵıdio dos Reis Howard R. Waters
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