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Abstract. We say that a convex planar billiard table B is C2-stably expansive on a fixed open
subset U of the phase space if its billiard map fB is expansive on the maximal invariant set
ΛB,U =

⋂
n∈Z f n

B(U), and this property holds under C2-perturbations of the billiard table. In this
note we prove for such billiards that the closure of the set of periodic points of fB in ΛB,U is
uniformly hyperbolic. In addition we show that this property also holds for a generic choice
among billiards which are expansive on U.
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1. Introduction

In a few words, a dynamical system is expansive if whenever two points stay near for for-
ward and backward iterates, they actually coincide. This notion was first developed in the
1950’s (see [25]) related to the fact that these systems exhibit sensitivity to the initial condi-
tions. Uniform hyperbolicity implies expansivity as it was understood in the first half of the
1970’s [8, 16]. In particular, Anosov maps (global hyperbolicity) and Axiom A maps (local
hyperbolicity) are expansive.

It is well known that in certain classes of conservative dynamical systems, the robusteness
of certain properties ensures some kind of hyperbolicity. Examples include expansiveness [20],
ergodicity [24], transitivity [2], shadowing [4, 5, 6], weak shadowing [4] and topological sta-
bility [4]. Here we are interested in the class of expansive convex planar billiards for which
there are few related results. We propose to answer the following questions. How does a robust
expansive property assumption leads to hyperbolicity? What distinguishes hyperbolicity from
expansiveness on a generic point of view?

Related to the questions above, we recall the works for geodesic flows of Ruggiero on the
stability of expansiveness [20], and of the first author on the generic characterization of expan-
siveness and non-trivial hyperbolic basic sets [1].

Finally, it is worth observing that there are (degenerate) examples of non-hyperbolic fixed
points for expansive area-preserving maps (cf. [4, Figure 1]). However those examples are
not robust. Notice also that, contrary to what happens for geodesic flows, there is no global
hyperbolicity for sufficiently smooth convex billiards. Hence, in the present setting we consider
a local approach related to a fixed set U in phase space.

1.1. Statement of the results. As detailed in §2.1, a C2 billiard table B generates a C1 sym-
plectomorphism fB called the billiard map. In the following, whenever there is no ambiguity,
we refer to B being C2 and fB being C1 indistinctly.
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Let B be a convex billiard and U an open subset of the phase space M with a metric d. The
billiard map fB : M → M is called expansive on U if there is e > 0 (the expansive constant)
such that given x ∈ U and y ∈ M if d( f n(x), f n(y)) ≤ e for all n ∈ Z, then x = y (cf. [22, §7]).
When U = M, we say that f is expansive. Moreover, B is C2-stably expansive on U if fB is
expansive on the maximal invariant set

ΛB,U = ∩n∈Z f n
B(U),

and for any B̃ arbitrarily C2-close to B the map fB̃ is also expansive on ΛB̃,U .
Our first result shows that the C2-stably expansive topological property implies hyperbolicity.

We denote by Per( fB) the set of periodic points of fB.

Theorem 1. Let U ⊂ M be open. If B is C2-stably expansive on U, then Per( fB) ∩ ΛB,U is
uniformly hyperbolic.

Remark 1.1. Under the conditions of the previous theorem, it follows from standard arguments
in hyperbolic dynamics (see e.g. proof of [13, Theorem D]) that if the number of periodic points
in ΛB,U is infinite, then Per( fB) ∩ ΛB,U is a non-trivial hyperbolic basic set.

The strategy of the proof of Theorem 1 relies on the combination of several results on bil-
liard and area-preserving maps dynamics. We highlight in particular the following three recent
results:

(1) The Mañé dichotomy (Theorem 2.2) is an abstract cocycle formulation. It decomposes
closed orbits on U in either hyperbolic ones or else in orbits that can be perturbed to
parabolic.

(2) The Visscher’s version of Franks’ lemma for planar billiards (Theorem 2.1) permits the
application of the abstract formulation of Mañé’s dichotomy to billiard maps.

(3) The Bunimovich and Grigo’s technical theorem (Theorem 2.3) allows us to perturb the
billiard table preserving the expansiveness hypothesis and simultaneously transforming
a parabolic or elliptic point into a Moser stable elliptic point1. This is crucial in obtaining
a contradiction to the expansiveness hypothesis.

We emphasize the restriction to the C2-topology for convex billiard tables (i.e. to the C1-
topology for the billiard map) since the above results are proved only for this topology (see §3).

Consider the residual subset R of convex planar billiards given in [15, 27]. It corresponds to
maps that verify the property that all closed orbits are hyperbolic or irrationally elliptic. KAM-
type arguments applied to a sufficiently smooth billiard table B satisfying the expansiveness
property imply that there are no irrationally elliptic closed orbits. Therefore, a generic expansive
map on U has all its closed orbits in ΛB,U of hyperbolic type. A much more demanding question
is whether the closure of the hyperbolic closed orbits in ΛB,U is a uniformly hyperbolic set. An
answer is given in Theorem 2 by showing that seemingly different concepts like expansiveness
and hyperbolicity are equivalent from a generic point of view.

Theorem 2. Let U ⊂ M be open. There exists a C2-residual subset R of the set of C2 convex
billiard tables such that if B ∈ R, then fB is expansive on U if and only if Per( fB) ∩ ΛB,U is
uniformly hyperbolic.

1A periodic point is Moser stable if it is surrounded by toric invariant curves in arbitrarily small neighborhoods.
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The proof is contained in §4. In §2 we present the basic definitions to understand the formal
statements of the results.

2. Preliminaries

2.1. Convex billiard tables and maps. A billiard table B is a bounded, open and connected
domain of R2 with boundary ∂B. The flow on its unit tangent bundle S B generated by the
motion of a free point-particle in B with specular reflection at ∂B (the angle of reflection equals
the angle of incidence) is called the billiard flow. Let the phase space M ⊂ S (∂B) be the set of
unit tangent vectors at each point in ∂B that are pointing inside the billiard table B. The billiard
map fB is the first return map on M of the billiard flow (cf. [12]).

We are interested in convex billiard tables with a Ck-boundary ∂B, k ≥ 2. This implies
that fB is a Ck−1 diffeomorphism on M. It is convenient to use coordinates on M. By writing
α : R/lZ→ R2 as the arc-length parametrization of ∂B, where l is the length of ∂B, each x ∈ M
can be simply written as x = (s, ϕ). Here s is the arc-length parameter of ∂B of the base point
of x, and ϕ is the angle between x and the positively oriented tangent to ∂B at α(s) (the reflected
angle). So,

(s, ϕ) ∈ M = [0, l[ / ∼ × [−π/2, π/2]

where s ∼ s′ if s = s′ mod l. Moreover, the derivative of fB (see [12]) is given by:

D fB(s, ϕ) = −
1

cosϕ1

[
τK + cosϕ τ

τKK1 + K cosϕ1 + K1 cosϕ τK1 + cosϕ1

]
,

where (s1, ϕ1) = fB(s, ϕ), K and K1 are the curvatures of ∂B at α(s) and α(s′), respectively,
τ = ‖α(s) − α(s1)‖ and ‖ · ‖ denotes the Euclidean norm on R2. The map fB preserves the
measure µ given by dµ = cosϕ dϕ ds. Notice that det D fB(s, ϕ) = cosϕ/ cosϕ1. Therefore, for
a periodic point p = (s, ϕ) with period `, we have det D f `B(p) = 1.

Each billiard table B is identified with its boundary Ck-curve ∂B, which in turn can be de-
scribed up to reparametrization by a Ck-embedding α : S 1 → ∂B, where S 1 = R/Z. Recall that
at each point α(s) there is a unit normal vector n(s) to the curve, and s 7→ n(s) can be chosen to
be C1. Moreover, the dynamics associated to a billiard table is clearly preserved by isometries
and homotheties of the plane. So, we will consider the space of convex billiard tables B as the
set of embeddings modulo those transformations and reparametrizations.

Given ε > 0 we say the C2-embeddings α : S 1 → R2 and β : S 1 → R2 are ε-C2-close if there
is a C2 map λ : S 1 → R such that

‖λ‖C2 < ε and β(s) = α(s) + λ(s)nα(s), s ∈ S 1,

where nα(s) is the unit normal vector of the curve α(S 1) at α(s). Notice that the same is true if
we consider instead a unit normal vector to β.

The above is used to define close billiard tables in B. We say that two equivalent classes
[α], [β] ∈ B are ε-C2-close if there are representatives α ∈ [α] and β ∈ [β] which are ε-C2-close.
As a result B is a Baire space [11].

2.2. Hyperbolic, elliptic and parabolic period points.
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2.2.1. Uniform hyperbolicity and periodic points. Let Λ ⊂ M be fB-invariant. The D fB-
invariant splitting E1 ⊕ E2 of the tangent bundle TΛ into 1-dimensional bundles E1 and E2

is said to be uniformly hyperbolic if there exists σ ∈ (0, 1) such that for any point x ∈ Λ we
have ‖D fB(x)|E1

x
‖ ≤ σ and ‖D f −1

B (x)|E2
x
‖ ≤ σ. Equivalently, we can choose σ = 1

2 and allow
to iterate m times to get ‖D f m

B (x)|E1
x
‖ ≤ 1

2 and ‖D f −m
B (x)|E2

x
‖ ≤ 1

2 for some m ∈ N. In this last
formulation we say that fB on Λ is m-uniformly hyperbolic. The angle between E1 and E2,
denoted by ](E1, E2), is bounded away from zero on uniform hyperbolic sets.

Given a periodic point p of period `, the eigenvalues λ, λ−1 of D f `B(p) determine the type of
local dynamics. The periodic point is

• elliptic if |λ| = 1 and λ < R,
• parabolic if |λ| = 1 and λ ∈ R,
• hyperbolic if |λ| , 1 and λ ∈ R.

2.2.2. Three ways of losing hyperbolicity. A hyperbolic periodic point p displays three param-
eters evaluating its ‘degree of hyperbolicity’: the period `, the eigenvalues λ, λ−1 ∈ R \ {−1, 1}
of D f `B(p), and the angle ](E1, E2) between the eigendirections E1 and E2. A large |λ| is not
necessarily the same as “strong” hyperbolicity as ` can be also large or ](E1, E2) small. Indeed,
we can have |λ| away from 1 and ](E1, E2) near 0 provided that ` is chosen very large. However,
as we are considering that maxx∈M ‖D fB(x)‖ is bounded, if ` is also bounded, then the condition
](E1, E2) near 0 implies that |λ| is near 1.

2.2.3. Periodic points of period 2. Notice that all periodic points of period two are in the zero
section of phase space, since the reflections are normal to ∂B.

If there are infinitely many periodic points of period two, then, by continuity of the map, they
form a sequence with at least two accumulation points which are also periodic with period two.
Write xk ∈ M for a subsequence converging to one of the accumulation points, say x. Notice
also that fB(xk) → fB(x) as k → +∞. So, for any choice of e > 0 there is a large enough k ∈ N
so that

max
i=0,1

d( f i
B(xk), f i

B(x)) < e.

By the fact that they are period two orbits, there is no expansivity in this situation. Notice that
the same reasoning holds for orbits of any other fixed period.

2.3. Main tools. The following theorem is a planar billiard version of the well-known Franks’
lemma. We denote by Sp(2) the set of 2 × 2 symplectic real-valued matrices.

Theorem 2.1 (Visscher [21]). There exists a residual set R of Ck convex billiards with k ≥ 2
or k = ∞, such that for B ∈ R, a periodic point p of period ` ≥ 3, and a neighborhood U
of B in Ck for the C2-topology, there exists an open ball B ⊂ Sp(2) around D f `B(p) such that
any element of B is realizable as D f `

B̃
(p) for some B̃ ∈ U. Moreover, the perturbation can be

supported in an arbitrarily small neighbourhood of three sequential points in the orbit of p on
the boundary of the table.

The above statement is actually a simple improvement of the result in [21] by noting that the
residual set can be taken to be in the Ck topology by the works of Stojanov and Petkov [17,
18, 19, 23]. Moreover, the perturbation is obtained through smooth bump functions and has
therefore the same regularity of the original billiard.
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We observe that the constraint on Theorem 2.1 about the size of the closed orbit γ will be
innocuous in the proof of Theorem 1.

The next result is in the spirit of the Mañé dichotomies on closed orbits: the dominated split-
ting is the sole obstruction to obtain trivial spectrum on closed orbits. The abstract general result
for dissipative systems was obtained in [7, Corollary 2.19]. For Hamiltonian and geodesic flows
see [3, section 3.1], [13, section 8] and [5]. In brief terms, assuming the non-dominance hypoth-
esis, we can rotate the solutions along the closed orbits in order to mix different expansion rates.
Since we have symmetry of the symplectic spectrum, these rates annihilate each other. Finally,
as many rotations may be needed, the period of the closed orbits should be large enough.

Theorem 2.2 (Mañé dichotomy). Let B ∈ R where R was obtained in Theorem 2.1. For any
η > 0 there are m ∈ N and n ≥ 3 such that for any periodic point p of fB with period ` ≥ n,
either

(i) D f `B(p) admits an m-uniformly hyperbolic splitting2, or else
(ii) for any neighbourhood V ⊂ M of the orbit of p, there exists a C∞ billiard table B̃

η-C2-close to B such that fB̃ = fB outside V and p is a parabolic periodic point of fB̃.

We now recall a result due to Bunimovich and Grigo that will allow us to turn a parabolic or
elliptic periodic orbit into Moser stable under a small C5-perturbation.

Theorem 2.3. Let B be a C5 convex billiard table and p an irrationally elliptic periodic point.
Then, there is a C5-close convex billiard B̂ for which the orbit of p is preserved and it is Moser
stable.

Proof. This is an immediate consequence of [9, Theorem 4]. �

Proposition 2.4. If p ∈ U is an elliptic or parabolic periodic point of a C2 convex billiard table
B, then B is not C2-stably expansive on U.

Proof. By taking a C2-close smooth billiard and then using Theorem 2.1, we obtain a C2-
perturbed smooth billiard with an irrationally elliptic periodic point. Then, Theorem 2.3 allows
us to make p Moser stable for a nearby billiard table B̂. Given any e > 0 we can always find an
invariant curve C surrounding p such that max1≤n≤` maxy∈C d( f n

B̂
(y), f n

B̂
(p)) ≤ e. This means that

B̂ is not expansive and B is not C2-stably expansive.
�

3. Proof of Theorem 1

The hypothesis on the C2-stability of the expansiveness property is incompatible with asser-
tion (ii) of Theorem 2.2 and this will imply the proof of Theorem 1.

We start by showing that Per( fB) restricted to ΛB,U is uniformly hyperbolic. Suppose, by
contradiction, that (s, θ) = p ∈ U is an elliptic, parabolic or a hyperbolic periodic point with
very weak hyperbolicity. Being elliptic or parabolic is immediately excluded by Proposition 2.4.

We are left to analyse the case were p is a hyperbolic periodic point with feeble hyperbolic
constants. Let ` be the period of p and let n,m be given by Theorem 2.2.

2The original statement is m-uniformly dominated splitting. In the symplectic case can be specified as m-
uniformly partial hyperbolic splitting, and in our 2-dimensional case, m-uniformly hyperbolic splitting.
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(1) (` = 2) If there are a finite number of those hyperbolic periodic points, then, as a set,
it is uniformly hyperbolic. If there are an infinite number of these hyperbolic periodic
points, then by the arguments in §2.2.3 we get a contradiction with the fact that we have
expansivity.

(2) (` ≥ n) Since the spectral objects depend continuously on B we get that D fB(p) admits
an m̂-uniformly hyperbolic splitting (eventually m̂ > m). This follows because item (ii)
of Theorem 2.2 is excluded since we are considering that B is C2-stably expansive on U
and we are also using Theorem 2.1 to perform the perturbations.

(3) (3 ≤ ` < n) By the arguments in §2.2.2 and since ` is bounded we must have that all
these hyperbolic periodic points are uniformly hyperbolic or else the eigenvalues of one
of these became arbitrarily close to 1. Since ` ≥ 3 and the spectral objects depend
continuously on B we can use Theorem 2.1 to create a parabolic point contradicting the
hypothesis that B is C2-stably expansive on U as in Proposition 2.4.

In conclusion, we obtain that Per( fB) restricted to ΛB,U is a uniformly hyperbolic set. The
hyperbolicity condition implies the continuity of the splitting in Per( fB) [19, Proposition 6.4.4].
Then the splitting extends continuously to Per( fB) and the extension is also hyperbolic.

4. Proof of Theorem 2

As discussed before, it remains to show that the uniform hyperbolicity of the closure of the
periodic points implies expansiveness. We begin by proving the following preliminary result.

Lemma 4.1. Let B be a C2 convex billiard. If fB has a non-hyperbolic periodic point p of period
`, then for all ε, ν > 0 there exists B̂ such that:

(1) B̂ is ε-C2-close to B,
(2) fB̂ has two hyperbolic periodic points p1 and p2 (not belonging to the same orbit) with

equal period and
(3) max1≤n≤` d

(
f n
B̂
(p1), f n

B̂
(p2)

)
< ν.

Proof. By Lazutkin’s theorem [15] (see also [27]) C∞ generically, every periodic point is either
hyperbolic or elliptic with irrational rotation number. Hence, using also Theorem 2.3, B can
be perturbed in order to obtain an elliptic periodic point of period ` arbitrarily near p which
is Moser stable. A C2-perturbation as in [14] guarantees also the existence of transverse ho-
moclinic points. Hence, there are invariant sets (Smale horseshoes) which are topologically
equivalent to the full shift in every neighborhood of the elliptic point (cf. [26, 10] since convex
billiard maps are area-preserving twist maps). In particular we can find hyperbolic periodic
points fulfilling (2). Both hyperbolic periodic points and their iterates are inside a union of
‘trapping regions’ (each surrounded by an invariant curve) of small enough diameters < ν and
so accomplishing (3). �

Let H (U) be the set of convex billiard tables such that all closed orbits in U are hyperbolic.
Consider now the subset F 2(U) of the so-called Mañé star systems in U, defined as the C2-
interior of H (U). Note that non-hyperbolic periodic points can exist outside U.

Proposition 4.2. Let U ⊂ M be open. There exists a C2-residual subset R of the set of C2

convex billiard tables, such that if B ∈ F 2(U)∩R, then Per( fB)∩ΛB,U is uniformly hyperbolic.
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Proof. From [15] we know that in a residual set of convex billiards there is a finite number of
periodic points of period less than a given n. We intersect this residual with the one in Theo-
rem 2.1 to get R. Since B ∈ F 2(U) we have that item (ii) of Theorem 2.2 is excluded. Hence,
the set P1 of periodic points with large period admits an m1-uniformly hyperbolic splitting. On
the other hand, as the set P2 of periodic points in U with small period is finite, it also admits an
m2-uniformly hyperbolic splitting. �

Lemma 4.3. Let U ⊂ M be open. There exists a residual subset R of C2 convex billiards, such
that for any B ∈ R \F 2(U), fB has two sequences of periodic points {pn}n∈N and {qn}n∈N in U
such that for each n, pn and qn have distinct orbits and

lim
n→+∞

sup
k∈Z

d
(

f k
B(pn), f k

B(qn)
)

= 0.

Proof. For each n ∈ N, we denote by Nn the subset of convex billiard tables such that any
B ∈ Nn has a C2-neighborhoodU with the following C2-open property: for every B̂ ∈ U, there
are hyperbolic periodic points pn, qn of B̂ having distinct orbits such that

sup
k∈Z

d
(

f k
B̂(pn), f k

B̂(qn)
)
<

1
n
.

Let On be the C2-complementary of the C2-closure of Nn. Clearly, Nn ∪ On is C2-open and
C2-dense in the convex billiard tables set. We define the C2-residual subset in the statement of
the lemma by:

R =
⋂
n∈N

(On ∪Nn) .

If B ∈ R \F 2(U), then there is a sequence of convex billiard tables B j converging to B in the
C2-sense and a sequence of non-hyperbolic periodic points p̃ j of fB j in U. Then, for any n ∈ N,
by Lemma 4.1, we have that B ∈ Nn, proving the claim. �

From Lemma 4.3, we know that if B belongs to the residual subset R ∩ R and it satisfies the
expansiveness property on U, then it must be in F 2(U). By Proposition 4.2, Per( fB) ∩ ΛB,U is
uniformly hyperbolic. This completes the proof of Theorem 2.
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