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Abstract. Let 0 < λ < 1 and I1 = [a0, a1), . . . , Ik = [ak−1, ak) be a partition of
the interval I = [0, 1) into k ≥ 1 subintervals. Let f : I → I be a map where each
restriction f |Ii is an increasing λ-Lipschitz function for i = 1, . . . , k. We prove that any
piecewise increasing contraction f admits at most k periodic orbits, where the upper
bound is sharp. Our second result concerns piecewise λ-affine maps. Let b1, . . . , bk
be real numbers. Let Fλ : I → R be a family of piecewise λ-affine functions, where
each restriction Fλ|Ii(x) = λx + bi. Under a generic assumption on the parameters
a1, . . . , ak−1, b1, . . . , bk which define Fλ, we prove that, up to a zero Hausdorff dimension
set of slopes 0 < λ < 1, the ω-limit set of the piecewise λ-affine map fλ : x ∈ I → Fλ(x)
(mod 1) at every point equals a periodic orbit and there exist at most k periodic orbits.

1. Introduction

Let I = [0, 1) and f : I → I be an interval map which is continuous up to finitely many
points and right continuous at every discontinuity point. We call f a piecewise increasing

contraction, if there exists 0 < λ < 1 such that on every domain D of continuity of f ,
the restriction map f |D is increasing and λ-Lipschitz1. Throughout the paper increasing

means strictly increasing.
Let x ∈ I and denote by ω(f, x) the ω-limit set of f at the point x and

ω(f) =
⋃

x∈I

ω(f, x).

We say that f is asymptotically periodic if, for every x ∈ I, ω(f, x) equals a periodic orbit
and ω(f) consists of finitely many periodic orbits.

The study of the dynamics of interval piecewise contractions has attracted the attention
of many authors, in particular see [1, 2, 4, 7, 9, 11, 12, 13, 14, 15]. The motivation of our
first theorem comes mainly from [15] which shows that generically piecewise contractions
are asymptotically periodic. We recall that in [14], the authors prove that any injective
interval piecewise contraction which has n discontinuities admits at most n + 1 periodic
orbits and this upper bound is sharp. In this paper our first goal is to present classes
of piecewise increasing contractions, not necessarily injective, which are asymptotically
periodic and to prove an upper bound for their number of periodic orbits.

Theorem 1. Let f be a piecewise increasing contraction with n discontinuity points. Then

f has at most n+1− ℓ periodic orbits where ℓ is the number of discontinuity points whose

image under f equals zero.

We call attention that our approach to prove Theorem 1 is elementary and f is not
assumed to be asymptotically periodic. We also recall that the result obtained in [15] for
an upper bound of the number of periodic orbits concerns generic piecewise contractions,
thus it can not be applied to prove Theorem 1.

Next we state a couple of corollaries of Theorem 1. First, Corollary 2 that general-
izes previous results and also [11, Theorem 10] to any number of discontinuities, and
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1|f(x)− f(y)| ≤ λ|x − y| holds for any x, y ∈ D.
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Corollary 3 which improves the upper bound obtained in [15, Theorem 1.1] in the case of
positive slope. Theorem 1 and its corollaries are proved in Section 2.

Identifying the circle R \ Z with the interval I through the canonical bijection I →֒
R → R \ Z, we may see any piecewise orientation-preserving contraction circle map as a
piecewise increasing contraction.

Corollary 2. Let f be a circle map which is a piecewise orientation-preserving contrac-

tion. Assume that f has k points of discontinuity on the circle R \ Z and f is right

continuous at those points. Then f has at most k periodic orbits and this upper bound is

sharp.

In this article we are also interested in the dynamics of piecewise λ-affine maps. Given
k ≥ 1, a function F : I → R is called a k-interval piecewise λ-affine function, if there
exist sequences of real numbers a0 = 0 < a1 < . . . < ak−1 < ak = 1 and b1, . . . , bk such
that

F (x) = λx + bi ∈ R, ∀ 1 ≤ i ≤ k and ∀ x ∈ [ai−1, ai). (1)

We call f : x ∈ I 7→ F (x) (mod 1) a piecewise λ-affine map. For this special case, we
prove the following result.

Corollary 3. Let 0 < λ < 1 and let F : I → R be a k-interval piecewise λ-affine function

(1). Then, the map f = F (mod 1) has at most k periodic orbits.

In [15] the authors considered a family of piecewise λ-affine maps, where 0 < |λ| < 1 is
fixed. Precisely, let 0 < |λ| < 1 and F be a k-interval piecewise λ-affine function given by
(1). Let δ be a real parameter and we define a parametrized family of piecewise λ-affine
maps denoted by fδ : I → I using the following set up:

fδ : x ∈ I 7→ F (x) + δ (mod 1).

It is proved in [15] that, for Lebesgue almost every δ, the map fδ is asymptotically periodic
and has at most k + 1 periodic orbits. However, the upper bound k + 1 can be achieved
only when the slope λ takes a negative value.

In this paper another set up will be analyzed. Let 0 < λ < 1 and F be a k-interval piece-
wise λ-affine function given by (1). We fix the real k-tuples (a1, . . . , ak) and (b1, . . . , bk)
which appear in (1), then we will vary the value of the slope λ of F on the interval (0, 1).
Our goal is to measure the set of slopes 0 < λ < 1 such that the associated piecewise
λ-affine map f is not asymptotically periodic.

Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be fixed k-tuples of real parameters as de-
scribed above. We say that the k-tuples a and b are Z-independent, if

ai − bj /∈ Z, ∀ (i, j) ∈ {1, . . . , k}2. (2)

Remark that the condition (2) is a generic property.
The case λ = 0 is not interesting and the case −1 < λ < 0 can be treated similarly by

adapting the arguments of this paper.
Our main theorem is the following:

Theorem 4. Let a and b be Z-independent k-tuples as in (2), where k ≥ 1. Let Fλ be the

family of k-interval piecewise λ-affine functions defined by a and b, where 0 < λ < 1, and
let fλ : x ∈ I 7→ Fλ(x) (mod 1) be the corresponding family of piecewise λ-affine maps.

Then the set

{λ ∈ (0, 1) : fλ is not asymptotically periodic}

has Hausdorff dimension zero.
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Figure 1. Plot of Rλ,b for two distinct values of λ.

This theorem will be proved in Section 5.
A concrete example to which our result applies is to the so-called contracted rotations

(see Figure 1). According to [11], a contracted rotation is a 2-interval piecewise λ-affine
interval contraction defined in the following way: Let λ and b be two real numbers such

that 0 < 1 − λ < b < 1. Set c =
1 − b

λ
. A contracted rotation is the map Rλ,b : I → I

given by the splitted formula

Rλ,b(x) =

{

λx + b, if 0 ≤ x < c,

λx + b− 1, if c ≤ x < 1.
(3)

Notice that Rλ,b(x) = λx + b (mod 1) for every x ∈ I. Set a = (1) and b = (b) which
satisfy (2), thus the contracted rotation is a piecewise λ-affine map which is defined by
Z-independent a and b.

As we know (see [3],[11]), any contracted rotation Rλ,b : I → I admits a rotation number
0 < ρ(Rλ,b) < 1. In Figure 2, it is described the regions in the triangle ∆ formed by the
parameters (λ, b), i.e.,

∆ = {(λ, b) : 0 < 1 − λ < b < 1},

where the rotation number ρ(Rλ,b) takes a precise rational value.
Concerning the exceptional set

E = {(λ, b) ∈ ∆: ρ(Rλ,b) is irrational},

the following is already known: It was proved in [11] that, once 0 < λ < 1 is fixed, the
Hausdorff dimension of the set

{b ∈ (0, 1) : (λ, b) ∈ E}

equals zero and, in [9], the authors showed that the Hausdorff dimension of the exceptional
set E equals one. The proofs of these two results use the following proposition which
describes the relation between the parameters λ and b when the rotation number takes a
rational value (see [6],[3],[11]):

Proposition 5. Let 0 < λ < 1, then the rotation number of the map Rλ,b takes the

rational value
p

q
, where 1 ≤ p < q are relatively prime, if, and only if, b belongs to the
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Figure 2. Rational tongues: regions where ρ(Rλ,b) takes a rational value
in the interval (0, 1).
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λk when q > 2.

An equivalent claim about the parameters λ and b when the rotation number takes
a rational value with 0 < b < 1 fixed and λ varies is not available. Nevertheless, as a
corollary of our main theorem we obtain the following result:

Corollary 6. Let 0 < b < 1, then the set

{λ ∈ (0, 1) : (λ, b) ∈ E}

has Hausdorff dimension zero.

The paper is organized as follows. In Section 2, we present some notions and preliminary
results which will be needed throughout the paper. In particular, we show in Proposition 9
that any piecewise increasing contraction has null entropy. As a corollary, we obtain
that the ω-limit set of any piecewise increasing contraction has zero Hausdorff dimension.
Section 2 concludes with the proofs of Theorem 1 and Corollaries 2 and 3. In Section 3, we
recall the notion of invariant quasi-partition and, in Theorem 18, we establish a sufficient
condition for a piecewise increasing contraction to be asymptotically periodic. Section 4
is devoted to piecewise λ-affine maps, with 0 < λ < 1, there we apply results proved in
previous sections to piecewise λ-affine maps. Finally the proof of Theorem 4 is left to
Section 5.

2. Preliminary results

Throughout this section f is assumed to be a piecewise increasing contraction as defined
in Section 1.
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Definition 7. A point x ∈ I is called a singular point of f if either x = 0 or x is a
discontinuity point of f . Given n ≥ 1, a point x ∈ I is called a singular point of fn if
there exists 0 ≤ j < n such that f j(x) is a singular point of f . We denote by S the set of
singular points of f and by S(n) the set of singular points of fn.

Notice that S = S(1) and

S(n) =

n−1
⋃

j=0

f−j(S), ∀n ∈ N.

Lemma 8. Let n ∈ N. Then the set S(n) is finite, fn is right continuous and the restric-

tion of fn to each connected component of I \ S(n) is increasing and λn-Lipschitz.

Proof. Notice that S is finite. Because f has finitely many increasing branches, the pre-
image of any finite set is also finite, whence f−j(S) is finite for every j ≥ 0. Thus, S(n)

is finite. Right continuity of fn is obvious. Now, let J be a connected component of
I \ S(n). The sets J, f(J), . . . , fn−1(J) do not contain singular points of f , otherwise J
would not be a connected component of I \ S(n). Hence, for every 0 ≤ j < n, f j(J) is an
interval and f |fj(J) is increasing and λ-Lipschitz. This shows that fn|J is increasing and
λn-Lipschitz. �

Since S is finite, we can write S = {s0, s1, . . . , sN−1} where s0 = 0 < s1 < · · · < sN−1 <
1. Let sN = 1 and consider the partition of I,

I1 = [s0, s1), I2 = [s1, s2), . . . , IN = [sN−1, sN).

On each interval Ij , where 1 ≤ j ≤ N , the restriction map f |Ij is increasing and λ-
Lipschitz. Moreover, f is right continuous at singular points.

Let x ∈ I, we denote the corresponding itinerary of x under f on the partition {Ij}
N
j=1

of the interval I by (in)∞n=0 ∈ {1, . . . , N}N, where N = {1, 2, . . .}, it means that fn(x) ∈ Iin
for every n ≥ 0. A tuple (i0, i1, . . . , in−1) ∈ {1, . . . , N}n is called an itinerary of order n
of f if it equals the first n entries of an itinerary of some point x ∈ I. We denote by In

the set of all itineraries of order n of f .
Following [10], the singular entropy of f is defined as

hsing(f) = lim sup
n→∞

1

n
log #In,

where #In denotes the cardinality of the set In. By the general result [10, Theorem 2], we
know that the singular entropy of any R

d non-expanding conformal piecewise affine map
equals 0. In our present situation, we can write a rather simple proof that hsing(f) = 0
using the fact that f is an interval map.

Proposition 9. The singular entropy of f equals zero, i.e. hsing(f) = 0.

Proof. Given ρ > 1, let m = ⌈log 2/ log ρ⌉ and τ = τ(m) > 0 be the smallest distance
between any two singular points of fm. The points in any interval whose length is less
than τ define at most two distinct itineraries of order m of f . Let n0 = ⌈log τ/ log λ⌉.

Clearly, the length of fn
λ (W ) is less than τ , for every connected component W of I \ S

(n)
λ

whenever n ≥ n0.
Set αn := #In. Therefore, αn+m ≤ 2αn, for every n ≥ n0. So αn0+im ≤ 2iαn0, for

every i ≥ 0. Thus,

αn ≤ 2
n−n0

m αn0, for every n ≥ n0.

Taking into account the choice of m, we get αn ≤ Cρn, for every n ≥ n0, where C :=
2−n0/mαn0. Hence, 1

n
logαn ≤ 1

n
logC + log ρ, which implies that limn

1
n

logαn ≤ log ρ. As
ρ > 1 can be chosen arbitrarily close to 1, this shows that hsing(f) = 0. �
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As f has singular entropy zero, we obtain the following corollary from [5, Proposition
6.6].

Corollary 10. The set ω(f) has Hausdorff dimension zero. In particular, ω(f) is a

totally disconnected set.

Remark 11. Note that the above claim is trivial whenever f is asymptotically periodic,
as in this case ω(f) is a finite set.

Remark 12. In the case f is a contracted rotation with an irrational rotation number (3),

it is proved in [9] that the closure of the limit set C = ω(f) is a Cantor set. Moreover,

in the particular case, where the slope of f equals λ =
1

n
, n = 2, 3, . . . , it is showed in [4]

that every point x ∈ C, but x = 0 or x = 1, is a transcendental number.

Let Per(f) denote the set of periodic points of f and O(f, x) denote the forward orbit
of x under f , i.e., O(f, x) = {fn(x) : n ≥ 0}. We introduce the following equivalence
relation ∼ on the set of singular points of f :

if x, y ∈ S we write x ∼ y if and only if ω(f, x) = ω(f, y). (4)

Define the quotient set A(f) := S/ ∼.
The following theorem gives an upper bound for the number of periodic orbits of f .

Theorem 13. Assume Per(f) is a nonempty set, then there is a map

ψ : Per(f) → A(f)

with the following property: ψ(x) = ψ(y) if, and only if, O(f, x) = O(f, y), i.e. x and y
belong to the same periodic orbit.

Proof. Let x ∈ Per(f) with period p ∈ N. Since S(p) is finite (see Lemma 8), we can write
S(p) = {c0, c1, . . . , cm−1} where c0 = 0 < c1 < · · · < cm−1 < 1. Let cm = 1 and consider
the partition of I,

W0 = [c0, c1),W1 = [c1, c2), . . . ,Wm−1 = [cm−1, cm).

There is a unique ℓ(x) ∈ {0, . . . , m−1} such that x ∈ Wℓ(x). Since f p(x) = x and f p|Wℓ(x)

is increasing and λp-Lipschitz (see Lemma 8), we conclude that f p(Wℓ(x)) ⊂ Wℓ(x) and
ω(f, z) = O(f, x) for every z ∈ Wℓ(x). In particular, ω(f, cℓ(x)) = O(f, x). Because cℓ(x) is
a singular point of f p, we may define

n(x) := min{q ≥ 0: f q(cℓ(x)) ∈ S}.

Notice that, n(x) < p. Let κ(x) ∈ {0, . . . , N − 1} such that sκ(x) = fn(x)(cℓ(x)). Finally,
define

ψ : x ∈ Per(f) 7→ [sκ(x)] ∈ A(f).

Now it is easy to see that ψ(x) = ψ(y) for two periodic points x, y ∈ Per(f), if and only if
O(f, x) = O(f, y). Indeed, suppose that sκ(x) ∼ sκ(y) for two periodic points x, y ∈ Per(f).

Then, ω(f, fn(x)(cℓ(x))) = ω(f, fn(y)(cℓ(y))). Whence,

O(f, x) = ω(f, cℓ(x)) = ω(f, fn(x)(cℓ(x))) = ω(f, fn(y)(cℓ(y))) = ω(f, cℓ(y)) = O(f, y).

�

Remark 14. Theorem 13 implies that any piecewise increasing contraction f has at most
#A(f) periodic orbits, where #A(f) denotes the cardinality of the set A(f) which is at
most the number of domains of continuity of f .
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2.1. Proof of Theorem 1. The discontinuity points of f whose image equals zero belong
to the equivalence class of zero (in the sense defined in (4)). This implies that #A(f) ≤
n + 1 − ℓ where ℓ = #{x ∈ S \ {0} : x ∼ 0}. Therefore, by Theorem 13, f has at most
n+ 1 − ℓ periodic orbits.

2.2. Proof of Corollary 2. Identifying the circle R \ Z with the interval I through the

canonical bijection I →֒ R → R \ Z, we may conjugate f to an interval map f̃ : I → I
which is a piecewise increasing contraction. By further rotating the circle, we assume that
0 is a discontinuity of f . Whence, f̃ has k − 1 discontinuity points plus some possible
extra discontinuity points whose image under f̃ equals zero. By Theorem 1, these new
discontiuity points only decrease the number of periodic orbits. Therefore, f̃ has at most
k periodic orbits, and the same is true for f .

2.3. Proof of Corollary 3. The piecewise λ-affine map f : I → I is a piecewise in-
creasing contraction. Since F is a k-interval piecewise λ-affine function, f has k − 1
discontinuity points plus some extra discontinuity points due to the mod 1. These extra
discontinuity points have zero image under f (since F at those points takes an integer
value). Therefore, by Theorem 1, f has at most k periodic orbits.

3. Invariant quasi-partition

Now we recall the notion of invariant quasi-partition [15, Definition 2.7].

Definition 15. Let f : I → I be an interval map and m a positive integer. Let P =
{J1, . . . , Jm} be a collection of m pairwise disjoint open subintervals of the interval I.
We say that P is an invariant quasi-partition of I under f , if it satisfies the following
properties:

(P1) I \
m
⋃

i=1

Ji contains at most finitely many points;

(P2) For every ℓ = 1, . . . , m, there is 1 ≤ τ(ℓ) ≤ m such that f(Jℓ) ⊂ Jτ(ℓ).

Throughout the rest of this section we assume that f : I → I is a piecewise increasing
contraction as defined in Section 1. Below we state a result [15, Lemma 2.8] which assures
the existence of an invariant quasi-partition for f . For the convenience of the reader we
include here a proof. Recall that S is the set of singular points of f .

Lemma 16. If the set

Q :=
⋃

n≥0

f−n(S) (5)

is finite, then f admits an invariant quasi-partition.

Proof. Let P = {Jℓ}
m
ℓ=1 denote the finite collection of all connected components of I \Q.

Since Q is finite, I \
⋃m

i=1 Ji contains at most finitely many points, thus P verifies (P1).
In order to prove (P2), suppose by contradiction that f(Jℓ) ∩Q 6= ∅ for some 1 ≤ ℓ ≤ k.
Then Jℓ ∩ f

−1(Q) 6= ∅. Using the fact that f−1(Q) ⊂ Q, we conclude that Jℓ ∩ Q 6= ∅,
which contradicts the definition of Jℓ. �

In the following we use the notation f(x±) = lim
y→x±

f(y).

Definition 17. A point x ∈ S ∪ {1} is called a left periodic singular point of f if there
exists n ∈ N such that fn(x−) = x.

The following theorem is adapted from the results of [15].
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Theorem 18. Let f be a piecewise increasing contraction with no left periodic singular

point. If Q is finite, then f is asymptotically periodic.

Proof. Let P = {Jℓ}
m
ℓ=1 denote the invariant quasi-partition of f constructed in Lemma 16,

i.e., P is the finite collection of the connected components of I \ Q. Notice that, since
S ⊂ Q (see (5)), for every ℓ ∈ {1, . . . , m} there is η(ℓ) ∈ {1, . . . , N} such that Jℓ ⊂ Iη(ℓ).

First we show that ω(f, x) is a periodic orbit for every x ∈ I. We consider two cases:

(i) If x ∈ I \Q, then there is a sequence (ℓn)∞n=0 ∈ {1, . . . , m}N0 such that fn(x) ∈ Jℓn
and ℓn+1 = τ(ℓn), for every n ≥ 0. Clearly, the sequence (ℓn)∞n=0 is eventually
periodic, i.e., there exist k ≥ 0 and p ≥ 1 such that ℓk+p = ℓk. Therefore,
f p(Jℓk) ⊂ Jℓk+p

= Jℓk . Let Jℓk = (c, d) where c, d ∈ Q ∪ {1}. Since f p|(c,d) is
λp-Lipschitz (Lemma 8), and extends to [c, d] by uniform continuity, there exists
z ∈ [c, d] such that ω(f p, x) = {z}. We want to show that f p(z) = z, whence z
is a periodic point of f and ω(f, x) = O(f, z). We claim that z ∈ [c, d), which
implies that f p(z) = z because f p is right continuous (Lemma 8). Now we prove
the claim. Suppose, by contradiction, that z = d. Then f p(d−) = d. If d = 1,
then 1 is a left periodic singular point of f , thus contradicting the fact that f has
no left periodic singular point. So we may suppose that d < 1. Because d ∈ Q,
we define

r = min{n ≥ 0: fn(d) ∈ S}.

Notice that r < p. Indeed, if r ≥ p, then d /∈ S(p), which means that f p is
continuous at d, i.e., f p(d) = f p(d−) = d. Hence O(f, d) ∩ S = ∅, contradicting
the fact that d ∈ Q. Now take any increasing sequence xn ր d. We know that
f p(xn) → d. Since f r is continuous at d, we obtain

f r(d) = f r(f p(d−)) = f r( lim
n→∞

f p(xn))

= lim
n→∞

f r(f p(xn))

= lim
n→∞

f p(f r(xn))

= f p(f r(d)−).

Because f r(d) is a singular point of f , we conclude that f r(d) is a left periodic
singular point of f , which cannot exist by hypothesis. Hence, ω(f, x) is a periodic
orbit.

(ii) If x ∈ Q, then either fn(x) ∈ Q for every n ≥ 0, which implies that the orbit of x
is finite, whence eventually periodic, or else there is k ≥ 1 such that fk(x) ∈ I \Q.
In the later case we reduce to the case (i). Therefore, ω(f, x) is a periodic orbit.

Finally, as P is finite, the map f has at most finitely many periodic orbits. This shows
that f is asymptotically periodic.

�

Remark 19. The left periodic singular point hypothesis in the previous theorem cannot
be removed as the following example shows. Let f : I → I be the piecewise increasing
contraction,

f(x) =

{

x
2

+ 1
4
, 0 ≤ x < 1

2
x
2
− 1

4
, 1

2
≤ x < 1

.

The map f admits an invariant quasi-partition since Q = {0, 1
2
}. Moreover, as f(1

2

−
) = 1

2
the discontinuity is a left periodic singular point of f . Therefore, Theorem 18 cannot be
applied to this case. In fact, f is not asymptotically periodic as the ω-limit set of any
point equals {1

2
} and the orbit of the discontinuity is not periodic.
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4. Piecewise λ-affine contractions

Given k ∈ N, let Fλ : I → R be the k-interval piecewise λ-affine function defined by the
tuples a = (a1, . . . , ak) and b = (b1, . . . , bk) (see (1)). Let fλ : I → I be the piecewise
λ-affine map defined by fλ = Fλ (mod 1).

Throughout this section fλ : I → I is a piecewise λ-affine map as defined above. We
will fix the tuples a and b and let λ vary in (0, 1). Notice that fλ is a piecewise increasing
contraction as defined in Section 2.

Recall that the tuples a and b are called Z-independent if and only if

ai − bj /∈ Z, ∀ (i, j) ∈ {1, . . . , k}2.

Following the terminology in Section 2, we denote the set of singular points of fλ by Sλ,

and, given n ∈ N, we denote the set of singular points of fn
λ by S

(n)
λ . We also denote by Nλ

the number of connected components of I \ S
(1)
λ . Notice that Sλ = S

(1)
λ . As in Section 2,

the set of singular points of fλ defines a collection of intervals Ij = [sj−1, sj), 1 ≤ j ≤ Nλ,
which forms a partition of I. On each interval Ij , where 1 ≤ j ≤ Nλ, according to (1) the
map fλ takes the expression

fλ(x) = ϕj(x), ∀x ∈ Ij, (6)

with ϕj(x) := λx+ δj , where δj = βj +pj for some pj ∈ Z and βj ∈ {b1, . . . , bk}. Similarly
to Nλ, the parameters δj defining ϕj may vary with λ. Indeed, the set of such λ’s where
both Nλ and the parameters δj change value are contained in the set

V := {λ ∈ (0, 1) : ∃ 1 ≤ j ≤ k such that Fλ(a−j ) ∈ Z or Fλ(a+j ) ∈ Z}. (7)

Notice that, V is a finite set and both Nλ and the parameters δj remain constant as λ
varies inside each connected component of (0, 1) \ V.

A crucial step in the proof of Theorem 4 is to estimate the growth of a larger set of
itineraries which contains all itineraries of nearby maps fλ, for this purpose we need to
exclude possible bifurcations of singular points.

Definition 20. A singular connection of fλ of order n ≥ 1 is an n-tuple (i0, i1, . . . , in−1) ∈
{1, . . . , Nλ}

n such that

ϕin−1 ◦ · · · ◦ ϕi0({a0, a1, . . . , ak}) ∩ {a0, a1, . . . , ak} 6= ∅.

We say that fλ has a singular connection if it has a singular connection of some order
n ≥ 1.

Notice that, if fλ has a left periodic singular point (see Definition 17), then it has a
singular connection.

Lemma 21. Let fλ be a family of piecewise λ-affine maps defined by Z-independent tuples

a and b. Then the set

{λ ∈ (0, 1) : fλ has a singular connection}

is at most countable.

Proof. Let J be a connected component of (0, 1) \ V (see (7)). Since V is finite there are
at most a finite number of connected components. As previously discussed, Nλ and the
parameters δj defining ϕj in (6) remain constant for every λ ∈ J .

Now, given λ ∈ J , fλ has a singular connection of order of n ≥ 1 if there exist ω =
(i0, . . . , in−1) ∈ {1, . . . , Nλ}

n and x, y ∈ {a0, a1, . . . , ak} such that

y = λnx + δin−1 + δin−2λ+ · · · + λn−1δi0 . (8)
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Since a and b are Z-independent, we have y 6= δin−1 . Consequently, the polynomial

Qx,y,ω(λ) = y −
(

λnx+ δin−1 + δin−2λ+ · · · + λn−1δi0
)

is not identically zero. Thus, it has at most finitely many roots. Therefore, up to countable
many λ’s in J , equation (8) does not hold for every x, y ∈ {a0, a1, . . . , ak} and ω of any
order. This shows that, up to many countable λ’s in the interval (0, 1), fλ has no singular
connection.

�

Let J be a connected component of (0, 1) \ V (see (7)). Notice that V is finite. Given
ν ∈ J and 0 < ε < 1, we define the open interval

Jε(ν) := J ∩ (ν − ε, ν + ε). (9)

Recall that In is the set of itineraries of order n of fλ (see Section 2). Of course, it depends
on the choice of λ and we will write In(λ) to stress its dependency. Denote by Iε

n = Iε
n(ν)

the union of all In(λ) over λ ∈ Jε(ν).

Lemma 22. Let ν ∈ J and fν be a piecewise ν-affine map with no singular connection.

Then

lim
ε→0+

lim
n→∞

1

n
log #Iε

n(ν) = 0.

Proof. The proof of this lemma is an adaptation of the proof of Proposition 9. We outline
the main steps. As in that proof, given ρ > 1, let m = ⌈log 2/ log ρ⌉ and τ = τ(m) > 0 be
the smallest distance between any two singular points of fm

ν . Because fν has no singular
connection, there is an ε > 0 such that the points in any interval whose length is less than
τ/2 define at most two distinct itineraries of order m of fλ for every λ ∈ Jε(ν). Moreover,
choosing ε smaller if necessary, we can guarantee that the set of itineraries of order m of
fλ for any λ ∈ Jε(ν) coincides with the set of itineraries of order m of fν . Now we choose
n0 ∈ N, depending on m and ε, large enough such that for every n ≥ n0 the length of

fn
λ (W ) is less than τ/2, for every λ ∈ Jε(ν), and every connected component W of I \S

(n)
λ .

Set αn := #Iε
n. The rest of the proof follows the same lines as the proof of Proposition 9.

So we conclude that limn
1
n

logαn ≤ log ρ for every ε > 0 sufficiently small. As ρ > 1 can
be chosen arbitrarily close to 1, this proves the lemma. �

Given n ∈ N and ω = (i0, . . . , in−1) ∈ {1, . . . , Nλ}
n, we define the polynomial

Hω(λ) := ϕin−1 ◦ · · · ◦ ϕi0(0) =

n−1
∑

j=0

λjδin−1−j
,

where the parameters δj remain constant for every λ ∈ Jε(ν) (see (7) and (9)). Notice
that Hω(λ) + λnx = fn

λ (x) for any x ∈ I, where ω is the corresponding itinerary of order
n of fλ. Also define

Ωε(λ) :=
⋂

m≥1

⋃

n≥m

⋃

ω∈Iε
n

{Hω(λ)}. (10)

Lemma 23. Let λ ∈ Jε(ν) as in (9) and n ∈ N. Then the set Ωε(λ) can be covered

by finitely many intervals of length 6λn which are centered at the points Hω(λ), where

ω ∈ Iε
n.

Proof. Given y ∈ Ωǫ(λ), there are nk ր ∞ and ωk ∈ Iε
nk

such that yk := Hωk
(λ) → y,

as k → ∞. Take k sufficiently large such that nk ≥ n and |y − yk| ≤ λn. Denote by [ωk]
the last n entries of ωk. Then |yk − H[ωk](λ)| = |Hωk

(λ) − H[ωk](λ)| ≤ 2λn which gives
|y −H[ωk](λ)| ≤ 3λn by the triangle inequality. �
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Recall the set Q defined in Lemma 16. Because Q varies with λ, we shall denote it
by Qλ. The next result gives a sufficient condition for the set Qλ to be finite whenever
λ ∈ Jε(ν) (see (9)). Recall the definition of Ωε(λ) in (10).

Lemma 24. If

Ωε(λ) ∩ {a0, a1, . . . , ak−1} = ∅,

then the set Qλ is finite.

Proof. Since Ωε(λ) ∩ {a0, a1, . . . , ak−1} = ∅, there exist n0 ∈ N and δ > 0 such that

min
0≤i<k

|Hω(λ) − ai| ≥ δ, ∀n ≥ n0, ω ∈ Iε
n. (11)

Let n ≥ n1 := max{n0, ⌈log δ/ log λ⌉} and suppose that there is x ∈ I such that fn
λ (x) ∈

Sλ but fm
λ (x) /∈ Sλ for every 0 ≤ m < n, i.e., x is a singular point of fn+1

λ but not of a
lower iterate of fλ. We have two cases:

(i) If fn
λ (x) ∈ {a0, a1, . . . , ak−1}, then |Hω(λ) − fn

λ (x)| ≤ λn < δ, where ω is the
itinerary of order n associated to x. Thus, Hω(λ) is δ-close to {a0, a1, . . . , ak−1}
which contradicts (11).

(ii) If fn
λ (x) ∈ Sλ \ {a0, a1, . . . , ak−1}, then fn+1

λ (x) = 0. Let ω be the itinerary of
order n+ 1 associated to x, then

Hω(λ) = |Hω(λ) − fn+1
λ (x)| ≤ λn+1 < δ,

thus Hω(λ) is δ-close to a0 = 0 which contradicts (11).

Both cases contradict (11). Thus, for n ≥ n1 no new singular point of fn
λ is created, i.e., fn

λ

and fn1
λ have the same singular points for every n ≥ n1. Therefore, the set

⋃

n≥0 f
−n
λ (Sλ)

is finite. �

5. Proof of Theorem 4

In this section we prove Theorem 4. We will use the following metric  Lojasiewicz-type
inequality [8, Theorem 4.6].

Lemma 25. Let 0 ≤ a < b < 1 and r ≥ 9. There exist 0 < θ ≤ 1 and 0 < ǫ0 < 1 such

that if 0 < ǫ < ǫ0 and p(x) is a polynomial of the form

p(x) = 1 + c1x + c2x
2 + · · · + cnx

n, ci ∈ [−r, r], n ∈ N,

then the following holds:

Leb({x ∈ [a, b] : |p(x)| < ǫ}) ≤ Cǫθ,

where Leb means Lebesgue measure and

C =
25+ 3

θ (1 + r)
2
θ deg(p)2+

2
θ (2 + 1

θ
)

ǫ20
.

5.1. Proof of Theorem 4. Let fλ be a family of piecewise λ-affine maps defined by
Z-independent k-tuples a and b. We want to show that the set

{λ ∈ (0, 1) : fλ is not asymptotically periodic}

has zero Hausdorff dimension. Denote by E the set of λ ∈ (0, 1) such that fλ has a
singular connection. By Lemma 21, the exceptional set E is at most countable. Notice
that, fλ has no left periodic singular point for every λ ∈ (0, 1) \ E. Thus, according to
Theorem 18, it is enough to show that Z := Λ \ E has zero Hausdorff dimension, where

Λ := {λ ∈ (0, 1) : Qλ is not finite}.
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Let J be a connected component of (0, 1) \ V (see (7)). Let ν ∈ J \E, 0 < ε < 1 − ν and
Jε(ν) be the interval defined in (9). Recall that the parameters δj in (6) remain constant
for every λ ∈ Jε(ν). By Lemma 24,

Zε(ν) := Z ∩ Jε(ν) ⊂ {λ ∈ Jε(ν) : Ωε(λ) ∩ {a0, a1, . . . , ak−1} 6= ∅}.

According to Lemma 23, the set Ωε(λ) can be covered by #Iε
n intervals of length 6λn,

thus

Zε(ν) ⊂
⋃

ω∈Iε
n

k−1
⋃

j=0

{λ ∈ Jε(ν) : |Hω(λ) − aj | ≤ 6(ν + ε)n} .

For any 0 ≤ j < k and ω ∈ Iε
n, the polynomial Hω(λ)−aj ∈ R[λ] is not identically zero

and has degree ≤ n− 1. Indeed, because fλ is defined by Z-independent tuples a and b,
we can write

Hω(λ) − aj = δin−1 + δin−2λ+ · · · + δi0λ
n−1 − aj

= (δin−1 − aj)
(

1 + δ′in−2
λ+ · · · + δ′i0λ

n−1
)

,

where δ′im := δim/(δin−1 − aj) for m = 0, . . . , n− 2 and

0 < |δ′im | ≤
1

|δin−1 − aj |
≤

1

min
1≤i,j≤k

min
p∈Z

|p+ bi − aj |
=: r <∞.

Taking n0 ≥ 1 sufficiently large, we can apply Lemma 25 with ǫ = 6r(ν + ε)n and get the
following estimate which holds for every n ≥ n0,

Leb ({λ ∈ Jε(ν) : |Hω(λ) − aj| ≤ 6(ν + ε)n}) ≤ Cn2+ 2
θ (ν + ε)θn,

where 0 < θ ≤ 1, and C > 0 is a constant independent of ω and n.
Therefore, the set {λ ∈ Jε(ν) : |Hω(λ) − aj | ≤ 6(ν + ε)n} can be covered by the union

of n intervals U
(1)
ω,j , . . . , U

(n)
ω,j of length less than ηn := Cn2+ 2

θ (ν + ε)θn, i.e.,

{λ ∈ Jε(ν) : |Hω(λ) − aj | ≤ 6(ν + ε)n} ⊂
n
⋃

i=1

U
(i)
ω,j and diam(U

(i)
ω,j) < ηn.

Notice that limn→∞ ηn = 0. Thus, for every 0 < σ ≤ 1, we have

Hσ
ηn(Zε(ν)) = inf

{

∑

i

diam(Ui)
σ : Zε(ν) ⊂

⋃

i

Ui, diam(Ui) < ηn

}

≤
∑

ω,j,i

diam
(

U
(i)
ω,j

)σ

<
∑

ω∈Iε
n

k−1
∑

j=0

n
∑

i=1

ησn

= Cσ(#Iε
n) k n1+σ(2+ 2

θ
)(ν + ε)σθn.

By Lemma 22, we have that limn→∞Hσ
ηn(Zε(ν)) = 0, whence Hσ(Zε(ν)) = 0 for every

0 < σ ≤ 1. Thus, Zε(ν) has Hausdorff dimension equal to zero. Because Z is a countable
union of the family of sets {Zεi(νi)}i each with zero Hausdorff dimension, we conclude
that Z also has zero Hausdorff dimension.
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