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Abstract

For a large motor insurance portfolio, on an open environment, we study the impact
of experience rating in finite and continuous time ruin probabilities. We consider a model
for calculating ruin probabilities applicable to large portfolios where a Markovian Bonus-
Malus System (BMS), based on claim counts, is used for an automobile portfolio using
the classical risk framework model. New challenges are brought when an open portfolio
scenario is introduced. When compared to a classical BMS approach ruin probabilities
may change significantly. By using a BMS of a Portuguese insurer, we illustrate and
discuss the impact of the proposed formulation on the initial surplus required to target
a given ruin probability. Under an open portfolio setup, we show that we may have
a significant impact on capital requirements when compared to the classical BMS, by
having a significant reduction on the initial surplus needed to maintain a fixed level of
the ruin probability.

Keywords: Ruin probability; finite time ruin probability; bonus-malus; open port-
folio; experience rating; capital requirement.

1 Introduction and Motivation

The main goal of this work is to calculate finite time ruin probabilities for large motor
insurance portfolios where a Markovian Bonus-Malus System (briefly BMS) based on claim
counts is put in place as experience rating. The paper by Afonso et al. (2017) shows a way
to do this calculation/estimation in the presence of a classical BMS model. Our aim is to
update their model to provide the implementation of an open BMS as we believe that the
resulting ruin probabilities have a better or realistic representation for the business. The
classical BMS model has implicitly the idea that the policies that may exit the portfolio in
some period of time will be compensated by incoming ones. In the real world we do not
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necessarily have this behaviour. Indeed, in the very competitive motor insurance market, we
assist great market movements among insurers, where insureds try often to get better deals,
lower premia, and insurers try to increase their businesses. Besides, every insurer can build
their own bonus scale. Often insureds are quite conservative and try to not deal or have too
many different insurers when they buy several coverages, i.e., if an insured move a policy to
another insurer they are likely to move the whole portfolio.

Furthermore, classical BMS model assumes the existence of fixed entry bonus class for the
portfolio newcomers. Nowadays, this is not appropriate since insurance regulators provide
insurers with the past record of a policyholder irrespective of previous insurers. This leads
to consider that a portfolio newcomer (at least in theory) can enter at any bonus class in a
new portfolio if he changes insurer at some time period. Better information results in better
risk classification, then more appropriate premia to be charged and also a better evaluation
or estimation of capital requirements for the insurers’ business.

A first question is: Does these new ideas have an impact on ruin probabilities? Also: Do
they lead to a real change in the ruin probability figures shown by Afonso et al. (2017), for
instance? We believe they may. In fact, we know already that there is an effect on optimal
scales, see Guerreiro et al. (2014). Our aim is wider as we intend to show that modelling
an open portfolio may lead to a significant change in ruin probabilities, when compared
to the classical BMS model ones. Also, they may contribute to a re-evaluation of capital
requirements of an insurance company, once fixed a level for the ruin probability, whether in
finite or infinite horizon. Furthermore, we are interested in evaluating the impact on existing
optimal scales when applied to an open model, to premia and ruin probabilities. Bonus
classes may be allowed to be less dispersed (bonuses not as high or maluses as low as in the
classic formulation). Long run behaviour is also important as, in general, most of existing
BMS tend to concentrate most of the insureds in higher bonus classes.

There aren’t many authors calculating ruin probabilities in the presence of a BMS, cer-
tainly even less when we consider an open BMS formulation. Lemaire (1995) is clearly a
classical reference for BMS, an important and more recent reference is Denuit et al. (2007).
These only deal with the classical model and do not calculate ruin probabilities. Refer-
ence Afonso et al. (2017) particularly is concerned with finite time ruin probabilities for BMS
in automobile insurance. There are several references about open BMS, however they are
not devoted to ruin probability calculation, they mostly work bonus scales and model effi-
ciency. Chosen examples are Andrade e Silva and Centeno (2001), Guerreiro et al. (2014)
and Mahmoudvand and Aziznasiri (2014).

The manuscript is organized as follows. Next section is devoted to the presentation of
the base model framework, including definitions, risk model and assumptions, BMS in open
portfolios, scenarios and ruin probability formulae, procedures and estimation. Section 3 is
devoted to numerical calculation of finite time ruin probabilities in the open model, con-
sidering the different scenarios. It also includes estimation and distribution fitting, policy
allocation along time considering different cases and scenarios, capital requirements and re-
sult discussion. It finishes with some concluding remarks.
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2 Basic framework

In this section, we summarise briefly our basic framework for the calculation of the probability
of ruin in finite and continuous time. The base model was taken from Afonso et al. (2009)
and it is already summarized in Afonso et al. (2017). As for the modeling of BMS in open
portfolios we will follow the work by Guerreiro et al. (2014) with some developments obtained
in Esqúıvel et al. (2014).

2.1 Modelling the ruin probability

In this section, we start by introducing our base model, main definitions and notation, most
of them retrieved from Afonso et al. (2009) and Afonso et al. (2017). We summarise the main
definitions considered relevant for an easy reading flow. We will locally define and introduce
some other definitions or notation where appropriate.

Consider a risk process over an n-year period. We denote by S(t) the aggregate claim
amount up to time t, with S(0) = 0, and by Yi the aggregate claim amount in year i, so that
Yi = S(i)−S(i−1). In the n-year period, {Yi}ni=1 is a sequence of independent and identically
distributed (briefly i.i.d.) random variables with common compound Poisson distribution,
whose first three moments exist. Poisson parameter is denoted as λ. Let us also set f(·, s)
as the probability density function (p.d.f.) of S(s) for 0 < s ≤ 1.

Let Pi denote the total amount of premia charged in the portfolio in year i, which depends
on the allocation of policies throughout the bonus levels in each year. The estimation of this
allocation will differ significantly whether we consider a classical or an open BMS formulation,
and may naturally impact the magnitude of corresponding ruin probabilities. The measure
of these impacts is focused in this paper.

Let U(t) denote the insurer’s surplus at time t, 0 ≤ t ≤ n. It is assumed that premia are
received continuously at a constant rate throughout each year. The initial surplus, u (= U(0)),
and the initial premium, P1, are known. For each year i, the premium Pi , i ≥ 2 and surplus
level U(i), i ≥ 1 are random variables since they both depend on the claim experience in
previous years and on the annual allocation of policies throughout the BMS classes, which
will determine the bonus or malus to apply to each policy. Whenever we refer to a particular
realization of these random variables, we use the corresponding lower case letters pi and u(i).

The evolution of the surplus of an insurance company or portfolio, U(t), for any time t,
0 ≤ t ≤ n, is driven by the following equation [as previously defined in Afonso et al. (2009),
Formula (2.1)]:

U(t) = u+
i−1∑
j=1

Pj + (t− i+ 1)Pi − S(t) , (2.1)

where i is the positive integer such that t ∈ [i− 1, i) and
∑0

j=1 Pj = 0, by convention.

We summarize the basic assumptions of our model formulation as follows:

1. The portfolio is homogeneous with respect to claim severities;

2. The portfolio is heterogeneous with respect to claim frequencies, following a mixed
Poisson distribution;
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3. We consider a homogeneous claim frequency in each bonus level, i.e., in level j the
number of reported claims in one year is Poisson distributed with parameter λj , j =
1, 2, . . . , L, where L is the number of bonus-malus levels or classes;

4. The portfolio is open for incoming and outgoing of policyholders.

We note that Assumptions 1-3 above are the same as in Afonso et al. (2017). From there
Assumption 4 has changed from closed to open portfolios. Our main goal in this manuscript
is to show the impact/change on ruin probabilities motivated by the change in Assumption 4.

As in Afonso et al. (2017) let ψ(u, n) denote the probability of ruin in continuous time
within a period of n years and ψ(u(i − 1), 1, u(i)) be the approximation to the probability
of ruin within year i, given the surplus u(i − 1) at the beginning of the year, u(i) ≥ 0 the
surplus at the end of the year and a rate of premium income pi during the year.

Let H(s) + κ s be a random variable with a translated Gamma distribution whose first
three moments match those of S(s). We denote the parameters of the translated Gamma
as α, β and κ, respectively the shape, scale and translation parameters, α, β > 0 and κ ∈
R. Denoting FG(·, s) the cumulative distribution function and fG(·, s) the p.d.f. of H(s),
Afonso et al. (2009) show that, after obtaining parameters α, β and κ, the approximation to
the ruin probability in year i as defined above is given by, their Formula (3.1):

ψ(u(i− 1), 1, u(i)) =

∫ 1−u(i)/pi

s=0
fG(u(i− 1) + (pi − κ)s, s) u(i)

(1−s)fG((pi − κ)(1− s)− u(i), 1− s)ds
fG(u(i− 1) + pi − κ− u(i), 1)

+
fG(u(i− 1) + (pi − κ)(1− u(i)

pi
), 1− u(i)

pi
)FG(−κu(i)/pi, u(i)/pi)

fG(u(i− 1) + pi − κ− u(i), 1)
. (2.2)

In this paper, the estimated probability of ruin for a finite time, say n, will be obtained
using formula (2.2) inserted in a simulation procedure that is described in Subsection 2.3.

2.2 BMS for open portfolios

In this subsection, we introduce main results on BMS for open portfolios, we follow Guer-
reiro et al. (2014) and some developments from Esqúıvel et al. (2014). After, we make our
main assumptions followed by the portfolio evolution and limiting results.

For a BMS with transition rules based on the claim frequency only, see Lemaire (1995)
and Denuit et al. (2007) for instance, the position of each policyholder in the BMS level or
class in a given annual period is determined uniquely by the class of the preceding year and
by the number of claims reported during that period. The classical approach considers the
BMS as an application of a homogeneous Markov chain with L finite states and estimates
the step by step evolution and corresponding long run behaviour using well known results for
Markov chains, see the above references Lemaire (1995) and Denuit et al. (2007).

We innovate now by assuming that in each year new policies enter the portfolio and some
policyholders may leave the portfolio, as they wish. Assume also that the exits from the
portfolio do not need to be perfectly compensated by new entries. In our formulation, as
in Guerreiro et al. (2014), in order to account for the possibility of a policyholder leave the
portfolio we consider an extra absorbing state in the Markov chain. This represents the exit
from the portfolio. We’ll have then L + 1 BMS classes, where states 1, . . . , L are transient
and L+ 1 is an absorbing state.
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For a given claim frequency λ and a set of transition rules T, the corresponding transition
block matrix is denoted as

PT,λ =

[
KT,λ qλ
0 1

]
,

where KT,λ is a (L×L) matrix representing the one step transition probabilities among the
BMS classes for those policies that remain in the portfolio, qλ a column vector of conditional
probabilities of an insured leaving the portfolio at the end of the time period, and 0 is a null
row vector.

Commonly in classical BMS models, for a given set of transition rules, the probability of
a randomly chosen policyholder, with a given claim frequency λ, move from class l to class j
is given by

pT,λ(l, j) =
∞∑
k=0

pk(λ) tlj(k) , l, j = 1, . . . , L ,

where pk(λ) is the probability of an insured with claim frequency λ report k claims in one
year, tlj(k) = 1 if he reports k claims leading the policy to move from class l to class j,
according to transition rules T and tlj(k) = 0, otherwise.

In the open model formulation, we set that the transition probabilities among classes
1, . . . , L are given by

kT,λ(l, j) = pT,λ(l, j) (1− qλ(l)) , l, j = 1, . . . , L. (2.3)

Here, kT,λ(l, j) is the entry (l, j) of matrix KT,λ and qλ(l) is the l-th element of vector qλ.
We highlight that Equation (2.3) reflects that, in an open portfolio formulation, the proba-
bility of a policyholder to move from class l to class j depends on the claim frequency λ, the
transition rules T , and the probability of exiting the company qλ(l), which may be different
from class to class. In other words, a policyholder with claim frequency λ moves, at the end
of the year, from class l to class j only if he doesn’t exit the company.

The n-step transition matrix, n = 1, 2, , . . . , is given by

P
(n)
T,λ =

[
Kn
T,λ qn,λ
0 1

]
with qn,λ =

∑n−1
j=0 Kj

T,λ qλ, Kj
T,λ is the j-th power of matrix KT,λ, which corresponds to the

j-step transition probabilities for the policyholders remaining in the portfolio after these j

years, and P
(1)
T,λ = PT,λ.

Let us now state some assumptions regarding the evolution of the portfolio along time:

1. New policies arrive at the portfolio are done at the beginning of each time period;

2. New policies entering the portfolio are allocated to a BMS level according to the pro-
bability vector ci = [ci(l)]1×L , i ∈ N;

3. The number of new policies entering the portfolio at time period i are independent
random variables with mean value ϑi , i ∈ N, and are denoted as Ei;

Before further developments we would like to comment that:
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(a) Assumption 2 above allows for the allocation of new policyholders into any of the
BMS levels. This allows the insurer to possibly observe the past claim history of the
policyholder in the previous insurer and allocate the contract to the corresponding risk
level of reported claims. It also allows for the estimation of allocation probabilities.

(b) We note that, if we further assume a Poisson distribution for each random variable
Ei, it allow us to obtain confidence intervals and/or hypothesis testing for relevant
parameters of the model, as shown in Guerreiro et al. (2014) and Esqúıvel et al. (2014),
if real data is used.

(c) In order to evaluate and compare the ruin probabilities over different hypothesis on
portfolio evolution, we consider two different models for the mean value ϑi , i ∈ N,
namely:

Scenario 1 - Exponential Model: Following Guerreiro et al. (2014), mean value ϑi,
i ∈ N, is modelled by

ϑi = τ
(

1− e−δi
)
, i ∈ N , τ, δ ∈ R+. (2.4)

Scenario 2 - Sigmoid Model: Following Esqúıvel et al. (2014), mean value ϑi, i ∈ N,
is modeled by

ϑi =
(
a+ b e−θi

)−1
, (a, b, θ) ∈ Θ , i ∈ N , (2.5)

with Θ =
{

(a, b, θ) : a ∈ R+, b, θ ∈ R, a+ b e−θi > 0 , i ∈ N
}

.

We remark that both models may be comparable in long run horizons, setting τ = 1/a,
however they model different evolutions before reaching a limiting situation.

(d) Other functions for modelling new annual entries could be used, provided the conditions
for convergence of the model, such as those proven by Esqúıvel et al. (2014).

We now discuss the portfolio evolution and limiting results. First, we present a modi-
fication of Proposition 1 from Guerreiro et al. (2014) considering that the insurer already
detains a pre-existing portfolio:

Proposition 1 When the mean number of new policies entering the portfolio in period i
is modelled by ϑi, i ∈ N, and the insurer already has an existing portfolio with policies
distributed over BMS classes according to the row vector ϑ′0 = [ϑ0(j)], j = 1, . . . L, the row
vector of expected number of policyholders in the BMS classes in time period i, for a given λ,
denoted by ϑ+

i,λ, will be given by:

ϑ+ ′

i,λ = ϑ
′
0 Ki

λ +

i∑
k=1

ϑk c
′
k K

i−k
λ , i ∈ N (2.6)

Proof. It is straightforward, following the proof in Guerreiro et al. (2014).

From here some remarks are pointed out:
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Remark 1 Since KT,λ corresponds to the transition matrix of the sub-set of transient states
of the Markov chain, is known that, see (Ross, 1996, Section 4.3 ), limi→∞Ki

T,λ = 0 so,
limit results only rely on the second part of equation (2.6).

Remark 2 The sum of all components of vector ϑ+
i,λ corresponds to the expected number of

policies in the portfolio in year i, which varies overtime, and will obviously have an impact
on collected premia.

Remark 3 When using the classical model to predict BMS evolution, the total number of
policies in the portfolio is constant overtime and the randomness comes only from the distribu-
tion of policyholders among the bonus levels. In open portfolio formulation, both policyholder
allocation and portfolio dimension vary overtime and need to be predicted.

Using (2.6) and the previous remarks it is easily established that the proportion of poli-
cyholders, with claim frequency λ, belonging to class j in year i, is given by

πi,λ(j) =
ϑ+
i,λ(j)∑L

j=1 ϑ
+
i,λ(j)

, j = 1, . . . , L , i ∈ N.

We also remark that, with an open portfolio approach, the asymptotic properties of a Markov
chain do not apply. The existence of a long run distribution for the proportion of policyholders
in each BMS class depends on the functional form for the mean number of new annual policies
incoming the portfolio in year i, ϑi, i ∈ N, which, for the cases of Scenarios 1 and 2, is assured
by the general results proven in Esqúıvel et al. (2014).

Given λ, the limiting state probability for a policyholder belonging to bonus class j is
given by

π∞,λ(j) =
ϑ+
∞,λ(j)∑L

j=1 ϑ
+
∞,λ(j)

, j = 1, . . . , L ,

with ϑ+
∞,λ = limi→+∞ ϑ+

i,λ.
To express the heterogeneity of the portfolio with respect to the claim frequency, it is

common to consider λ as an outcome of a positive random variable, say Λ, with distribution
function denoted as VΛ(·). As widely set in the BMS literature, the unconditional probability
of an insured belonging to class j, after i steps, and the long run distribution, for a policy-
holder chosen at random from the portfolio, is assumed as the expectation with respect to
Λ, respectively

πi(j) =

∫ ∞
0

πi,λ(j) dV (λ) , j = 1, . . . , L , (2.7)

and

π∞(j) =

∫ ∞
0

π∞,λ(j) dV (λ) , j = 1, . . . , L .

With a similar procedure, the portfolio dimension in year i, measured by the number of
policies, is denoted as NPoli, is given by

NPoli =
L∑
j=1

NPoli(j) , i ∈ N , (2.8)
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with

NPoli(j) =

∫ ∞
0

ϑ+
i,λ(j) dV (λ) , j = 1, . . . , L, i ∈ N . (2.9)

Due to the fact that the portfolio is open, NPoli changes overtime considering the new annual
entries and exits.

The total amount of premia to be charged annually, for the set of policyholders in the
portfolio, is not constant overtime since it depends on the allocation of policyholders among
the bonus levels (in both classical and open portfolio formulations) and on the portfolio
dimension (in an open portfolio model) and is given by the sum of total premia collected in
each class. For a given year i and known involved quantities, total premium in the presence
of a BMS can be computed using Formula (2.6) from Afonso et al. (2017):

Pi = (1 + ξ)NPoli

L∑
j=1

E [S(1)]πi(j) bj , i = 1, . . . , n , (2.10)

where ξ > 0 is the safety loading parameter and bj corresponds to the relativity of level j,
i.e., the proportion of a priori premium to apply in level j.

As in Afonso et al. (2017), we consider E [S(1)] to be dependent on Class j and for BMS
based only on claim frequency there is an implicit assumption that average individual claim
size is constant across BMS classes.

2.3 Simulation and calculation procedure

Our method for computing ruin probabilities uses real data (historical data) for parameter
estimation and a mix of calculation and simulation (not necessarily by this order). The basic
procedure, taken from Afonso et al. (2017), is appropriately updated to accommodate the
open model formulation. It is indeed updated and extended. The model for ruin probabilities
estimation is targeted for large portfolios and we need to obtain annual aggregate claims. The
approximation by a translated Gamma distribution with parameters α, β and κ is suggested.
This was introduced at the end of Subsection 2.1.

The procedure is summarised and itemised as follows:

1. Estimation of expected claim frequency λj , j = 1, . . . , L.

From historical data, estimate the mean claim frequency of bonus level j , j = 1, . . . , L.
In level j, the number of reported claims is Poisson distributed with parameter λj .

2. Estimation of the mean value of new annual policies ϑi , i = 1, . . . , n.

Estimate the mean number of new annual contracts arriving to the portfolio. One may
use regression techniques, as in Guerreiro et al. (2014) and Esqúıvel et al. (2014) or
time series models, as in Esqúıvel et al. (2017).

3. Estimation of allocation probabilities ci(j) , i = 1, . . . , n , j = 1, . . . , L .

Using maximum likelihood estimator (briefly MLE) ĉi(j) = Eij/Ei, i = 1, . . . , n , j =
1, . . . , L, estimate the probability of a new contract to be allocated at level j in year i.
Ei refers to the number of new contracts in year i and Eij to the number of contracts
that, in year i, were allocated to level j.
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In particular, in stable portfolios (with respect to allocation probabilities), we may set
ci ≡ c and, in this way,

ĉ(j) =

∑n
i=1Eij∑n
i=1Ei

. (2.11)

4. Estimation of exit probabilities qλ(j) , j = 1, . . . , L.

Estimate the exit probabilities for each BMS level j, using the equivalent MLE in (2.11)
for the number of contracts exiting the insurer.

5. Estimation of the expected number of claims for the portfolio, in year i, i = 1, . . . , n.

The expected number of claims in the portfolio, for year i, is given by, see For-
mula (2.10),

E[Ni] = NPoli

L∑
j=1

λj πi(j) , i = 1, . . . , n . (2.12)

For comparison to the classical BMS, we remark that in open BMS formulation πi(j),
i = 1, . . . , n, j = 1, . . . , L and NPoli are obtained by (2.7) and (2.8), respectively.
Whereas in the classical BMS model, πi(j) is obtained by (2.4) of Afonso et al. (2017)
and NPol does not depend on i, since the portfolio is assumed to be closed and, there-
fore, constant overtime. From a practical point of view, the differences between (2.12)
and that of (2.14) in Afonso et al. (2017) rely on the portfolio evolution and policies dis-
tribution which will, naturally, have impact on the mean value of the expected number
of reported claims.

6. Simulation of the aggregate claim amount for each year i, {Yi}ni=1.

Let Yi be the aggregate claim amount in a given year i, assumed to have (approximately)
a translated Gamma distribution. Calculate the parameters of the translated Gamma
distribution, αi, βi, κi, for each year i, i = . . . , n, that match the first three moments
of Yi, considering the results obtained in Step 5 above and historical data for claim
amounts.

7. Estimation of the premium collected in each year i, Pi , i = 1, . . . , n.

For a given bonus scale b = (b1, . . . , bL), estimate the total amount of premium collected
in year i, using (2.10).

8. Estimation of the ruin probability in year n, ψ(u, n).

This step is performed as follows:

(a) From the simulated values of {Yi}ni=1, say {yi}ni=1, calculate consecutively the
surplus at the end of each year:

u(1) = u+ p1 − y1 , or

u(i) = u(i− 1) + pi − yi , i = 2, . . . , n .

(b) Denote as ψm(u, n) the ruin probability in simulation (or run) number m. In run
m:
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• If u(i) < 0 for any i, i = 1, 2, . . . , n, we set ψm(u, n) = 1 and start simulation
m+ 1, m = 1, . . . ,M − 1, where M is the number of runs for each path set;

• If u(i) ≥ 0 for all i, i = 1, 2, . . . , n, we calculate the approximation for run m
ψm(u(i− 1), 1, u(i)) using (2.2).

c) Calculate the finite time ruin probability estimate in run m, ψ̂m(u, n), as follows:

ψ̂m(u, n) = 1−
n∏
i=1

[
1− ψ̂m(u(i− 1), 1, u(i))

]
.

(d) The estimate for the continuous and finite time ruin probability, ψ̂(u, n), is set by
the mean of the estimates obtained from each simulation, {ψ̂m(u, n)}Mm=1.

Comparing to the classical formulation, we highlight that simulation Steps 1, 5, 6, 7 and
8 are performed for both classical and open BMS models, using the appropriate estimates
involved. Steps 2-4 are only performed when adopting the open BMS model to evaluate
ruin probability. This procedure also allows an easy calculation of the standard error of the
estimate obtained. This suggests that this simulation procedure is general and has a wide
range of applications.

3 Ruin probabilities in an open portfolio with a BMS

3.1 Data and distribution fitting

In this paper, and for comparison purposes, we use the same automobile portfolio and BMS,
illustrated in Afonso et al. (2017). This allows us to compare their results directly with ours,
and get clear conclusions. From there we retrieve:

• Insurer’s commercial scale has L = 18 bonus-malus levels, with transition rules defined
in Table 1 of Afonso et al. (2017), which establishes Level 10 as the entry class.

• Number of claims reported by a randomly chosen insured follows a mixed Poisson
distribution, where the random parameter Λ follows an Inverse Gaussian distribution,
with parameter estimates µ̂ = 0.082401 and η̂ = 0.130271, according to data of their
Table 2.

• In level j (j = 1, . . . , L) the number of annual claims follow a Poisson distribution with
parameter λj , estimated from data and illustrated in Table 3.1 below.

• The number of existing policies in each level j, at the evaluation date, ϑ0, was known
and is also presented in Table 3.1. In this paper this will be our starting point for the
estimation of portfolio evolution considering the expected future number of incoming
annual policies entering the portfolio as well as the expected number of annual exits.

Consider now the BMS model for open portfolios presented in Section 2.2. Every insured
entering the portfolio will be allocated to one of the bonus malus levels. In Portugal, nowa-
days, the claim history of the insured is known to the insurer (it is made available by the
control authority) so that an insured may be allocated to any class. The allocation and ex-
iting probability estimates by class, ĉ(j) and q̂(j) respectively, both estimated from data are
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j 1 2 3 4 5 6

λ̂j 0.034516 0.072883 0.076425 0.080265 0.126855 0.135954
ϑ0(j) 174,173 109,113 42,736 29,134 23,730 4,241

j 7 8 9 10 11 12

λ̂j 0.148393 0.181802 0.195919 0.213730 0.237433 0.255984
ϑ0(j) 2,759 24,829 11,747 166 2,882 7,632

j 13 14 15 16 17 18

λ̂j 0.277505 0.301956 0.327931 0.358676 0.395719 0.441571
ϑ0(j) 250 710 2,256 2,643 1,304 2,183

Table 3.1: Number of existing policies and estimated Poisson parameter by class

j 1 2 3 4 5 6

ĉ(j) 0.265847 0.083959 0.037448 0.089331 0.063856 0.166594
q̂(j) 0.046442 0.056989 0.056703 0.074157 0.070393 0.088040

j 7 8 9 10 11 12

ĉ(j) 0.109473 0.09595 0.039585 0.045002 0.001757 0.000939
q̂(j) 0.100813 0.109777 0.147588 0.208660 0.380737 0.388989

j 13 14 15 16 17 18

ĉ(j) 0.000176 2.93E−5 1.46E−5 1.39E−5 1.32E−5 1.26E−5
q̂(j) 0.397241 0.487619 0.497778 0.098462 0.087521 0.068072

Table 3.2: Allocation and annulment probability estimates per bonus class

shown in Table 3.2. Due to available data, annulment probabilities estimates were obtained
not depending on λ.

Top left graph of Figure 2 gives a visual presentation of these probabilities. In particular
we call the attention to: (i) The low proportion of insureds that are initially allocated to the
entry level (Level 10). Only about 4.5% of new insureds are allocated to the entry class; (ii)
the high proportion of allocations to Class 1. Note that about 26.6% of the new insureds
enter the portfolio directly to the highest bonus level; (iii) the high magnitude of exiting
probabilities for those insureds in Classes 11-15. This reflects that insureds in these classes
seek for a better premium in another insurer. The very low figures of the exiting probabilities
for insureds from Levels 16-18 when compared to the neighbouring lower classes, is certainly
due to the fact that it is difficult for them to bargain a better premium in another insurer, since
there is information disclosure among insurers regarding the reported claims. We believe that
these observed patterns in allocation and exiting probabilities will have a significant impact
on ruin probabilities.

As said earlier, in order to foresee the portfolio evolution, we considered different formu-
lations to model the mean annual number of new policyholders: The Exponential and the
Sigmoid models, see Equations (2.4) and (2.5), respectively. The portfolio starts with 442, 490
policies, distributed over the classes as shown in Table 3.1, at the evaluation date, ϑ0(j). Re-
garding the insurer expectations and the insurance market in Portugal, we considered a long
run target of 50, 000 incoming policies per year. Due to lack of real data that allowed us to

11



fit a function to the insurer’s historical data, we set 1/a = 50, 000, b = 0.00025 and θ = 0.55
for Sigmoid Model and τ = 50, 000 and δ = 0.4 for the Exponential Model. Parameters a and
τ are related to long run target and the remainder of the parameters represent the evolution
of new annual policies per year. In practice, real data should be observed, a model chosen
appropriately and respective parameters should be estimated, as in Guerreiro et al. (2014)
and Esqúıvel et al. (2014). The estimate for the number of policies that in year i are allocated
to each level j is obtained by ĉ ϑi, using ĉ from Table 3.2.
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Figure 1: Evolution of the number of policies over time in the sigmoid and asymptotic models

Figure 1 shows the expected evolution of the portfolio and of the expected number of new
policies, obtained from Equation (2.6) followed by (2.9), for both Exponential and Sigmoid
models.

From the number of existing policies in each level, ϑ0(j), illustrated in Table 3.1, we
obtained the starting allocation of the policyholders among the bonus classes, this corresponds
to column “Present” from Table 3.3. Columns 2-4 illustrates the stationary distribution of
policies through the L = 18 levels of the BMS, π∞(j), j = 1, . . . , L. Column 2 contains the
obtained figures for the classical BMS, Columns 3 and 4 those corresponding to the open
BMS with Exponential and Sigmoid entries, respectively.

We highlight the differences between the classical and open model results. Due to the
annulment probabilities, the higher levels are expected to have fewer policies in the open
BMS formulation. Due to the possibility of allocation in different levels, we would expect
that policies won’t be so concentrated in the first level, when comparing to the classical
formulation.

Considering the conclusions in Afonso et al. (2017) about ruin probabilities for different
optimal scales, we chose to perform the calculations in this paper based on only two optimal
scales, namely those proposed by Borgan et al. (1981) (denoted B) and the linearization of
that proposed by Gilde and Sundt (1989) (denoted LB). The former was obtained with the
same set of weights applied to a 20 year horizon used in Afonso et al. (2017), i.e., wi+1 =

12



Classical Open BMS
j Present BMS Exponential Entries Sigmoid Entries

1 0.39362 0.73121 0.64235 0.63574
2 0.24659 0.04913 0.06251 0.07115
3 0.09658 0.05394 0.06683 0.08153
4 0.06584 0.05941 0.07689 0.07939
5 0.05363 0.01871 0.03986 0.04775
6 0.00958 0.01678 0.03818 0.02216
7 0.00623 0.01411 0.02860 0.02195
8 0.05611 0.00837 0.01764 0.01258
9 0.02655 0.00725 0.01098 0.01154
10 0.00037 0.00612 0.00729 0.01168
11 0.00651 0.00495 0.00295 0.00172
12 0.01725 0.00453 0.00195 0.00129
13 0.00056 0.00419 0.00119 0.00083
14 0.00160 0.00398 0.00066 0.00024
15 0.00510 0.00398 0.00064 0.00021
16 0.00597 0.00410 0.00050 0.00013
17 0.00295 0.00438 0.00045 0.00004
18 0.00493 0.00488 0.00053 0.00006

Table 3.3: Portfolio stationary distributions per classes

wi/1.05, i = 1, . . . , 20. Both scales are illustrated in Table 3.4. In the same table we also
show the commercial scale used by the insurer, denoted as C, and for comparison purposes
the same scales obtained for the classical BMS approach.

From this table we see that the relativities derived from open model formulation are less
dispersed, and bonuses and maluses are less extreme when compared to the classical model
approach. The Sigmoid model even leads to a higher difference than the Exponential one.
This fact, together with policy allocation through the levels, will expectedly have impact on
ruin probabilities.

Regarding the aggregate claim severity, we retrieve the estimates from Afonso et al.
(2017), as they were got from the history of the insurer’s portfolio claim amounts: the
aggregate claim mean is 1, 766.31, the variance is 71, 097, 953.5 and the third central moment
is 21, 068, 298, 856, 615. These figures were then used to obtain estimates for parameters α,
β and κ of the translated Gamma approximation.

3.2 Ruin probabilities

In the simulation procedure, summarized in Subsection 2.3, for the calculation of the ruin
probability ψ(u, n), we fixed the initial surplus at u = 2, 000, 000 and we used M = 50, 000
runs with total average computation time of 75 minutes. All results were obtained in a PC
with Intel R© Xeon 10 cores and 32 GB of RAM. For the simulation process, as in Afonso et al.
(2017), we used the loading coefficient of 80% and the same amount of aggregate premium
P ∗ = 1.8E[S(1)] = 115, 838, 792 calculated as if BMS was inexistent.

In Table 3.5 we show the results for time horizons t = 2, 5, 10, focusing on the following
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Classical BMS Open BMS - Exponential Open BMS - Sigmoid
j C B LB B LB B LB

1 45 48.8 46.0 58.3 57.3 67.1 61.2
2 45 58.0 52.0 70.1 62.1 79.6 65.5
3 50 60.1 58.0 74.2 66.8 84.5 69.8
4 55 62.3 64.0 78.9 71.5 91.6 74.1
5 60 63.7 70.0 77.9 76.3 89.3 78.4
6 65 66.2 76.0 79.6 81.0 100.8 82.8
7 70 68.1 82.0 84.3 85.8 102.1 87.1
8 80 69.9 88.0 85.6 90.5 101.8 91.4
9 90 72.3 94.0 95.6 95.3 100.8 95.7
10 100 100.0 100.0 100.0 100.0 100.0 100.0
11 110 105.6 106.0 115.6 104.7 131.0 104.3
12 120 113.0 112.0 136.9 109.5 157.8 108.6
13 130 124.3 118.0 139.8 114.2 169.1 112.9
14 150 148.8 124.0 122.4 119.0 182.6 117.2
15 180 162.6 130.0 114.9 123.7 130.1 121.6
16 250 181.9 136.0 128.7 128.5 169.4 125.9
17 325 209.1 142.0 143.7 133.2 146.3 130.2
18 400 235.0 148.0 223.3 137.9 227.7 134.5

Table 3.4: Bonus scales (%)

cases:

Case I Classical Model - Optimal scales and portfolio evolution were obtained from classical
BMS results, retrived from Afonso et al. (2017);

Case II Open Exponential Model - Optimal scales and portfolio evolution were obtained by
open model formulation considering Scenario 1 for modelling new entries, according to
Subsection 2.2;

Case III Open Sigmoid Model - Optimal scales and portfolio evolution were obtained by
open model formulation considering Scenario 2 for modelling new entries, according to
Subsection 2.2;

Case IV Combining Cases I and III - We show results when the insurer sets the optimal
scale based on a classical BMS model but the portfolio evolution behaves according to
the open model approach.

Focusing on these cases, we derived ruin probabilities for the last three. This allows us to:

(i) Compare results of Case I, presented in Afonso et al. (2017), with those obtained in
this paper, following an open BMS perspective (in Cases II and III);

(ii) Analyse the impact of setting optimal scales using a closed model in an open portfolio
(Case IV).

Looking at the results of Table 3.5 we highlight that:
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• Comparing the four cases, we conclude that Cases II and III are the most favourable
options in terms of ruin probability. This shows that if the insurer is dealing with an
open portfolio, optimal scales should be estimated accordingly once this is the best case
scenario in terms of short term ruin probabilities;

• Comparing the results of Cases I and IV, we don’t observe a great reduction on ruin
probabilities when we consider an open portfolio evolution instead of the closed one,
although there is some reduction. This is easily justified with the distribution of policies
throughout the bonus levels. We may conclude that Case I overestimates ruin proba-
bilities. This shows that the inclusion of entries and exits on the model should not be
neglected;

• There are no significant differences among ruin probabilities in time periods t = 2, 5, 10,
this is similar for the closed model in Afonso et al. (2017). Again, this is due to the
fact that if ruin happens it is likely to occur within the first two years (as we show in
Table 3.6).

• We see no significant differences between Cases II and III in terms of ruin probabilities.
From now on we will consider the Open Sigmoid Model only .

• Focusing on the commercial scale of the insurer, C, we can conclude that the scale
shows to be inadequate as the corresponding ruin probabilities are much larger;
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Case I Case II Case III Case IV
Classical Model Open Exponential Model Open Sigmoid Model Combining I and III

t P ∗ C B LB P ∗ C B LB P ∗ C B LB B LB

2 0 7.569 0.23300 1.18600 0 7.37875 0.00058 0.00272 0 7.40833 0.00007 0.00088 0.21620 1.12319
5 0 7.569 0.23300 1.18600 0 7.37875 0.00058 0.00272 0 7.40833 0.00007 0.00088 0.21620 1.12319
10 0 7.569 0.23300 1.18600 0 7.37875 0.00058 0.00272 0 7.40833 0.00007 0.00088 0.21620 1.12319

Table 3.5: Estimates for the probability of ruin, ψ̂(u = 2, 000, 000; t)(%), for t = 2, 5, 10 for each BMS

Case I Case II Case III Case IV
Classical Model Open Exponential Model Open Sigmoid Model Combining I and III

i LB P ∗ C B LB P ∗ C B LB B LB

0 1.17586 1.28E-05 7.23902 5.79E-04 2.72E-03 1.26E-05 7.23915 6.69E-05 8.76E-04 0.21605 1.11488
1 0.14271 0 2.71065 8.18E-32 5.28E-03 0 2.79345 5.06E-61 4.91E-03 0.11168 0
2 2.11E-13 0 9.77E-08 0 0 0 6.57E-07 0 0 1.14E-42 7.08E-23
3 0 0 1.74E-53 0 0 0 5.30E-38 0 0 0 0
. . . . . . . . . . . .
10 0 0 0 0 0 0 0 0 0 0 0

Table 3.6: Average of the within the year ruin probabilities for each BMS (%)
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Scenario A Scenario B Scenario C
j ĉ(j) q̂(j) ĉ(j) q̂(j) ĉ(j) q̂(j)

1 0.00527 0.045628 0.265847 0.045628 0.265847 0.18699
2 0.007567 0.053246 0.083959 0.053246 0.083959 0.18699
3 0.018917 0.062136 0.037448 0.062136 0.037448 0.18699
4 0.037833 0.07251 0.089331 0.07251 0.089331 0.18699
5 0.063055 0.084616 0.063856 0.084616 0.063856 0.18699
6 0.090079 0.098743 0.166594 0.098743 0.166594 0.18699
7 0.112599 0.115229 0.109473 0.115229 0.109473 0.18699
8 0.125110 0.134467 0.09595 0.134467 0.095950 0.18699
9 0.125110 0.156918 0.039585 0.156918 0.039585 0.18699
10 0.113736 0.183116 0.045002 0.183116 0.045002 0.18699
11 0.09478 0.213689 0.001757 0.213689 0.001757 0.18699
12 0.072908 0.249366 0.000939 0.249366 0.000939 0.18699
13 0.052077 0.291000 0.000176 0.291000 0.000176 0.18699
14 0.034718 0.339584 0.000029 0.339584 0.000029 0.18699
15 0.021699 0.396281 0.000015 0.396281 0.000015 0.18699
16 0.012764 0.462443 0.000014 0.462443 0.000014 0.18699
17 0.007091 0.539651 0.000013 0.539651 0.000013 0.18699
18 0.004687 0.62975 0.000013 0.62975 0.000013 0.18699

Table 3.7: Allocation and exit probabilities for different scenarios

3.3 Changing allocations and annulment probabilities

To evaluate the impact of allocations and annulments on ruin probabilities, we considered
the three scenarios for the allocation and exit probabilities that are shown in Table 3.7,
working only with Open Sigmoid Model. Figure 2 illustrates the existing portfolio allocation
and annulment probability estimates (top left graph) and gives visual presentation for the
different scenarios.

Regarding allocation probabilities, Scenarios B and C keep the portfolio estimates and in
Scenario A we give higher weights for mid level classes. Concerning the exit probabilities,
Scenarios A and B put high probability annulments in aggravated classes. This implies that
fewer insureds will be paying malus premia, and this will reduce the total premium collected
in each year. In Scenario C we have leveled the probability annulments. It reflects a portfolio
where insureds decide to leave regardless the premium paid. Total premium collected is
higher than in Scenarios A and B.

In Table 3.8 we can observe that allocation and exit probabilities clearly have impact in
the ruin probabilities estimates. Scenario A shows to be the best scenario according to the
resulting ruin probabilities (first line replicates Case III from Table 3.5). This shows that the
insurer should estimate carefully the allocation and exit probabilities in order to obtain an
accurate estimate for ruin probability.

3.4 Capital requirements and ruin probabilities

From the observation of Case III in Table 3.5 (similar to Case II) we can infer that if we
consider roughly a goal of 1% for the ruin probability (for instance ψ̂(u, 10) ≈ 1%) we may
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B LB

Case III 0.00007 0.00088

Scenario A 0.00005 0.00010
Scenario B 0.00058 0.00096
Scenario C 0.00014 0.00020

Table 3.8: Ruin probability estimates, ψ̂(u = 2 000 000; t = 2) (in %)
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P0 C B LB

Case I 0.14247 42.75240 10.82196 20.29612
Case III 0.14164 42.45439 0.35658 1.18617
Case IV 10.67296 20.0926

Case III, Scenario A 0.31819 0.44008
Case III, Scenario B 0.99725 1.23793
Case III, Scenario C 0.50822 0.61055

Table 3.9: Ruin probability estimates, ψ̂(u = 650, 000; t = 2) (in %), for each BMS

greatly reduce the amount of the initial reserve u. This can be regarded as an advantage
in terms of capital requirements for the insurer. To illustrate this point, focusing on LB
optimal scale, we considered several values for the initial reserve. To achieve our goal we set
u = 650, 000 and obtained around 1% ruin probability in two years for Case III. We recall that
in order to obtain equivalent ruin probability the classical model would need u = 2, 000, 000.
We show the results, in percentage, for ψ̂(u = 650, 000; t = 2) in Table 3.9. We see there is a
great reduction in the ruin probability for Case III with Scenarios A and C. This highlights
the importance of a good estimation and monitoring of the allocation and exit probabilities.
The ruin probabilities for Scale B are lower than those corresponding in LB. This is due to
the smoothing of scale LB, as seen in Table 3.4.

For t = 5 and t = 10, ruin probability ψ̂(u = 650, 000; t) has a similar behaviour as those
in Table 3.5, explained mainly by the results of Table 3.6.

Following the results of Table 3.9 we can conclude that setting optimal bonus scales
according to open model formulation reduces ruin probabilities. Regardless of scenario of
allocation and exit probabilities, we may also reduce the capital requirement.

3.5 Some Final remarks

Calculating ruin probabilities by using an open portfolio formulation as we did in this ma-
nuscript appears to be more realistic than the classical BMS model, where it is induced that
incoming policies are compensated by annulments. We know that the motor insurance market
can be very competitive and market movements may result in significant change in a portfo-
lio composition. Subsequently, due to the use of a BMS where levels can have very different
premia, it may lead to a significant change in the portfolio’s financial movements, as well as
risk composition leading to a significant change in figures for ruin probabilities. Since nowa-
days regulators provide insurers with past information of policyholder behaviour, the motor
insurance business is more transparent. That should result into a better classification and
allocation of risks to the appropriate bonus class, resulting into a ruin probability reduction.
However, there are dangers that may not be evaluated properly: Since the market is very
competitive insurers may be tempted to attract clients by offering them a higher bonuses, or
less penalties, although inappropriately, in a fast increasing business environment.
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Esqúıvel, M.L., Guerreiro, G.R. and Fernandes, J.M. (2017). Open Markov chain scheme
models fed by second order stationary and non stationary processes, REVSTAT, 15(2),
277–297.

Gilde, V. and Sundt, B. (1989). On bonus systems with credibility scales, Scandinavian
Actuarial Journal, 1989, 13–22.

Guerreiro, G.R., Mexia, J.T. and Miguens, M.F.(2014). Statistical approach for open bonus
malus, ASTIN Bulletin, 44(1), 63–83.

Lemaire, J. (1995). Bonus-Malus Systems in Automobile Insurance. Springer.

Mahmoudvand, R. and Aziznasiri, S. (2014) Bonus-malus systems in open and closed Port-
folios. In: Silvestrov D., Martin-Löf A. (eds) Modern Problems in Insurance Mathematics.
EAA Series, Springer International Publishing.

Ross, S.M. (1996) Stochastic Processes. 2nd Edition, Wiley Series in Probability and Math-
ematical Statistics.

20



Afonso, Lourdes B. Cardoso, Rui M.R.
Department of Mathematics Department of Mathematics
FCT NOVA and CMA FCT NOVA and CMA
Universidade Nova de Lisboa Universidade Nova de Lisboa
2829-516 Caparica 2829-516 Caparica
Portugal Portugal

lbafonso@fct.unl.pt rrc@fct.unl.pt
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