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Abstract

We introduce a unified framework for the construction of convolutions and product formulas associated

with a general class of regular and singular Sturm-Liouville boundary value problems. Our approach is

based on the application of the Sturm-Liouville spectral theory to the study of the associated hyperbolic

equation. As a by-product, an existence and uniqueness theorem for degenerate hyperbolic Cauchy

problems with initial data at a parabolic line is established.

The mapping properties of convolution operators generated by Sturm-Liouville operators are studied.

Analogues of various notions and facts from probabilistic harmonic analysis are developed on the convo-

lution measure algebra. Various examples are presented which show that many known convolution-type

operators — including those associated with the Hankel, Jacobi and index Whittaker integral transforms

— can be constructed using this general approach.

Keywords: Generalized convolution, product formula, hyperbolic Cauchy problem, parabolic degen-

eracy, Sturm-Liouville spectral theory, maximum principle.

1 Introduction

Given a Sturm-Liouville operator on an interval of the real line, it is well-known that its eigenfunction

expansion gives rise to an integral transform which shares many properties with the ordinary Fourier

transform [18, 52]. Since various standard special functions are solutions of Sturm-Liouville equations,

the class of integral transforms of Sturm-Liouville type includes, as particular cases, many common

integral transforms (Hankel, Kontorovich-Lebedev, Mehler-Fock, Jacobi, Laguerre, etc.).

The Fourier transform lies at the heart of the classical theory of harmonic analysis. This naturally

raises a question: is it possible to generalize the main facts of harmonic analysis to integral transforms

of Sturm-Liouville type?

Starting from the seminal works of Delsarte [17] and Levitan [33] it was noticed that the key ingredient

for developing of such a generalized harmonic analysis is the so-called product formula. We say that an

indexed family of complex-valued functions {wλ} on an interval I ⊂ R has a product formula if for each

x, y ∈ I there exists a complex Borel measure νx,y (independent of λ) such that

wλ(x)wλ(y) =

∫

I

wλ dνx,y (λ ∈ Λ). (1.1)

Product formulas naturally lead to generalized convolution operators. To fix ideas, let ℓ(u) = 1
r

[
−(pu′)′+

qu
]

be a usual Sturm-Liouville differential expression defined on the interval I, and let (Fh)(λ) :=
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∫
I h(x)wλ(x) dm(x) be a Sturm-Liouville type integral transform, where the wλ are solutions of ℓ(w) =

λw (λ ∈ C). If {wλ} has a product formula, then we can define a generalized (Sturm-Liouville type)

convolution operator ∗ by

(f ∗ g)(x) :=
∫

I

(∫

I

f dνx,y

)
g(y) dm(y). (1.2)

It is not difficult to show that, under reasonable assumptions, the property F(f ∗ g) = (Ff) ·(Fg) holds

for this convolution operator; this means that the analogue of one of the basic identities in harmonic

analysis — the Fourier convolution theorem — is satisfied by the generalized convolution.

Consider now the associated hyperbolic partial differential equation

1

r(x)

{
−∂x

[
p(x) ∂xf(x, y)

]
+ q(x)f(x, y)

}
=

1

r(y)

{
−∂y

[
p(y) ∂yf(x, y)

]
+ q(y)f(x, y)

}
. (1.3)

If the kernel of the Sturm-Liouville transform is defined via some initial condition wλ(a) = 1, then the

product f(x, y) = wλ(x)wλ(y) is a solution of (1.3) satisfying the boundary condition f(x, a) = wλ(x).

Studying the properties of the associated hyperbolic equation is therefore a natural strategy for proving

the existence of a product formula and extracting information about the measure νx,y.

An especially interesting case is that where {νx,y} turns out to be a family of probability measures

(satisfying appropriate continuity assumptions). Indeed, in this case one can show that the convolution

(1.2) gives rise to a Banach algebra structure in the space of finite complex Borel measures in which

various probabilistic concepts and properties can be developed in analogy with the classical theory [6, 53].

Establishing explicit product formulas, or even proving their existence, has been recognized as a difficult

problem [15, 12]. Nevertheless, using the maximum principle for hyperbolic equations [60], it was shown

by Levitan [34] (and, under weakened assumptions, by Chebli [11] and Zeuner [63]) that this probabilistic

property of the product formula holds for a general family of Sturm-Liouville differential expressions on

I = [0,∞) of the form ℓ(u) = − 1
A (Au

′)′. This family of Sturm-Liouville operators includes, as important

particular cases, the generators of the Hankel transform and the (Fourier-)Jacobi transform; these cases

are noteworthy due to the fact that the explicit expression for the measure in the product formula can

been determined using results from the theory of special functions (see Examples 8.3–8.4).

Various examples show that the probabilistic property of the product formula holds only for a restricted

class of Sturm-Liouville operators [37, 45]; this is connected with the fact that the hyperbolic maximum

principle requires rather strong assumptions on the coefficients. Notwithstanding, the recent work [46, 47]

of the authors on the index Whittaker transform made it apparent that there is room for generalization of

the results of [11, 34, 63]. In fact, the family of Sturm-Liouville operators considered in these works only

includes operators for which the equation (1.3) is uniformly hyperbolic on [0,∞)2; a consequence of this

is that, under their assumptions, the support supp(νx,y) of the measures in the product formula is always

compact. In contrast, the case of the index Whittaker transform provides an example of a product formula

whose measures νx,y have the probabilistic property and satisfy supp(νx,y) = [0,∞) for x, y > 0; here

the associated hyperbolic equation (1.3) is parabolically degenerate at the boundaries x = 0 and y = 0.

(The index Whittaker transform is generated by the Sturm-Liouville expression x2u′′ +(1+2(1−α)x)u′

on I = [0,∞), and its product formula, which is known in closed form, is given in Example 8.6.)

The goal of this work is to introduce a unified framework for the construction of Sturm-Liouville

type convolution operators associated with possibly degenerate hyperbolic equations. We will consider a

Sturm-Liouville differential expression of the form

ℓ = −1

r

d

dx

(
p
d

dx

)
, x ∈ (a, b) (1.4)

(−∞ ≤ a < b ≤ ∞), where p and r are (real-valued) coefficients such that p(x), r(x) > 0 for all x ∈ (a, b)

and p, p′, r and r′ are locally absolutely continuous on (a, b). Concerning the behavior of the coefficients

at the boundaries x = a and x = b, we will assume respectively that

∫ c

a

∫ c

y

dx

p(x)
r(y)dy <∞ (1.5)
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∫ b

c

∫ b

y

dx

p(x)
r(y)dy =

∫ b

c

∫ y

c

dx

p(x)
r(y)dy = ∞ (1.6)

where c ∈ (a, b) is an arbitrary point. These conditions mean that a is a regular or entrance boundary

and b is a natural boundary for the operator ℓ. The notions of regular, entrance and natural boundary

refer to the Feller classification of boundaries, which is recalled in Remark 2.10, where we also give some

comments on the role of conditions (1.5)–(1.6).

The point of departure is the study of the Cauchy problem for the possibly degenerate hyperbolic equa-

tion 1
r(x)∂x

(
p(x) ∂xf(x, y)

)
= 1

r(y)∂y
(
p(y) ∂yf(x, y)

)
. Under the assumption that the product p(x)r(x)

of the coefficients of (1.4) is an increasing function, we prove an existence and uniqueness theorem for

the Cauchy problem which is based on the spectral theory of Sturm-Liouville operators. We then give

a sufficient condition for the maximum principle to hold for the hyperbolic equation is given and, as a

corollary, the positivity preserving property of the solution of the Cauchy problem is obtained.

Our existence theorem (and the positivity result) covers many hyperbolic equations with initial data

on the parabolic line which are outside the scope of the classical theory, and for which the problem of

well-posedness of the Cauchy problem was, to the best of our knowledge, open. In fact, given that our

results depend heavily on the assumption that the left boundary a is of entrance type (cf. Remark 2.10),

they indicate that the well-posedness of the degenerate problem with initial line y = a depends on the

Feller boundary classification of ℓ at the endpoint a.

If the maximum principle holds for the hyperbolic equation associated with ℓ, then the solution of the

hyperbolic Cauchy problem can be written as f(x, y) =
∫
[a,b)

h dνx,y, where h(x) = f(x, a) is the initial

condition and {νx,y} is a family of finite positive Borel measures on [a, b). Formally, this suggests that

the product formula (1.1) should hold for the kernel wλ of the Sturm-Liouville transform. It turns out

that (1.1) indeed holds and that the νx,y are probability measures, but the proof requires some effort,

especially when the Cauchy problem is parabolically degenerate [48]. We then define the generalized

convolution by (1.2), so that the expected convolution theorem F(f ∗ g) = (Ff) ·(Fg) holds. Moreover,

the Young inequality for the Lp-spaces with respect to the weighted measure r(x)dx is valid for the

convolution (1.2), demonstrating that the mapping properties of the generalized convolution structure

resemble those of the ordinary convolution.

A fundamental tool for studying the continuity and mapping properties of the generalized con-

volution is the extension of the Sturm-Liouville transform to complex measures, defined by µ̂(λ) =∫
[a,b)

wλ(x)µ(dx). Actually, if we define the convolution of two Dirac measures by δx ∗ δy = νx,y and

then define the convolution µ ∗ ν of two complex measures so that (µ, ν) 7→ µ ∗ ν is weakly continuous,

then the space MC[a, b) of finite complex measures on [a, b) becomes a convolution measure algebra

for which the Sturm-Liouville transform is a generalized characteristic function, in the sense that the

property µ̂ ∗ ν = µ̂ · ν̂ holds. The algebra (MC[a, b), ∗) is therefore a natural environment for studying

notions from probabilistic harmonic analysis, in particular infinite divisibility, Gaussian-type measures

and Lévy-type (additive) stochastic processes. As anticipated above, the study of these concepts leads to

analogues of chief results in probability theory such as the Lévy-Khintchine formula or the contraction

property of convolution semigroups.

The class of Lévy-type processes with respect to the convolution measure algebra includes the diffusion

process generated by the Sturm-Liouville expression ℓ, as well as many other Markov processes with

discontinuous paths. We hope that this work illuminates the role of product formulas and hyperbolic

Cauchy problems on a purely probabilistic problem — that of constructing a class of Lévy-type processes

which accommodates a given diffusion process — and stimulates further research on this topic.

The remaining sections are organized as follows. In Section 2, after introducing the basic properties of

the solution of the Sturm-Liouville equation ℓ(w) = λw, we summarize some key facts from the theory of

eigenfunction expansions of Sturm-Liouville operators and from the theory of one-dimensional diffusion

processes. Section 3 is devoted to the hyperbolic Cauchy problem associated with ℓ: an existence and

uniqueness theorem is proved and, under suitable assumptions, it is shown that the unique solution

satisfies a weak maximum principle. In Section 4, the solution of the hyperbolic Cauchy problem is used

3



to define the generalized convolution of probability measures and the generalized translation of functions;

moreover, the Sturm-Liouville transform of finite measures is introduced and an analogue of the Lévy

continuity theorem is established, together with some other basic properties. The product formula for

the solution of the Sturm-Liouville equation is discussed in Section 5. In Section 6 we establish the

basic properties of the generalized convolution as an operator on weighted Lp-spaces. Section 7 explores

the probabilistic properties of the convolution, demonstrating that the main concepts and facts from

the classical theory of infinitely divisible distributions and convolution semigroups can be developed,

in a parallel fashion, in the framework of the generalized convolutions considered here. The concluding

Section 8 presents several examples and shows that various convolutions associated with standard integral

transforms constitute particular cases of the general construction presented here.

2 Preliminaries

We use the following standard notations. For a subset E ⊂ Rd, C(E) is the space of continuous complex-

valued functions on E; Cb(E), C0(E) and Cc(E) are, respectively, its subspaces of bounded continuous

functions, of continuous functions vanishing at infinity and of continuous functions with compact support;

Ck(E) stands for the subspace of k times continuously differentiable functions. Bb(E) is the space

of complex-valued bounded and Borel measurable functions. The corresponding spaces of real-valued

functions are denoted by C(E,R), Cb(E,R), etc.

Lp(E;µ) (1 ≤ p ≤ ∞) denotes the Lebesgue space of complex-valued p-integrable functions with

respect to a given measure µ on E. The space of probability (respectively, finite positive, finite complex)

Borel measures on E will be denoted by P(E) (respectively, M+(E), MC(E)). The total variation of

µ ∈ MC(E) is denoted by ‖µ‖, and δx denotes the Dirac measure at a point x.

2.1 Solutions of the Sturm-Liouville equation

We begin by collecting some properties of the solutions of the Sturm-Liouville equation ℓ(u) = λu (λ ∈ C),

where ℓ is of the form (1.4) and satisfies the boundary condition (1.5). We shall write f [1] = pf ′ and

s(x) =
∫ x
c

dξ
p(ξ) (this is the so-called scale function, cf. [8]).

If the Sturm-Liouville equation is regular at the left endpoint a, it is well-known that there is an entire

solution wλ(x) of ℓ(u) = λu satisfying the initial conditions wλ(a) = cos θ, w
[1]
λ (a) = sin θ (0 ≤ θ < π).

When we only require that (1.5) holds (so that a may be an entrance boundary), the following lemma

ensures that the same continues to hold for the boundary condition with vanishing derivative (θ = 0):

Lemma 2.1. For each λ ∈ C, there exists a unique solution wλ(·) of the boundary value problem

ℓ(w) = λw (a < x < b), w(a) = 1, w[1](a) = 0. (2.1)

Moreover, λ 7→ wλ(x) is, for each fixed x, an entire function of exponential type.

Proof. The proof is similar to [28, Lemma 3], but for completeness we give a sketch here. Let

η0(x) = 1, ηj(x) =

∫ x

a

(
s(x) − s(ξ)

)
ηj−1(ξ)r(ξ)dξ (j = 1, 2, . . .). (2.2)

Pick an arbitrary β ∈ (a, b) and define S(x) =
∫ x
a

(
s(β) − s(ξ)

)
r(ξ)dξ. From the boundary assumption

(1.5) it follows that 0 ≤ S(x) ≤ S(β) <∞ for x ∈ (a, β]. Furthermore, it is easy to show (using induction)

that |ηj(x)| ≤ 1
j! (S(x))j for all j. Therefore, the function

wλ(x) =
∞∑

j=0

(−λ)jηj(x) (a < x ≤ β, λ ∈ C)

is well-defined as an absolutely convergent series. The estimate

|wλ(x)| ≤
∞∑

j=0

|λ|j (S(x))
j

j!
= e|λ|S(x) ≤ e|λ|S(β) (a < x ≤ β)

4



shows that λ 7→ wλ(x) is entire and of exponential type. In addition, for a < x ≤ β we have

1− λ

∫ x

a

1

p(y)

∫ y

a

wλ(ξ) r(ξ)dξ dy = 1− λ

∫ x

a

(s(x) − s(ξ))wλ(ξ) r(ξ)dξ

= 1− λ

∫ x

a

(s(x) − s(ξ))

( ∞∑

j=0

(−λ)jηj(ξ)
)
r(ξ)dξ

= 1 +

∞∑

j=0

(−λ)j+1

∫ x

a

(s(x) − s(ξ))ηj(ξ) r(ξ)dξ

= 1 +

∞∑

j=0

(−λ)j+1ηj+1(x) = wλ(x),

i.e., wλ(x) satisfies

wλ(x) = 1− λ

∫ x

a

1

p(y)

∫ y

a

wλ(ξ) r(ξ)dξ dy

This integral equation is equivalent to (2.1), so the proof is complete.

Throughout this work, {am}m∈N will denote a sequence b > a1 > a2 > . . . with lim am = a. Next we

verify that the solution wλ for the Sturm-Liouville equation on the interval (a, b) is approximated by the

corresponding solutions on the intervals (am, b):

Lemma 2.2. For m ∈ N, let wλ,m(x) be the unique solution of the boundary value problem

ℓ(w) = λw (am < x < b), w(am) = 1, w[1](am) = 0. (2.3)

Then

lim
m→∞

wλ,m(x) = wλ(x) pointwise for each a < x < b and λ ∈ C.

Proof. In the same way as in the proof of Lemma 2.1 we can check that the solution of (2.3) is given by

wλ,m(x) =

∞∑

j=0

(−λ)jηj,m(x) (am < x < b, λ ∈ C)

where η0,m(x) = 1 and ηj,m(x) =
∫ x
am

(
s(x) − s(ξ)

)
ηj−1,m(ξ)r(ξ)dξ. As before we have |ηj,m(x)| ≤

1
j! (S(x))j for am < x ≤ β (where S is the function from the proof of Lemma 2.1). Using this estimate

and induction on j, it is easy to see that ηj,m(x) → ηj(x) as m → ∞ (a < x ≤ β, j = 0, 1, . . .). Noting

that the estimate on |ηj,m(x)| allows us to take the limit under the summation sign, we conclude that

wλ,m(x) → wλ(x) as m→ ∞ (a < x ≤ β).

The following lemma provides a sufficient condition for the solution wλ(·) to be uniformly bounded

in the variables x ∈ (a, b) and λ ≥ 0:

Lemma 2.3. If x 7→ p(x)r(x) is an increasing function, then the solution of (2.1) is bounded:

|wλ(x)| ≤ 1 for all a < x < b, λ ≥ 0.

Proof. Let us start by assuming that p(a)r(a) > 0. For λ = 0 the result is trivial because w0(x) ≡ 1. Fix

λ > 0. Multiplying both sides of the differential equation ℓ(wλ) = λwλ by 2w
[1]
λ , we obtain − 1

pr [(w
[1]
λ )2]′ =

λ(w2
λ)

′. Integrating the differential equation and then using integration by parts, we get

λ
(
1− wλ(x)

2
)
=

∫ x

a

1

p(ξ)r(ξ)

(
w

[1]
λ (ξ)2

)′
dξ

=
w

[1]
λ (x)2

p(x)r(x)
+

∫ x

a

(
p(ξ)r(ξ)

)′
(
w

[1]
λ (ξ)

p(ξ)r(ξ)

)2

dξ, a < x < b

5



where we also used the fact that w
[1]
λ (a) = 0 and the assumption that p(a)r(a) > 0. The right hand side

is nonnegative, because x 7→ p(x)r(x) is increasing and therefore (p(ξ)r(ξ))′ ≥ 0. Given that λ > 0, it

follows that 1− wλ(x)
2 ≥ 0, so that |wλ(x)| ≤ 1.

If p(a)r(a) = 0, the above proof can be used to show that the solution of (2.3) is such that |wλ,m(x)| ≤
1 for all a < x < b, λ ≥ 0 and m ∈ N; then Lemma 2.2 yields the desired result.

Remark 2.4. We shall make extensive use of the fact that the differential expression (1.4) can be trans-

formed into the standard form

ℓ̃ = − 1

A

d

dξ

(
A
d

dξ

)
= − d2

dξ2
− A′

A

d

dξ
.

This is achieved by setting

A(ξ) :=
√
p(γ−1(ξ)) r(γ−1(ξ)), (2.4)

where γ−1 is the inverse of the increasing function

γ(x) =

∫ x

c

√
r(y)

p(y)
dy,

c ∈ (a, b) being a fixed point (if
√

r(y)
p(y) is integrable near a, we may also take c = a). Indeed, it is

straightforward to check that a given function ωλ : (a, b) → C satisfies ℓ(ωλ) = λωλ if and only if

ω̃λ(ξ) := ωλ(γ
−1(ξ)) satisfies ℓ̃(ω̃λ) = λω̃λ.

It is interesting to note that the assumption of the previous lemma (x 7→ p(x)r(x) is increasing) is

equivalent to requiring that the first-order coefficient A′

A of the transformed operator ℓ̃ is nonnegative. We

also observe that if this assumption holds then we have γ(b) = ∞ (otherwise the left-hand side integral

in (1.6) would be finite, contradicting that b is a natural boundary). We have γ(a) > −∞ if a is a regular

endpoint (Remark 2.10); if a is entrance, γ(a) can be either finite or infinite.

2.2 Sturm-Liouville type transforms

For simplicity, we shall write Lp(r) := Lp
(
(a, b); r(x)dx

)
(1 ≤ p < ∞), and the norm of this space will

be denoted by ‖ · ‖p.
It follows from the boundary conditions (1.5)–(1.6) that one obtains a self-adjoint realization of ℓ

in the Hilbert space L2(r) by imposing the Neumann boundary condition limx↓a u
[1](x) = 0 at the left

endpoint a. We state this well-known fact (cf. [40, 35]) as a lemma:

Lemma 2.5. The operator

L : D(2)
L ⊂ L2(r) −→ L2(r), Lu = ℓ(u)

where

D(2)
L :=

{
u ∈ L2(r)

∣∣∣ u and u′ locally abs. continuous on (a, b), ℓ(u) ∈ L2(r), lim
x↓a

u[1](x) = 0
}

(2.5)

is self-adjoint.

The self-adjoint realization L gives rise to an integral transform, which we will call the L-transform,

given by

(Fh)(λ) :=
∫ b

a

h(x)wλ(x) r(x)dx (h ∈ L1(r), λ ≥ 0) (2.6)

(this is also known as the generalized Fourier transform or the Sturm-Liouville transform). The L-

transform is an isometry with an inverse which can be written as an integral with respect to the so-called

spectral measure ρL:

6



Proposition 2.6. There exists a unique locally finite positive Borel measure ρL on R such that the map

h 7→ Fh induces an isometric isomorphism F : L2(r) −→ L2(R;ρL) whose inverse is given by

(F−1ϕ)(x) =

∫

R

ϕ(λ)wλ(x)ρL(dλ),

the convergence of the latter integral being understood with respect to the norm of L2(r). The spectral

measure ρL is supported on [0,∞). Moreover, the differential operator L is connected with the transform

(2.6) via the identity

[F(Lh)](λ) = λ ·(Fh)(λ), h ∈ D(2)
L (2.7)

and the domain D(2)
L defined by (2.5) can be written as

D(2)
L =

{
u ∈ L2(r)

∣∣∣ λ ·(Ff)(λ) ∈ L2

(
[0,∞);ρL

)}
. (2.8)

Proof. The existence of a generalized Fourier transform associated with the operator L is a consequence of

the standard Weyl-Titchmarsh-Kodaira theory of eigenfunction expansions of Sturm-Liouville operators

(see [49, Section 3.1] and [59, Section 8]).

In the general case the eigenfunction expansion is written in terms of two linearly independent eigen-

functions and a 2 × 2 matrix measure. However, from the regular/entrance boundary assumption (1.5)

it follows that the function wλ(x) is square-integrable near x = 0 with respect to the measure r(x)dx;

moreover, by Lemma 2.1, wλ(x) is (for fixed x) an entire function of λ. Therefore, the possibility of

writing the expansion in terms only of the eigenfunction wλ(x) follows from the results of [19, Sections 9

and 10].

It is worth pointing out that the transformation of the Sturm-Liouville operator ℓ into its standard

form ℓ̃ (Remark 2.4) leaves the spectral measure unchanged: indeed, it is easily verified that the operator

L̃ : D(2)

L̃
⊂ L2(A) −→ L2(A), L̃u = ℓ̃(u) is unitarily equivalent to the operator L and, consequently,

ρL̃ = ρL.

The following lemma gives a sufficient condition for the inversion integral of the L-transform to be

absolutely convergent.

Lemma 2.7. (a) For each µ ∈ C \ R, the integrals

∫

[0,∞)

wλ(x)wλ(y)

|λ− µ|2 ρL(dλ) and

∫

[0,∞)

w
[1]
λ (x)w

[1]
λ (y)

|λ− µ|2 ρL(dλ) (2.9)

converge uniformly on compact squares in (a, b)2.

(b) If h ∈ D(2)
L , then

h(x) =

∫

[0,∞)

(Fh)(λ)wλ(x)ρL(dλ) (2.10)

h[1](x) =

∫

[0,∞)

(Fh)(λ)w[1]
λ (x)ρL(dλ) (2.11)

where the right-hand side integrals converge absolutely and uniformly on compact subsets of (a, b).

Proof. (a) By [19, Lemma 10.6] and [51, p. 229],

∫

[0,∞)

wλ(x)wλ(y)

|λ− µ|2 ρL(dλ) =

∫ b

a

G(x, ξ, µ)G(y, ξ, µ) r(ξ)dξ =
1

Im(µ)
Im

(
G(x, y, µ)

)

where G(x, y, µ) is the resolvent kernel (or Green function) of the operator (L,D(2)
L ). Moreover, according

to [19, Theorems 8.3 and 9.6], the resolvent kernel is given by

G(x, y, µ) =

{
wµ(x)ϑµ(y), x < y

wµ(y)ϑµ(x), x ≥ y
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where ϑλ(·) is a solution of ℓ(u) = λu which is square-integrable near ∞ with respect to the measure

r(x)dx and verifies the identity wλ(x)ϑ
[1]
λ (x) − w

[1]
λ (x)ϑλ(x) ≡ 1. It is easily seen (cf. [41, p. 125]) that

the functions Im
(
G(x, y, µ)

)
and ∂

[1]
x ∂

[1]
y Im

(
G(x, y, µ)

)
are continuous in 0 < x, y < ∞. Essentially the

same proof as that of [41, Corollary 3] now yields that

∫

[0,∞)

w
[1]
λ (x)w

[1]
λ (y)

|λ− µ|2 ρL(dλ) =
1

Im(µ)
∂[1]x ∂[1]y Im

(
G(x, y, µ)

)

and that the integrals (2.9) converge uniformly for x, y in compacts.

(b) By Proposition 2.6 and the classical theorem on differentiation under the integral sign for Riemann-

Stieltjes integrals, to prove (2.10)–(2.11) it only remains to justify the absolute and uniform convergence

of the integrals in the right-hand sides.

Recall from Proposition 2.6 that the condition h ∈ D(2)
L implies that Fh ∈ L2

(
[0,∞);ρL

)
and also

λ (Fh)(λ) ∈ L2

(
[0,∞);ρL

)
. As a consequence, we obtain

∫

[0,∞)

∣∣(Fh)(λ)wλ(x)
∣∣ρL(dλ)

≤
∫

[0,∞)

λ
∣∣(Fh)(λ)

∣∣
∣∣∣∣
wλ(x)

λ+ i

∣∣∣∣ρL(dλ) +
∫

[0,∞)

∣∣(Fh)(λ)
∣∣
∣∣∣∣
wλ(x)

λ+ i

∣∣∣∣ρL(dλ)

≤
(
‖λ (Fh)(λ)‖ρ + ‖(Fh)(λ)‖ρ

)∥∥∥∥
wλ(x)

λ+ i

∥∥∥∥
ρ

<∞

where ‖ · ‖ρ denotes the norm of the space L2

(
R;ρL

)
, and similarly

∫

[0,∞)

∣∣(Fh)(λ)w[1]
λ (x)

∣∣ρL(dλ) ≤
(
‖λ (Fh)(λ)‖ρ + ‖(Fh)(λ)‖ρ

)∥∥∥∥
w

[1]
λ (x)

λ+ i

∥∥∥∥
ρ

<∞.

We know from part (a) that the integrals which define
∥∥wλ(x)
λ+i

∥∥
ρ

and
∥∥w[1]

λ (x)

λ+i

∥∥
ρ

converge uniformly, hence

the integrals in (2.10)–(2.11) converge absolutely and uniformly for x in compact subsets.

2.3 Diffusion processes

In what follows we write Px0 for the distribution of a given time-homogeneous Markov process started at

the point x0 and Ex0 for the associated expectation operator.

By an irreducible diffusion process X on an interval I ⊂ R we mean a continuous strong Markov

process {Xt}t≥0 with state space I and such that

Px(τy <∞) > 0 for any x ∈ int I and y ∈ I, where τy = inf{t ≥ 0 | Xt = y}.

The resolvent {Rη}η>0 of such a diffusion (or of a general Feller process) X is defined by Rηu =∫∞

0 e−ηtPtu dt, u ∈ Cb(I,R), where (Ptu)(x) = Ex[u(Xt)] is the transition semigroup of the process X .

The Cb-generator (G,D(G)) of X is the operator with domain D(G) = Rη

(
Cb(I,R)

)
(η > 0) and defined

by

(Gu)(x) = ηu(x)− g(x) for u = Rηg, g ∈ Cb(I,R), x ∈ I

(G is independent of η, cf. [24, p. 295]). A Feller semigroup is a family {Tt}t≥0 of operators Tt :

Cb(I,R) −→ Cb(I,R) satisfying

(i) TtTs = Tt+s for all t, s ≥ 0;

(ii) Tt
(
C0(I,R)

)
⊂ C0(I,R) for all t ≥ 0;

(iii) If h ∈ Cb(I,R) satisfies 0 ≤ h ≤ 1, then 0 ≤ Tth ≤ 1;

(iv) limt↓0 ‖Tth− h‖∞ = 0 for each h ∈ C0(I,R).
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The Feller semigroup is said to be conservative if Tt1 = 1 (here 1 denotes the function identically equal

to one). A Feller process is a time-homogeneous Markov process {Xt}t≥0 whose transition semigroup

is a Feller semigroup. For further background on the theory of Markov diffusion processes and Feller

semigroups, we refer to [8] and references therein.

We now recall a known fact from the theory of (one-dimensional) diffusion processes, namely that

the negative of the Sturm-Liouville differential operator (1.4) generates a diffusion process which is

conservative and has the Feller property. The proof can be found on [24, Sections 4 and 6] (see also [39,

Section II.5]).

Lemma 2.8. The operator

L(b) : D(b)
L ⊂ Cb([a, b),R) −→ Cb([a, b),R), L(b)u = −ℓ(u)

with domain

D(b)
L =

{
u ∈ Cb([a, b),R)

∣∣ ℓ(u) ∈ Cb([a, b),R), lim
x↓a

u[1](x) = 0
}

is the Cb-generator of a one-dimensional irreducible diffusion process X = {Xt}t≥0 with state space [a, b)

whose transition semigroup defines a conservative Feller semigroup on C0([a, b),R).

The transition probabilities of the one-dimensional diffusion process from the previous lemma admits

an explicit representation as the inverse L-transform of the function e−tλwλ(x):

Lemma 2.9. The transition semigroup admits the representation

(Ptu)(x) =
∫ b

a

h(y) p(t, x, y) r(y)dy (h ∈ Bb

(
[a, b),R

)
, t > 0, a < x < b)

where p(t, x, y) is a nonnegative function which is called the fundamental solution for the parabolic equa-

tion ∂u
∂t = −ℓxu (the subscript indicates the variable in which the operator ℓ acts). The fundamental

solution and its derivatives are explicitly given by

(∂nt p)(t, x, y) =

∫

[0,∞)

λne−tλwλ(x)wλ(y)ρL(dλ)

(∂[1]x ∂nt p)(t, x, y) =

∫

[0,∞)

λne−tλw
[1]
λ (x)wλ(y)ρL(dλ)

for n ∈ N0, where, for fixed t > 0, the integrals converge absolutely and uniformly on compact squares of

(a, b)× (a, b).

Proof. These assertions are a consequence of the results of [35, Sections 2–3] and [40, Section 4].

We mention also that another consequence of the results of [35, Section 3] is that for h ∈ L2(r) the

expectation of h(Xt) can be written in terms of the L-transform as

Ex[h(Xt)] =

∫

[0,∞)

e−tλwλ(x) (Fh)(λ)ρL(dλ) t > 0, a < x < b

where the integral converges with respect to the norm of L2(r).

Remark 2.10. Let X be a one-dimensional diffusion process on an interval with endpoints a and b,

whose Cb-generator is of the form (1.4). Let

Ia =

∫ c

a

∫ y

a

dx

p(x)
r(y)dy, Ja =

∫ c

a

∫ c

y

dx

p(x)
r(y)dy

According to Feller’s boundary classification for the diffusion X , the left endpoint a is called
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regular if Ia <∞, Ja <∞;

exit if Ia <∞, Ja = ∞;

entrance if Ia = ∞, Ja <∞;

natural if Ia = ∞, Ja = ∞.

(the right endpoint is classified in a similar way).

The probabilistic meaning of this classification is the following [8, Chapter II]: an irreducible diffusion

can be started from the boundary a if and only if a is regular or entrance; the boundary a is reached

from x0 ∈ (a, b) with positive probability by an irreducible diffusion if and only if a is regular or exit.

Our standing assumption (1.5) on the coefficients of the Sturm-Liouville operator means that a is a

regular or an entrance boundary for the diffusion process X generated by ℓ. It is clear from the preceding

remarks that Lemma 2.8 relies crucially on this assumption. The same is true for some of the results

of the previous subsections: in fact, Lemma 2.1 fails if a is exit or natural [26, Sections 5.13–5.14], and

the boundary conditions defining D(2)
L differ from those in (2.5) when a is exit or natural [40]. In turn,

the assumption (1.6) means that b is a natural boundary for the diffusion X . Since one can show that

(1.6) is automatically satisfied whenever Assumption MP below holds [48, Proposition 3.5], this boundary

assumption at b yields no loss of generality on our results concerning product formulas and generalized

convolutions.

3 The hyperbolic equation ℓxf = ℓyf

In this section we investigate the (possibly degenerate) hyperbolic Cauchy problem

(ℓxf)(x, y) = (ℓyf)(x, y) (x, y ∈ (a, b)), f(x, a) = h(x), (∂[1]y f)(x, a) = 0 (3.1)

where ∂[1]u = pu′, ℓ is the Sturm-Liouville operator (1.4), and the subscripts indicate the variable in

which the operators act.

Since ℓy− ℓx = p(x)
r(x)

∂2

∂x2 − p(y)
r(y)

∂2

∂y2 + lower order terms, the equation ℓxf = ℓyf is hyperbolic at the line

y = a if p(a)
r(a) > 0; otherwise, the initial conditions of the Cauchy problem are given at a line of parabolic

degeneracy. If γ(a) = −
∫ c
a

√
r(y)
p(y)dy > −∞, then we can remove the degeneracy via the change of variables

x = γ(ξ), y = γ(ζ) (cf. Remark 2.4), through which the partial differential equation is transformed to

the standard form ℓ̃ξu = ℓ̃ζu, with initial condition at the line ζ = γ(a). In the case γ(a) = −∞, the

standard form of the equation is also parabolically degenerate in the sense that its initial line is ζ = −∞.

3.1 Existence and uniqueness of solution

We start by proving a result which not only assures the existence of solution for Cauchy problems with

well-behaved initial conditions but also provides an explicit representation for the solution as an inverse

L-transform:

Theorem 3.1 (Existence of solution). Suppose that x 7→ p(x)r(x) is an increasing function. If h ∈ D(2)
L

and ℓ(h) ∈ D(2)
L , then the function

fh(x, y) :=

∫

[0,∞)

wλ(x)wλ(y) (Fh)(λ)ρL(dλ) (3.2)

solves the Cauchy problem (3.1).

For ease of notation, unless necessary we drop the dependence in h and denote (3.2) by f(x, y).

Proof. Let us begin by justifying that ℓxf can be computed via differentiation under the integral sign. It

follows from (2.1) that w
[1]
λ (x) = −λ

∫ x
a wλ(ξ) r(ξ)dξ and therefore (by Lemma 2.3) |w[1]

λ (x)| ≤ λ
∫ x
a r(ξ)dξ.

Hence
∫

[0,∞)

∣∣(Fh)(λ)w[1]
λ (x)wλ(y)

∣∣ρL(dλ) ≤
∫ x

a

r(ξ)dξ ·
∫

[0,∞)

λ
∣∣(Fh)(λ)wλ(y)

∣∣ρL(dλ) <∞, (3.3)
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where the convergence (which is uniform on compacts) follows from (2.7) and Lemma 2.7(b). From the

convergence of the differentiated integral we conclude that ∂
[1]
x f(x, y) =

∫
[0,∞)

(Fh)(λ)w[1]
λ (x)wλ(y)ρL(dλ).

Since (ℓwλ)(x) = λwλ(x), in the same way we check that
∫
[0,∞)(Fh)(λ) (ℓwλ)(x)wλ(y)ρL(dλ) converges

absolutely and uniformly on compacts and is therefore equal to (ℓxf)(x, y). Consequently,

(ℓxf)(x, y) = (ℓyf)(x, y) =

∫

[0,∞)

λ (Fh)(λ)wλ(x)wλ(y)ρL(dλ). (3.4)

Concerning the boundary conditions, Lemma 2.7(b) together with the fact that wλ(a) = 1 imply that

f(x, a) = h(x), and from (3.3) we easily see that limy↓a ∂
[1]
y f(x, y) = 0. This shows that f is a solution of

the Cauchy problem (3.1).

Under the assumptions of the theorem, the solution (3.2) of the hyperbolic Cauchy problem satisfies

f(·, y) ∈ D(2)
L for all a < y < b, (3.5)

F [ℓyf(·, y)](λ) = ℓy[Ff(·, y)](λ) for all a < y < b, (3.6)

lim
y↓a

[Ff(·, y)](λ) = (Fh)(λ), (3.7)

lim
y↓a

∂[1]y F [f(·, y)](λ) = 0. (3.8)

Indeed, by Proposition 2.6 we have [Ff(·, y)](λ) = (Fh)(λ)wλ(y) for all λ ∈ supp(ρL) and a < y < b.

Since h ∈ D(2)
L and |wλ(·)| ≤ 1 (Lemma 2.3), it is clear from (2.8) that f(x, y) satisfies (3.5). Moreover,

it follows from (3.4) that F [ℓyfj(·, y)](λ) = λ (Fh)(λ)wλ(y) = ℓy[Ffj(·, y)](λ), hence (3.6) holds. The

properties (3.7)–(3.8) follow immediately from Lemma 2.1.

Next we show that the solution from the above existence theorem is the unique solution satisfying the

conditions (3.5)–(3.8):

Theorem 3.2 (Uniqueness). Let h ∈ D(2)
L . Let f1, f2 ∈ C2

(
(a, b)2

)
be two solutions of (ℓxf)(x, y) =

(ℓyf)(x, y). For f ∈ {f1, f2}, suppose that (3.5) holds and that there exists a zero ρL-measure set

Λ0 ⊂ [0,∞) such that (3.6)–(3.8) hold for each λ ∈ [0,∞) \ Λ0. Then

f1(x, y) ≡ f2(x, y) for all x, y ∈ (a, b). (3.9)

Proof. Fix λ ∈ [0,∞) \ Λ0 and let Ψj(y, λ) := [Ffj(·, y)](λ). We have

ℓyΨj(y, λ) = F [ℓyfj(·, y)](λ) = F [ℓxfj(·, y)](λ) = λΨj(y, λ), a < y < b

where the first equality is due to (3.6) and the last step follows from (2.7). Moreover,

lim
y↓a

Ψj(y, λ) = (Fh)(λ) and lim
y↓a

∂[1]y Ψj(y, λ) = 0

by (3.7) and (3.8), respectively. It thus follows from Lemma 2.1 that

[Ffj(·, y)](λ) = Ψj(y, λ) = (Fh)(λ)wλ(y), a < y < b.

This equality holds for ρL-almost every λ, so the isometric property of F gives f1(·, y) = f2(·, y) Lebesgue-

almost everywhere; since the fj are continuous, we conclude that (3.9) holds.

We emphasize that the two previous propositions, in particular, ensure that there exists a unique

solution for the Cauchy problem (3.1) with initial condition

h ∈ C4
c,0 :=

{
u ∈ C4

c [a, b)
∣∣∣ ℓ(u), ℓ2(u) ∈ Cc[a, b), lim

x↓a
u[1](x) = lim

x↓a
[ℓ(u)][1](x) = 0

}

(clearly, if h ∈ C4
c,0 then h, ℓ(h) ∈ D(2)

L ).
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If the hyperbolic equation ℓxf = ℓyf (or the transformed equation ℓ̃ξu = ℓ̃yu) is uniformly hyperbolic,

the existence and uniqueness of solution for this Cauchy problem is a standard result which follows from

the classical theory of hyperbolic problems in two variables (see e.g. [16, Chapter V]); in fact, the existence

and uniqueness holds under much weaker restrictions on the initial condition. However, our existence

and uniqueness result becomes nontrivial in the presence of a (non-removable) parabolic degeneracy at

the initial line.

Indeed, even though many authors have addressed Cauchy problems for degenerate hyperbolic equa-

tions in two variables, most studies are restricted to equations where the ∂2

∂x2 term vanishes at an initial

line y = y0 (we refer to [5, §2.3], [43, Section 5.4] and references therein). Much less is known for hyper-

bolic equations whose ∂2

∂y2 term vanishes at the same initial line: it is known that the Cauchy problem

is, in general, not well-posed, and the relevance of determining sufficient conditions for its well-posedness

has long been pointed out [5, §2.4], but as far as we are aware little progress has been made on this prob-

lem (for related work see [38]). The application of spectral techniques to hyperbolic Cauchy problems

associated with Sturm-Liouville operators is by no means new, see e.g. [11, 10] and references therein;

however, it seems that such techniques had never been applied to degenerate cases.

It is helpful to know that an existence theorem analogous to Theorem 3.1 holds when the initial line is

shifted away from the degeneracy, because this will allow us to justify that the solution of the degenerate

Cauchy problem is the pointwise limit of solutions of nondegenerate problems.

Proposition 3.3. Suppose that x 7→ p(x)r(x) is an increasing function, and let m ∈ N. If h ∈ D(2)
L and

ℓ(h) ∈ D(2)
L , then the function

fm(x, y) =

∫

[0,∞)

wλ(x)wλ,m(y) (Fh)(λ)ρL(dλ) (3.10)

is a solution of the Cauchy problem

(ℓxfm)(x, y) = (ℓyfm)(x, y), a < x < b, am < y < b

fm(x, am) = h(x), a < x < b

(∂[1]y fm)(x, am) = 0, a < x < b.

(3.11)

Proof. Let us begin by justifying that ∂
[1]
x fm(x, y) and (ℓxfm)(x, y) can be computed via differentiation

under the integral sign. The differentiated integrals are given by

∫

[0,∞)

w
[1]
λ (x)wλ,m(y) (Fh)(λ)ρL(dλ) (3.12)

∫

[0,∞)

wλ(x)wλ,m(y) [F(ℓ(h))](λ)ρL(dλ) (3.13)

(for the latter, we used the identities (ℓwλ)(x) = λwλ(x) and (2.7)), and their absolute and uniform

convergence on compacts follows from the fact that h, ℓ(h) ∈ D(2)
L , together with Lemma 2.7(b) and

the inequality |wλ,m(·)| ≤ 1 (which follows from Lemma 2.3 if we replace a by am). This justifies that

∂
[1]
x fm(x, y) and (ℓxfm)(x, y) are given by (3.12), (3.13) respectively.

We also need to ensure that ∂
[1]
y fm(x, y) and (ℓyfm)(x, y) are given by the corresponding differentiated

integrals, and to that end we must check that

∫

[0,∞)

wλ(x)w
[1]
λ,m(y) (Fh)(λ)ρL(dλ)

converges absolutely and uniformly. Indeed, it follows from (2.3) that for y ≥ am we have w
[1]
λ,m(y) =

λ
∫ y
am

wλ,m(ξ) r(ξ)dξ and consequently |w[1]
λ,m(y)| ≤ λ

∫ y
am

r(ξ)dξ; hence

∫

[0,∞)

∣∣wλ(x)w[1]
λ,m(y) (Fh)(λ)

∣∣ρL(dλ) ≤
∫ y

am

r(ξ)dξ ·
∫

[0,∞)

λ
∣∣wλ(x)(Fh)(λ)

∣∣ρL(dλ) (3.14)
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and the uniform convergence in compacts follows from (2.7) and Lemma 2.7(b).

The verification of the boundary conditions is straightforward: Lemma 2.7(b) together with the fact

that wλ,m(am) = 1 imply that fm(x, am) = h(x), and from (3.14) we easily see that ∂
[1]
y fm(x, am) = 0.

This shows that fm is a solution of the Cauchy problem (3.11).

Corollary 3.4. Suppose that x 7→ p(x)r(x) is an increasing function. Let h ∈ D(2)
L and consider the

functions fm, f defined by (3.10), (3.2). Then

lim
m→∞

fm(x, y) = f(x, y) pointwise for each x, y ∈ (a, b).

Proof. Since wλ,m(y) → wλ(y) pointwise as m → ∞ (Lemma 2.2), the conclusion follows from the

dominated convergence theorem (which is applicable due to Lemmas 2.3 and 2.7(b)).

3.2 Maximum principle and positivity of solution

After having shown that the Cauchy problem is well-posed whenever the function x 7→ p(x)r(x) is

increasing, we introduce a stronger assumption on the coefficients which will be seen to be sufficient for

a maximum principle to hold for the hyperbolic equation ℓxf = ℓyf and, in consequence, for the solution

of the Cauchy problem (3.1) to preserve positivity and boundedness of its initial condition. We shall rely

on the transformation of ℓ into the standard form (Remark 2.4); in the following assumption, A is the

function defined in (2.4).

Assumption MP. There exists η ∈ C1(γ(a),∞) such that η ≥ 0, φη := A′

A − η ≥ 0, and the functions

φη and ψη := 1
2η

′ − 1
4η

2 + A′

2A ·η are both decreasing on (γ(a),∞).

Observe that Assumption MP allows for γ(a) = −∞ (this will enable us to treat the case of non-

removable degeneracy), and it does not include the left endpoint in the interval where the conditions on

η are imposed. This assumption is therefore a generalization of an assumption introduced by Zeuner, cf.

Example 8.5 below.

The proof of the maximum principle presented in the sequel is based on [63, Proposition 3.7] and on

the maximum principles of [60]. The key tool is the integral identity which we now state:

Lemma 3.6. Let ℓB be the differential expression ℓBv := −v′′ − φηv′ + ψηv. For γ(a) < c ≤ y ≤ x,

consider the triangle ∆c,x,y := {(ξ, ζ) ∈ R2 | ζ ≥ c, ξ + ζ ≤ x+ y, ξ − ζ ≥ x− y}, and let v ∈ C2(∆c,x,y).

Write B(x) := exp(12
∫ x
β
η(ξ)dξ) (with β > γ(a) arbitrary) and AB(x) = A(x)

B(x)2 . Then the following

integral equation holds:

AB(x)AB(y) v(x, y) = H + I0 + I1 + I2 + I3 − I4 (3.15)

where

H := 1
2AB(c)

[
AB(x− y + c) v(x− y + c, c) +AB(x + y − c) v(x+ y − c, c)]

I0 := 1
2AB(c)

∫ x+y−c

x−y+c

AB(s)(∂yv)(s, c) ds

I1 := 1
2

∫ y

c

AB(s)AB(x− y + s)
[
φη(s) + φη(x− y + s)

]
v(x− y + s, s) ds

I2 := 1
2

∫ y

c

AB(s)AB(x+ y − s)
[
φη(s)− φη(x+ y − s)

]
v(x+ y − s, s) ds

I3 := 1
2

∫

∆c,x,y

AB(ξ)AB(ζ)
[
ψη(ζ) −ψη(ξ)

]
v(ξ, ζ) dξdζ

I4 := 1
2

∫

∆c,x,y

AB(ξ)AB(ζ) (ℓ
B
ζ v − ℓBξ v)(ξ, ζ) dξdζ.
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Proof. Just compute

I4 − I3 = 1
2

∫

∆c,x,y

(
∂

∂ξ

[
AB(ξ)AB(ζ) (∂ξv)(ξ, ζ)

]
− ∂

∂ζ

[
AB(ξ)AB(ζ) (∂ζv)(ξ, ζ)

])
dξdζ

= I0 − 1
2

∫ y

0

AB(s)AB(x− y + s) (∂ζv + ∂ξv)(x− y + s, s) ds

− 1
2

∫ y

0

AB(s)AB(x+ y − s) (∂ζv − ∂ξv)(x + y − s, s) ds

= I0 + I1 −
∫ y

c

d

ds

[
AB(s)AB(x− y + s) v(x− y + s, s)

]
ds

+ I2 −
∫ y

c

d

ds

[
AB(s)AB(x− y + s) v(x− y + s, s)

]
ds

where in the second equality we used Green’s theorem, and the third equality follows easily from the fact

that (AB)
′ = φηAB.

Theorem 3.7 (Weak maximum principle). Suppose Assumption MP holds, and let γ(a) < c ≤ y0 ≤ x0.

If u ∈ C2(∆c,x0,y0) satisfies

(ℓ̃xu− ℓ̃yu)(x, y) ≤ 0, (x, y) ∈ ∆c,x0,y0

u(x, c) ≥ 0, x ∈ [x0 − y0 + c, x0 + y0 − c]

(∂yu)(x, c) +
1
2η(c)u(x, c) ≥ 0, x ∈ [x0 − y0 + c, x0 + y0 − c]

(3.16)

then u ≥ 0 in ∆c,x0,y0 .

Proof. Pick a function ω ∈ C2[c,∞) such that ℓBω < 0, ω(c) > 0 and ω′(c) ≥ 0. Clearly, it is enough to

show that for all δ > 0 we have v(x, y) := B(x)B(y)u(x, y) + δω(y) > 0 for (x, y) ∈ ∆c,x0,y0 .

Assume by contradiction that there exist δ > 0, (x, y) ∈ ∆c,x0,y0 for which we have v(x, y) = 0 and

v(ξ, ζ) ≥ 0 for all (ξ, ζ) ∈ ∆c,x,y ⊂ ∆c,x0,y0 . It is clear from the choice of ω that v(·, c) > 0, thus we have

H ≥ 0 in the right hand side of (3.15). Similarly, (∂yv)(·, c) = B(x)B(y)
[
(∂yu)(·, c) + 1

2η(c)u(·, c)
]
+

δω′(c) ≥ 0, hence I0 ≥ 0. Since φη is positive and decreasing and ψη is decreasing (cf. Assumption

MP) and we are assuming that u ≥ 0 on ∆c,x,y, it follows that I1 ≥ 0, I2 ≥ 0 and I3 ≥ 0. In addition,

I4 < 0 because (ℓBζ v−ℓBξ v)(ξ, ζ) = B(x)B(y)(ℓ̃ζu− ℓ̃ξu)(ξ, ζ)+(ℓBω)(ζ) < 0. Consequently, (3.15) yields

0 = AB(x)AB(y)v(x, y) ≥ −I4 > 0. This contradiction shows that v(x, y) > 0 for all (x, y) ∈ ∆c,x0,y0.

Naturally, this weak maximum principle can be restated in terms of the operator ℓ = − 1
r
d
dx(p

d
dx);

this is left to the reader. As anticipated above, the positivity-preserving property of the Cauchy problem

is a by-product of the maximum principle.

Proposition 3.8. Suppose Assumption MP holds, and let m ∈ N. If h ∈ D(2)
L , ℓ(h) ∈ D(2)

L and h ≥ 0,

then the function fm given by (3.10) is such that

fm(x, y) ≥ 0 for x ≥ y > am. (3.17)

If, in addition, h ≤ C (where C is a constant), then fm(x, y) ≤ C for x ≥ y > am.

Proof. It follows from Proposition 3.3 that the function um(x, y) := fm(γ
−1(x), γ−1(y)) is a solution of

the Cauchy problem

(ℓ̃xum)(x, y) = (ℓ̃yum)(x, y), x, y > ãm (3.18)

um(x, ãm) = h(γ−1(x)), x > ãm (3.19)

(∂yum)(x, ãm) = 0, x > ãm (3.20)

where ãm = γ(am). Clearly, um satisfies the inequalities (3.16) for arbitrary x0 ≥ y0 ≥ ãm (here c = ãm).

By Theorem 3.7, um(x0, y0) ≥ 0 for all x0 ≥ y0 > ãm; consequently, (3.17) holds.
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The proof of the last statement is straightforward: if we have h ≤ C, then ũm(x, y) = C − um(x, y) is

a solution of (3.18) with initial conditions ũm(x, ãm) = C−h(γ−1(x)) ≥ 0 and (3.20), thus the reasoning

of the previous paragraph yields that C − um ≥ 0 for x ≥ y > ãm.

The previous result gives the positivity-preservingness for the solution of the nondegenerate Cauchy

problem (3.11). The extension of this property to the possibly degenerate problem (3.1) is an immediate

consequence of the pointwise convergence result of Corollary 3.4:

Corollary 3.9. Suppose Assumption MP holds. If h ∈ D(2)
L , ℓ(h) ∈ D(2)

L and h ≥ 0, then the function f

given by (3.2) is such that

f(x, y) ≥ 0 for x, y ∈ (a, b).

If, in addition, h ≤ C, then f(x, y) ≤ C for x, y ∈ (a, b).

Note that the conclusion holds for all x, y ∈ (a, b) because the function f(x, y) is symmetric.

4 Sturm-Liouville translation and convolution

Assumption MP will always be in force throughout this and the subsequent sections.

4.1 Definition and first properties

In view of the comments made in the Introduction, it is natural to define the L-convolution µ ∗ ν (µ, ν ∈
MC[a, b)) in order that, for sufficiently well-behaved initial conditions, the integral

∫
[a,b) h(ξ) (δx ∗δy)(dξ)

coincides with the solution (3.2) of the hyperbolic Cauchy problem. Having this in mind, let us first

confirm that the solution of the hyperbolic Cauchy problem can be represented as an integral with

respect to a family of positive measures:

Proposition 4.1. Fix x, y ∈ [a, b). There exists a subprobability measure νx,y ∈ M+[a, b) such that, for

all initial conditions h ∈ C4
c,0, the solution (3.2) of the hyperbolic Cauchy problem (3.1) can be written as

fh(x, y) =

∫

[a,b)

h(ξ)νx,y(dξ) (h ∈ C4
c,0). (4.1)

Proof. For each fixed x, y ∈ [a, b), the right hand side of (3.2) defines a linear functional C4
c,0 ∋ h 7→

fh(x, y) ∈ C. By Corollary 3.9, |fh(x, y)| ≤ ‖h‖∞ for h ∈ C4
c,0. Thus it follows from the Hahn-Banach

theorem that this functional admits a linear extension Tx,y : C0[a, b) → C such that |Tx,yh| ≤ ‖h‖∞ for

all h ∈ C0[a, b). According to the Riesz representation theorem (cf. [14, Theorem 7.3.6]), MC[a, b) is the

dual of C0[a, b); we thus have Tx,yh =
∫
[a,b) h(ξ)νx,y(dξ), where νx,y is a finite complex measure with

‖νx,y‖ ≤ 1. Finally, the fact that
∫
[a,b)

h(ξ)νx,y(dξ) ≡ fh(x, y) ≥ 0 for all h ∈ C4
c,0, h ≥ 0 (Corollary 3.9)

yields that νx,y ∈ M+[a, b) is a subprobability measure.

Definition 4.2. Let µ, ν ∈ MC[a, b). The measure

(µ ∗ ν)(·) =
∫

[a,b)

∫

[a,b)

νx,y(·)µ(dx) ν(dy)

is called the L-convolution of the measures µ and ν. The L-translation of a function h ∈ Bb[a, b) is

defined as

(T yh)(x) =

∫

[a,b)

h(ξ)νx,y(dξ) ≡
∫

[a,b)

h(ξ) (δx ∗ δy)(dξ), x, y ∈ [a, b).

It follows from this definition, together with (3.2), that the L-convolution is such that (for µ1, µ2, ν, π ∈
MC[a, b) and p1, p2 ∈ C):

(i) µ ∗ ν = ν ∗ µ (Commutativity);
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(ii) (µ ∗ ν) ∗ π = µ ∗ (ν ∗ π) (Associativity);

(iii) (p1µ1 + p2µ2) ∗ ν = p1(µ1 ∗ ν) + p2(µ2 ∗ ν) (Bilinearity);

(iv) ‖µ ∗ ν‖ ≤ ‖µ‖·‖ν‖ (Submultiplicativity);

(v) If µ, ν ∈ M+[a, b), then µ ∗ ν ∈ M+[a, b) (Positivity).

Summarizing this, we have:

Proposition 4.3. The space (MC[a, b), ∗), equipped with the total variation norm, is a commutative

Banach algebra over C whose identity element is the Dirac measure δa.

Moreover, M+[a, b) is an algebra cone (i.e. it is closed under L-convolution, addition and multiplica-

tion by positive scalars, and it contains the identity element).

Remark 4.4. Given a measure µ ∈ MC[a, b), it is natural to define the L-translation by µ as

(T µh)(x) :=

∫

[a,b)

(T yh)(x)µ(dy) ≡
∫

[a,b)

h(ξ) (δx ∗ µ)(dξ) (h ∈ Bb[a, b))

(so that T x ≡ T δx for a ≤ x < b). It is easy to see that ‖T µh‖∞ ≤ ‖µ‖ ·‖h‖∞ for all h ∈ Bb[a, b) and

µ ∈ MC[a, b). Observe also that for h ∈ C4
c,0 we can write (by (3.2) and (4.1))

(T µh)(x) =

∫

[0,∞)

(Fh)(λ)wλ(x) µ̂(λ)ρL(dλ) (h ∈ C4
c,0) (4.2)

or equivalently (cf. Proposition 2.6)

(
F(T µh)

)
(λ) = µ̂(λ)(Fh)(λ) (h ∈ C4

c,0). (4.3)

Due to Lemma 2.7, the integral (4.2) converges absolutely and uniformly for x on compact subsets of

(a, b).

4.2 Sturm-Liouville transform of measures

An important tool for the subsequent analysis is the extension of the L-transform (2.6) to finite complex

measures, defined as follows:

Definition 4.5. Let µ ∈ MC[a, b). The L-transform of the measure µ is the function defined by the

integral

µ̂(λ) =

∫

[a,b)

wλ(x)µ(dx), λ ≥ 0.

The next proposition contains some basic properties of the L-transform of measures which, as one

would expect, resemble those of the ordinary Fourier transform (or characteristic function) of finite

measures. We recall that, by definition, the complex measures µn converge weakly to µ ∈ MC[a, b) if

limn

∫
[a,b) g(ξ)µn(dξ) =

∫
[a,b) g(ξ)µ(dξ) for all g ∈ Cb[a, b). We also recall that a family {µj} ⊂ MC[a, b)

is said to be uniformly bounded if supj ‖µj‖ < ∞, and {µj} is said to be tight if for each ε > 0 there

exists a compact Kε ⊂ [a, b) such that supj |µj |([a, b) \Kε) < ε. (These definitions are taken from [7].)

In the sequel, the notation µn
w−→ µ denotes weak convergence of measures.

Proposition 4.6. The L-transform µ̂ of µ ∈ MC[a, b) has the following properties:

(a) µ̂ is continuous on [0,∞). Moreover, if a family of measures {µj} ⊂ MC[a, b) is tight and uniformly

bounded, then {µ̂j} is equicontinuous on [0,∞).

(b) Each measure µ ∈ MC[a, b) is uniquely determined by µ̂. In particular, each f ∈ L1(r) is uniquely

determined by Ff ≡ µ̂f , where µf ∈ MC[a, b) is defined by µf (dx) = f(x)r(x)dx.
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(c) If {µn} is a sequence of measures belonging to M+[a, b), µ ∈ M+[a, b), and µn
w−→ µ, then

µ̂n −−−−→
n→∞

µ̂ uniformly for λ in compact sets.

(d) Suppose that limx↑b wλ(x) = 0 for all λ > 0. If {µn} is a sequence of measures belonging to M+[a, b)

whose L-transforms are such that

µ̂n(λ) −−−−→
n→∞

f(λ) pointwise in λ ≥ 0 (4.4)

for some real-valued function f which is continuous at a neighborhood of zero, then µn
w−→ µ for

some measure µ ∈ M+[a, b) such that µ̂ ≡ f .

Proof. (a) Let us prove the second statement, which implies the first. Set C = supj ‖µj‖. Fix λ0 ≥ 0

and ε > 0. By the tightness assumption, we can choose β ∈ (a, b) such that |µj |(β, b) < ε for all j.

Since the family {w(·)(x)}x∈(a,β] is equicontinuous on [0,∞) (this follows easily from the power series

representation of w(·)(x), cf. proof of Lemma 2.1), we can choose δ > 0 such that

|λ− λ0| < δ =⇒ |wλ(x)− wλ0 (x)| < ε for all a < x ≤ β.

Consequently,

∣∣µ̂j(λ)− µ̂j(λ0)
∣∣ =

∣∣∣∣
∫

(a,b)

(
wλ(x)− wλ0(x)

)
µj(dx)

∣∣∣∣

≤
∫

(β,b)

∣∣wλ(x)− wλ0 (x)
∣∣|µj |(dx) +

∫

(a,β]

∣∣wλ(x)− wλ0 (x)
∣∣|µj |(dx)

≤ 2ε+ Cε = (C + 2)ε

for all j, provided that |λ− λ0| < δ, which means that {µ̂j} is equicontinuous at λ0.

(b) Let µ ∈ MC[a, b) be such that µ̂(λ) = 0 for all λ ≥ 0. We need to show that µ is the zero measure.

For each h ∈ C4
c,0, by (4.2) we have

(T µh)(x) =

∫

[0,∞)

(Fh)(λ)wλ(x) µ̂(λ)ρL(dλ) = 0.

Since h ∈ C4
c,0, Theorem 3.1 assures that limx↓a(T yh)(x) = h(y) for y ≥ 0; therefore, by dominated

convergence (which is applicable because ‖T yh‖∞ ≤ ‖h‖∞ <∞),

0 = lim
x↓a

(T µh)(x) = lim
x↓a

∫

[a,b)

(T yh)(x)µ(dy) =

∫

[a,b)

h(y)µ(dy)

This shows that
∫
[a,b)

h(y)µ(dy) = 0 for all h ∈ C4
c,0 and, consequently, µ is the zero measure.

(c) Since wλ(·) is continuous and bounded, the pointwise convergence µ̂n(λ) → µ̂(λ) follows from the

definition of weak convergence of measures. By Prokhorov’s theorem [7, Theorem 8.6.2], {µn} is tight

and uniformly bounded, thus (by part (i)) {µ̂n} is equicontinuous on [0,∞). Invoking [31, Lemma 15.22],

we conclude that the convergence µ̂n → µ̂ is uniform for λ in compact sets.

(d) We only need to show that the sequence {µn} is tight and uniformly bounded. Indeed, if {µn}
is tight and uniformly bounded, then Prokhorov’s theorem yields that for any subsequence {µnk

} there

exists a further subsequence {µnkj
} and a measure µ ∈ M+[a, b) such that µnkj

w−→ µ. Then, due to

part (iii) and to (4.4), we have µ̂(λ) = f(λ) for all λ ≥ 0, which implies (by part (ii)) that all such

subsequences have the same weak limit; consequently, the sequence µn itself converges weakly to µ.

The uniform boundedness of {µn} follows immediately from the fact that µ̂n(0) = µn[a, b) converges.

To prove the tightness, take ε > 0. Since f is continuous at a neighborhood of zero, we have 1
δ

∫ 2δ

0

(
f(0)−

f(λ)
)
dλ −→ 0 as δ ↓ 0; therefore, we can choose δ > 0 such that

∣∣∣∣
1

δ

∫ 2δ

0

(
f(0)− f(λ)

)
dλ

∣∣∣∣ < ε.
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Next we observe that, due to the assumption that limx↑bwλ(x) = 0 for all λ > 0, we have
∫ 2δ

0

(
1 −

wλ(x)
)
dλ −→ 2δ as x ↑ b, meaning that we can pick β ∈ (a, b) such that

∫ 2δ

0

(
1− wλ(x)

)
dλ ≥ δ for all β < x < b.

By our choice of β and Fubini’s theorem,

µn
[
β, b) =

1

δ

∫

[β,b)

δ µn(dx)

≤ 1

δ

∫

[β,b)

∫ 2δ

0

(
1− wλ(x)

)
dλµn(dx)

≤ 1

δ

∫

[a,b)

∫ 2δ

0

(
1− wλ(x)

)
dλµn(dx)

=
1

δ

∫ 2δ

0

(
µ̂n(0)− µ̂n(λ)

)
dλ.

Hence, using the dominated convergence theorem,

lim sup
n→∞

µn[β, b) ≤
1

δ
lim sup
n→∞

∫ 2δ

0

(
µ̂n(0)− µ̂n(λ)

)
dλ

=
1

δ

∫ 2δ

0

lim
n→∞

(
µ̂n(0)− µ̂n(λ)

)
dλ =

1

δ

∫ 2δ

0

(
f(0)− f(λ)

)
dλ < ε

due to the choice of δ. Since ε is arbitrary, we conclude that {µn} is tight, as desired.

Remark 4.7. I. Parts (c) and (d) of the proposition above show that (whenever limx↑b wλ(x) = 0 for

all λ > 0) the L-transform possesses the following important property: the L-transform is a topological

homeomorphism between P [a, b) with the weak topology and the set P̂ of L-transforms of probability mea-

sures with the topology of uniform convergence in compact sets.

II. Recall that, by definition [2, §30], the measures µn converge vaguely to µ if limn

∫
[a,b)

g(ξ)µn(dξ) =∫
[a,b)

g(ξ)µ(dξ) for all g ∈ C0[a, b). Much like weak convergence, vague convergence of measures can be

formulated via the L-transform, provided that limx↑b wλ(x) = 0 for all λ > 0. Indeed, using
v−→ to denote

vague convergence of measures, we have:

II.1 If {µn} ⊂ M+[a, b), µ ∈ M+[a, b), and µn
v−→ µ, then lim µ̂n(λ) = µ̂(λ) pointwise for each

λ > 0;

II.2 If {µn} ⊂ M+[a, b), {µn} is uniformly bounded and lim µ̂n(λ) = f(λ) pointwise in λ > 0 for

some function f ∈ Bb(0,∞), then µn
v−→ µ for some measure µ ∈ M+[a, b) such that µ̂ ≡ f .

(The first part is trivial; the second follows from the reasoning in the first paragraph of the proof of (d) in

the proposition above, together with the fact that any uniformly bounded sequence of positive measures

contains a vaguely convergent subsequence [2, p. 213].)

III. Concerning the additional assumption in the above remarks, one can state: a necessary and sufficient

condition for the condition limx↑b wλ(x) = 0 (λ > 0) to hold is that limx↑b p(x)r(x) = ∞. This fact can

be proved using the transformation into the standard form (Remark 2.4) and known results on the

asymptotic behavior of solutions of the Sturm-Liouville equation −u′′ − A′

A u
′ = λu (see [23, proof of

Lemma 3.7]).

5 The product formula

We saw in the previous section that the hyperbolic maximum principle allows us to introduce a convolution

measure algebra associated with the Sturm-Liouville operator. The next aims are to develop harmonic
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analysis on Lp spaces and to study notions such as the continuity of the convolution or the divisibility of

measures. However, this requires a fundamental tool, namely the trivialization property δ̂x ∗ δy = δ̂x · δ̂y
for the L-transform or, which is the same, the product formula for its kernel.

Theorem 5.1 (Product formula for wλ). The product wλ(x)wλ(y) admits the integral representation

wλ(x)wλ(y) =

∫

[a,b)

wλ(ξ) (δx ∗ δy)(dξ), x, y ∈ [a, b), λ ∈ C. (5.1)

Here we present the proof only in the special (nondegenerate) case γ(a) > −∞. The proof of the

general case is longer and relies on a different regularization argument; the details are given in [48].

Proof of Theorem 5.1 for the case γ(a) > −∞. Assume first that ℓ = − 1
A

d
dx (A

d
dx), 0 < x <∞, and that

Assumption MP holds with a = γ(a) = 0. Fix λ ∈ C, and let {w〈n〉
λ }n∈N ⊂ C4

c,0 be a sequence of functions

such that

w
〈n〉
λ (x) = wλ(x) for x ∈ [0, n], w

〈n〉
λ (x) = 0 for x ≥ n+ 1.

Let f 〈n〉(x, y) be the unique solution of the hyperbolic Cauchy problem (3.1) with initial condition h(x) =

w
〈n〉
λ (x). Since the family of characteristics for the hyperbolic equation (ℓxu)(x, y) = (ℓyu)(x, y) is

x± y = const., the solution f 〈n〉(x, y) depends only on the values of the initial condition on the interval

[|x − y|, x + y]. Observing that the function w
〈n〉
λ (x)w

〈n〉
λ (y) is a solution of the hyperbolic equation

(ℓxu)(x, y) = (ℓyu)(x, y) on the square (x, y) ∈ [0, n]2, we deduce that

f 〈n〉(x, y) = w
〈n〉
λ (x)w

〈n〉
λ (y) = wλ(x)wλ(y), x, y ∈ [0, n2 ].

It thus follows from Proposition 4.1 that

wλ(x)wλ(y) =

∫

[0,∞)

wλ(ξ)νx,y(dξ), x, y ∈ [0, n2 ]

(note that supp(νx,y) = [|x− y|, x+ y] because of the domain of dependence of the hyperbolic equation).

Since n is arbitrary, the identity holds for all x, y ∈ [0,∞), proving that the theorem holds for operators

of the form ℓ = − 1
A

d
dx(A

d
dx), 0 < x <∞.

Now, in the general case of an operator ℓ of the form (1.4), note that γ(a) > −∞ means that
√

r(y)
p(y)

is integrable near a, so that we may assume that γ(a) = 0 (otherwise, replace the interior point c by the

endpoint a in the definition of the function γ). Applying the first part of the proof to the transformed

operator ℓ̃ = − 1
A
d
dξ (A

d
dξ ) defined via (2.4), we find that w̃λ(x) w̃λ(y) =

∫
[0,∞)w̃λ(ξ) (δx ∗̃δy)(dξ) for

x, y ∈ [0,∞), where w̃λ(ξ) := wλ(γ
−1(ξ)) and ∗̃ is the convolution associated with ℓ̃. We can rewrite this

as

wλ(x)wλ(y) =

∫

[a,b)

wλ(ξ)
[
γ−1(δγ(x) ∗̃δγ(y))

]
(dξ), x, y ∈ [a, b), λ ∈ C

where the measure in the right hand side is the pushforward of the measure δγ(x) ∗̃δγ(y) under the map ξ 7→
γ−1(ξ). But one can easily check that the convolutions ∗ and ∗̃ are connected by δx∗δy = γ−1(δγ(x) ∗̃δγ(y))
(this is a simple consequence of the definition of the convolution and the relation between the operators

ℓ and ℓ̃), so we are done.

Corollary 5.2. Let µ, ν, π ∈ MC[a, b).

(a) We have π = µ ∗ ν if and only if

π̂(λ) = µ̂(λ) ν̂(λ) for all λ ≥ 0.

(b) Probability measures are closed under L-convolution: if µ, ν ∈ P [a, b), then µ ∗ ν ∈ P [a, b).

If limx↑b p(x)r(x) = ∞ holds (cf. Remark 4.7.III), then the following properties also hold:

(c) The mapping (µ, ν) 7→ µ ∗ ν is continuous in the weak topology.
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(d) If h ∈ Cb[a, b), then T µh ∈ Cb[a, b) for all µ ∈ MC[a, b).

(e) If h ∈ C0[a, b), then T µh ∈ C0[a, b) for all µ ∈ MC[a, b).

Proof. (a) Using (5.1), we compute

µ̂ ∗ ν(λ) =
∫

[a,b)

wλ(x) (µ ∗ ν)(dx)

=

∫

[a,b)

∫

[a,b)

∫

[a,b)

wλ(ξ) (δx ∗ δy)(dξ)µ(dx)ν(dy)

=

∫

[a,b)

∫

[a,b)

wλ(x)wλ(y)µ(dx)ν(dy) = µ̂(λ) ν̂(λ), λ ≥ 0.

This proves the “only if" part, and the converse follows from the uniqueness property in Proposition 4.6(b).

(b) Due to Proposition 4.3, it only remains to prove that (µ ∗ ν)[a, b) = 1 (µ, ν ∈ P [a, b)). But this

follows at once from part (a):

(µ ∗ ν)[a, b) = µ̂ ∗ ν(0) = µ̂(0) · ν̂(0) = µ[a, b) ·ν[a, b) = 1.

(c) Since δ̂x ∗ δy(λ) = wλ(x)wλ(y), Proposition 4.6(d) yields that (x, y) 7→ δx ∗ δy is continuous in the

weak topology. Therefore, for h ∈ Cb[a, b) and µn, νn ∈ MC[a, b) with µn
w−→ µ and νn

w−→ ν we have

lim
n

∫

[a,b)

h(ξ)(µn ∗ νn)(dξ) = lim
n

∫

[a,b)

∫

[a,b)

(∫

[a,b)

h(ξ) (δx ∗ δy)(dξ)
)
µn(dx)νn(dy)

=

∫

[a,b)

∫

[a,b)

(∫

[a,b)

h(ξ) (δx ∗ δy)(dξ)
)
µ(dx)ν(dy)

=

∫

[a,b)

h(ξ)(µ ∗ ν)(dξ)

due to the continuity of the function in parenthesis.

(d) Since (T µh)(x) =
∫
[a,b)

h(ξ) (δx ∗ µ)(dξ), this follows immediately from part (c)

(e) It remains to show that (T µh)(x) → 0 as x ↑ b. Since wλ(x)µ̂(λ) → 0 as x ↑ b (λ > 0), it follows

from Remark 4.7.II that δx ∗ µ v−→ 0 as x ↑ b, where 0 denotes the zero measure; this means that for

each h ∈ C0[a, b) we have

(T µh)(x) =

∫

[a,b)

h(ξ)(δx ∗ µ)(dξ) −→
∫

[a,b)

h(ξ)0(dξ) = 0 as x ↑ b

showing that T µh ∈ C0[a, b).

6 Harmonic analysis on Lp spaces

For the remainder of this work, the coefficients of ℓ will be assumed to satisfy limx↑b p(x)r(x) = ∞ (cf.

Remark 4.7.III), and Assumption MP continues to be in place.

In this section, we turn our attention to the basic mapping properties of the L-translation and convo-

lution on the Lebesgue spaces Lp(r) (1 ≤ p ≤ ∞). The first result, whose proof depends on the continuity

of the mapping (µ, ν) 7→ µ ∗ ν, ensures that the L-translation defines a linear contraction on Lp(r):

Proposition 6.1. Let 1 ≤ p ≤ ∞ and µ ∈ M+[a, b). The L-translation (T µh)(x) =
∫
[a,b)

h(ξ) (δx ∗
µ)(dξ), is, for each h ∈ Lp(r), a Borel measurable function of x, and we have

‖T µh‖p ≤ ‖µ‖·‖h‖p for all h ∈ Lp(r) (6.1)

(consequently, T µ
(
Lp(r)

)
⊂ Lp(r)).
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Proof. It suffices to prove the result for nonnegative h ∈ Lp(r), 1 ≤ p ≤ ∞.

The map ν 7→ µ ∗ ν is weakly continuous (Corollary 5.2(c)) and takes M+[a, b) into itself. According

to [27, Section 2.3], this implies that, for each Borel measurable h ≥ 0, the function x 7→ (T µh)(x)

is Borel measurable. It follows that
∫
[a,b)

g(x)(µ ∗ r)(dx) :=
∫ b
a
(T µg)(x)r(x)dx (g ∈ Cc[a, b)) defines a

positive Borel measure. For a ≤ c1 < c2 < b, let 1[c1,c2) be the indicator function of [c1, c2), let hn ∈ C4
c,0

be a sequence of nonnegative functions such that hn → 1[c1,c2) pointwise, and write C = {g ∈ C∞
c (a, b) |

0 ≤ g ≤ 1}. We compute

(µ ∗ r)[c1, c2) = lim
n

∫

[a,b)

hn(x)(µ ∗ r)(dx)

= lim
n

sup
g∈C

∫ b

a

(T µhn)(x) g(x) r(x)dx

= lim
n

sup
g∈C

∫

[0,∞)

(Fhn)(λ) (Fg)(λ) µ̂(λ)ρL(dλ)

= lim
n

sup
g∈C

∫ b

a

hn(x) (T µg)(x) r(x)dx

≤ ‖µ‖· lim
n

∫

[a,b)

hn(x) r(x)dx = ‖µ‖·
∫

[c1,c2)

r(x)dx

where the third and fourth equalities follow from (4.2) and a change of order of integration, and the

inequality holds because ‖T µg‖∞ ≤ ‖µ‖·‖g‖∞ ≤ ‖µ‖. Therefore, ‖T µh‖1 = ‖h‖L1([a,b),µ∗r) ≤ ‖µ‖·‖h‖1
for each Borel measurable h ≥ 0. Since δx ∗ µ ∈ M+[a, b), Hölder’s inequality yields that ‖T µh‖p ≤
‖µ‖1/q ·‖T µ|h|p‖1/p1 ≤ ‖µ‖·‖h‖p for 1 < p <∞.

Finally, if h ∈ L∞(r), h ≥ 0 then h = hb + h0, where 0 ≤ hb ≤ ‖h‖∞ and h0 = 0 Lebesgue-almost

everywhere. Since ‖T µh0‖1 ≤ ‖µ‖ · ‖h0‖1 = 0, we have T yh0 = 0 Lebesgue-almost everywhere, and

therefore ‖T yh‖∞ = ‖T yhb‖∞ ≤ ‖µ‖·‖h‖∞.

It is natural to define the L-convolution of functions so that the fundamental identity F(h ∗ g) =

(Fh) ·(Fg) holds (where F denotes the L-transform (2.6)):

Definition 6.2. Let h, g : [a, b) −→ C. If the integral

(h ∗ g)(x) =
∫ b

a

(T yh)(x) g(y) r(y)dy =

∫ b

a

∫

[a,b)

h(ξ) (δx ∗ δy)(dξ) g(y) r(y)dy

exists for almost every x ∈ [a, b), then we call it the L-convolution of the functions h and g.

Proposition 6.3. If h ∈ C4
c,0 and g ∈ L1(r), then

(
F(h ∗ g)

)
(λ) = (Fh)(λ)(Fg)(λ) for all λ ≥ 0.

Proof. For h ∈ C4
c,0 and g ∈ L1(r) we have

(
F(h ∗ g)

)
(λ) =

∫ b

a

∫ b

a

(T ξh)(x)g(ξ) r(ξ)dξ wλ(x)r(x)dx

=

∫ b

a

(
F(T ξh)

)
(λ) g(ξ)r(ξ)dξ

= (Fh)(λ)
∫ b

a

g(ξ)wλ(ξ)r(ξ)dξ = (Fh)(λ)(Fg)(λ)

where we have used Fubini’s theorem and the identity (4.3).

Proposition 6.4 (Young convolution inequality). Let p1, p2 ∈ [1,∞] such that 1
p1

+ 1
p2

≥ 1. For h ∈
Lp1(r) and g ∈ Lp2(r), the L-convolution h∗g is well-defined and, for s ∈ [1,∞] defined by 1

s = 1
p1
+ 1
p2
−1,

it satisfies

‖h ∗ g‖s ≤ ‖h‖p1‖g‖p2
(in particular, h ∗ g ∈ Ls(r)). Consequently, the L-convolution is a continuous bilinear operator from

Lp1(r) × Lp2(r) into Ls(r).
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The proof is given for completeness; it is analogous to that of the Young inequality for the ordinary

convolution.

Proof. Define 1
t1

= 1
p1

− 1
s and 1

t2
= 1

p2
− 1

s . Observe that

|(T xh)(y)| |g(y)| ≤ |(T xh)(y)|p1/t1 |g(y)|p2/t2
[
|(T xh)(y)|p1 |g(y)|p2

]1/s
.

Since 1
s +

1
t1

+ 1
t2

= 1, we have by Hölder’s inequality and (6.1)

∫ b

a

|(T xh)(y)| |g(y)|r(y)dy

≤
(∫ b

a

|(T xh)(y)|p1r(y)dy
)1/t1(∫ b

a

|g(y)|p2r(y)dy
)1/t2(∫ b

a

|(T xh)(y)|p1 |g(y)|p2r(y)dy
)1/s

= ‖h‖p1/t1p1 ‖g‖p2/t2p2

(∫ b

a

|(T xh)(y)|p1 |g(y)|p2r(y)dy
)1/s

.

Using again (6.1) we conclude that

‖h ∗ g‖s ≤ ‖h‖p1/t1p1 ‖g‖p2/t2p2 ‖h‖p1/sp1 ‖g‖p2/sp2 = ‖h‖p1‖g‖p2 .

A consequence of the Young convolution inequality is that the fundamental identity
(
F(h ∗ g)

)
(λ) =

(Fh)(λ)(Fg)(λ) (Proposition 6.3) extends, by continuity, to h ∈ L1(r) ∪ L2(r) and g ∈ L1(r). Another

consequence is the Banach algebra property of the space L1(r):

Corollary 6.5. The Banach space L1(r), equipped with the convolution multiplication h · g ≡ h ∗ g, is a

commutative Banach algebra without identity element.

Proof. The Young convolution inequality shows that the L-convolution defines a binary operation on

L1(r) for which the norm is submultiplicative. The commutativity and associativity of the L-convolution

are a consequence of the identity F(h ∗ g) = (Fh) ·(Fg).
Suppose now that there exists e ∈ L1(r) such that h ∗ e = h for all h ∈ L1(r). Then

(Fh)(λ)(Fe)(λ) =
(
F(h ∗ e)

)
(λ) = (Fh)(λ) for all h ∈ L1(r) and λ ≥ 0.

Clearly, this implies that (Fe)(λ) = 1 for all λ ≥ 0. But we know that δ̂a ≡ 1, so it follows from

Proposition 4.6(b) that e(x)r(x)dx = δa(dx), which is absurd. This shows that the Banach algebra has

no identity element.

7 Applications to probability theory

7.1 Infinite divisibility of measures and the Lévy-Khintchine representation

The set Pid of L-infinitely divisible measures (or L-infinitely divisible distributions) is defined in the

obvious way:

Pid =
{
µ ∈ P [a, b)

∣∣ for all n ∈ N there exists νn ∈ P [a, b) such that µ = ν∗nn
}

where ν∗nn denotes the n-fold L-convolution of νn with itself.

It is a simple exercise to show that the L-transform of µ ∈ Pid is of the form

µ̂(λ) = e−ψµ(λ)

where ψµ is continuous, nonnegative and ψµ(0) = 0. The function ψµ is called the L-exponent of µ ∈ Pid.

As we will see, the exponents of L-infinitely divisible measures admit a representation which is anal-

ogous to the well-known Lévy-Khintchine formula for infinitely divisible measures with respect to the

ordinary Fourier transform. In the present context, the relevant notions of Poisson and Gaussian mea-

sures are defined as follows:
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Definition 7.1. Let µ ∈ M+[a, b). The measure e(µ) ∈ P [a, b) defined by

e(µ) = e−‖µ‖
∞∑

k=0

µ∗k

k!

(the infinite sum converging in the weak topology) is said to be the L-compound Poisson measure asso-

ciated with µ.

The L-transform of e(µ) can be easily deduced using Corollary 5.2(a):

ê(µ)(λ) = e−‖µ‖
∞∑

k=0

µ̂∗k(λ)

k!
= e−‖µ‖

∞∑

k=0

(
µ̂(λ)

)k

k!
= exp

(
µ̂(λ)− ‖µ‖

)
.

Since e(µ1 +µ2) = e(µ1) ∗ e(µ2) (µ1, µ2 ∈ M+[a, b)), every ∗-compound Poisson measure belongs to Pid.

To motivate the following definition, we observe that it follows from classical results in probability

theory (see e.g. [31, Theorem 16.17] and [36, §III.1]) that an infinitely divisible probability measure on

Rd is Gaussian if and only if it has no nontrivial divisors of the form e(ν), where ν is a finite positive

measure on Rd and e(ν) denotes the (ordinary) compound Poisson measure associated with ν.

Definition 7.2. A measure µ ∈ Pid is called an L-Gaussian measure if

µ = e(ν) ∗ ϑ
(
a > 0, ν ∈ M+[a, b), ϑ ∈ Pid

)
=⇒ e(ν) = δa.

We are now ready to state the analogue of the Lévy-Khintchine representation for infinite divisibility

with respect to the L-convolution.

Theorem 7.3 (Levy-Khintchine type formula). The L-exponent of a measure µ ∈ Pid can be represented

in the form

ψµ(λ) = ψα(λ) +

∫

(a,b)

(
1− wλ(x)

)
ν(dx) (7.1)

where ν is a σ-finite measure on (a, b) which is finite on the complement of any neighbourhood of a and

such that ∫

(a,b)

(
1− wλ(x)

)
ν(dx) <∞

and α is an L-Gaussian measure with L-exponent ψα(λ). Conversely, each function of the form (7.1) is

an L-exponent of some µ ∈ Pid.

Proof. We only give a sketch of the proof, and refer to [56] for details.

Let µ ∈ Pid, let b > a1 > a2 > . . . with lim an = a, and let In = [a, an), Jn = [an, b). Consider the set

Q of all divisors of µ of the form e(π) such that π(I1) = 0. One can prove that the set D(P) of all divisors

(with respect to the L-convolution) of measures ν ∈ P is relatively compact whenever P ⊂ P [a, b) is

relatively compact (see [57, Corollary 1]); using this fact, it can be shown that supµ=e(π)∈Q

[∫
[a,b)

(
1 −

wλ(x)
)
π(dx)

]
<∞ and, consequently, there exists a divisor µ1 = e(π1) ∈ Q such that π1(J1) is maximal

among all elements of Q. Write µ = µ1 ∗ α1 (α1 ∈ Pid). Applying the same reasoning to α1 with I1

replaced by I2, we get α1 = µ2 ∗ α2 = e(π2) ∗ α2. If we perform this successively, we get

µ = αn ∗ βn, where βn = µ1 ∗ µ2 ∗ . . . µn, µk = e(πk)

with πk(Ik) = 0 and πk(Jk) having the specified maximality property. The sequences {αn} and {βn} are

relatively compact; letting α and β be limit points, we have

µ = α ∗ β (α, β ∈ Pid).
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Suppose, by contradiction, that α is not L-Gaussian, and let e(η), with η 6= δa, be a divisor of α. Clearly

η(Jk) > 0 for some k; given that each αn divides αn−1, we have αk = e(η) ∗ ν (ν ∈ Pid). If we let η̃ be

the restriction of η to the interval Jk, then

αk−1 = e(πk + η̃) ∗ e(η − η̃) ∗ ν

which is absurd (because (πk+ η̃)(Jk) > πk(Jk), contradicting the maximality property which defines πk).

To determine the L-exponent of β, note that βn = e(Πn) is the L-compound Poisson measure associated

with Πn :=
∑n
k=1 πk, thus ψβn(λ) =

∫
(a,b)

(
1 − wλ(x)

)
Πn(dx). Since {Πn} is an increasing sequence of

measures and each e(Πn) dividing µ, there exists a σ-finite measure ν such that

ψβ(λ) = lim
n

∫

(a,b)

(
1− wλ(x)

)
Πn(dx) = lim

n

∫

(a,b)

(
1− wλ(x)

)
ν(dx) <∞

(µ ∈ Pid ensures the finiteness of the integral); from the relative compactness of D({µ}) it is possible to

conclude that ν(Jk) <∞ for all k.

For the converse, let νn be the restriction of ν to the interval Jn defined as above. It is verified

without difficulty that the right-hand side of (7.1) is continuous at zero, hence by Proposition 4.6(d)

α ∗ e(νn) w−→ µ ∈ P [a, b), and µ ∈ Pid because Pid is closed under weak convergence of measures.

7.2 Convolution semigroups and their contraction properties

Definition 7.4. A family {µt}t≥0 ⊂ P [a, b) is called an L-convolution semigroup if it satisfies the condi-

tions

• µs ∗ µt = µs+t for all s, t ≥ 0;

• µ0 = δa;

• µt
w−→ δa as t ↓ 0.

A direct consequence of this definition is that

{µt} 7−→ µ1 ∈ Pid (7.2)

defines a one-to-one correspondence holds between the set of L-convolution semigroups and the set of

L-infinitely divisible measures. Indeed, if {µt} is an L-convolution semigroup, then it is clear that each

µt is L-infinitely divisible; and if µ ∈ Pid has exponent ψµ(λ), then µ̂t(λ) = exp(−t ψµ(λ)) defines the

unique L-convolution semigroup such that µ1 = µ (the proof of this is analogous to that for the classical

convolution, cf. [1, Theorem 29.6]).

Proposition 7.5. Let {µt} be an L-convolution semigroup. Then

(Tth)(x) := (T µth)(x) =

∫

[a,b)

h(ξ)(δx ∗ µt)(dξ)

defines a strongly continuous Markovian contraction semigroup {Tt}t≥0 on C0[a, b) and on the spaces

Lp(r) (1 ≤ p <∞), i.e., the following properties hold:

(i) TtTs = Tt+s for all t, s ≥ 0;

(ii) Tt
(
C0[0,∞)

)
⊂ C0[0,∞) for all t ≥ 0;

(ii’) Tt
(
Lp(r)

)
⊂ Lp(r) for all t ≥ 0 (1 ≤ p <∞);

(iii) Tt1 = 1 for all t ≥ 0, and if f ∈ Cb[0,∞) satisfies 0 ≤ h ≤ 1, then 0 ≤ Tth ≤ 1;

(iv) limt↓0 ‖Tth− h‖∞ = 0 for each h ∈ C0[0,∞);

(iv’) limt↓0 ‖Tth− h‖p = 0 for each h ∈ Lp(r) (1 ≤ p <∞).

Moreover, {Tt} is translation-invariant: TtT νf = T νTtf for all t ≥ 0 and ν ∈ MC[a, b).
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Proof. Parts (ii), (ii’) and (iii) follow at once from Corollary 5.2 and Proposition 6.1. Concerning part

(i) and the translation invariance property, notice that by (4.3) we have

F(T µ(T νh)) = µ̂ · F(T νh) = µ̂ · ν̂ · Fh = µ̂ ∗ ν · Fh = F(T µ∗νh) (h ∈ C4
c,0)

so that T µ(T νh) = T µ∗νh first for h ∈ C4
c,0 and then, by continuity, for h ∈ C0[a, b) and h ∈ Lp(r)

(1 ≤ p <∞).

To prove part (iv) we just need to show that limt↓0(Tth)(x) = h(x) for all h ∈ C0[a, b) and x ∈ [a, b),

because it is well-known from the theory of Feller semigroups that for a semigroup satisfying (ii) and (iii)

this weak continuity property implies the strong continuity of the semigroup (see e.g. [9, Lemma 1.4]).

But for h ∈ C0[a, b) and x ∈ [a, b) we clearly have

lim
t↓0

(
(Tth)(x)− h(x)

)
= lim

t↓0

∫

[a,b)

(
(T yh)(x) − h(x)

)
µt(dy) =

∫

[a,b)

(
(T yh)(x)− h(x)

)
δa(dy) = 0

showing that (iv) holds.

For part (iv’), let h ∈ Lp(r), ε > 0 and choose g ∈ C∞
c (a, b) such that ‖h− g‖p ≤ ε. Then it follows

from (6.1) and part (iv) that

lim sup
t↓0

‖Tth− h‖p ≤ lim sup
t↓0

(
‖Tth− Ttg‖p + ‖h− g‖p + ‖Ttg − g‖p

)

≤ 2ε+ C · lim sup
t↓0

‖Ttg − g‖∞

= 2ε

where C = [
∫
supp(g)

r(x)dx]1/p (C < ∞ because the support supp(g) ⊂ (a, b) is compact). Since ε is

arbitrary, (iv’) holds.

The result for the space C0[a, b) means that {Tt} is an L-translation-invariant conservative Feller

semigroup. This semigroup is also symmetric with to the measure r(x)dx, that is,
∫ b
a (Tth)(x)g(x)r(x)dx =∫ b

a
h(x)(Ttg)(x)r(x)dx for h, g ∈ Cc[a, b). Any such symmetric Feller semigroup extends to a strongly

continuous Markovian contraction semigroup {T (p)
t }t≥0 on Lp(r), 1 ≤ p <∞ [9, Lemma 1.45]. However,

the conclusion of Proposition 7.5 is stronger: it also states that the integral with respect to the Feller

transition function is well-defined for all h ∈ ∪1≤p<∞Lp(r) and, accordingly, the extensions T
(p)
t are also

given by h 7→ (T µth)(x) =
∫
[a,b)

h(ξ)(δx ∗ µt)(dξ).
On the Hilbert space L2(r), we can take advantage of the L-transform to obtain a characterization of

the generator of the L2-Markovian semigroup T
(2)
t ≡ Tt : L2(r) −→ L2(r):

Proposition 7.6. Let {µt} be an L-convolution semigroup with exponent ψ. Then the infinitesimal

generator (A(2),DA(2)) of the L2-Markovian semigroup {T (2)
t } is given by

F(A(2)h) = −ψ ·(Fh), h ∈ DA(2)

where

DA(2) =

{
h ∈ L2(r)

∣∣∣∣
∫

[0,∞)

∣∣ψ(λ)
∣∣2∣∣(Fh)(λ)

∣∣2ρL(dλ) <∞
}
.

Proof. We give a proof which follows closely that of the corresponding result for the ordinary convolution,

as given in [4, Theorem 12.16].

Let h ∈ DA(2) , so that L2-limt↓0
1
t (Tth − h) = A(2)h ∈ L2(m). Recalling that (by (4.3)) F(Tth) =

µ̂t ·(Fh) = e−tψ ·(Fh) for all h ∈ L2(r), we see that

L2-lim
t↓0

1

t

(
e−t ψ − 1

)
·(Fh) = F(A(2)h)

The convergence holds almost everywhere along a sequence {tn}n∈N such that tn → 0, so we conclude

that F(A(2)h) = −ψ · (Fh) ∈ L2(R;ρL).
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Conversely, if we let h ∈ L2(r) with −ψ ·(Fh) ∈ L2(R;ρL), then we have

L2-lim
t↓0

1

t

(
F(Tth)−Fh

)
= −ψ ·(Fh) ∈ L2(R;ρL)

and the isometry gives that L2-limt↓0
1
t

(
Tth− h

)
∈ L2(m), meaning that h ∈ DA(2) .

7.3 Additive and Lévy processes

Definition 7.7. An [a, b)-valued Markov chain {Sn}n∈N0 is said to be L-additive if there exist measures

µn ∈ P [a, b) such that

P [Sn ∈ B|Sn−1 = x] = (µn ∗ δx)(B), n ∈ N, a ≤ x < b, B a Borel subset of [a, b). (7.3)

If µn = µ for all n, then {Sn} is said to be an L-random walk.

An explicit construction can be given for L-additive Markov chains, based on the following lemma:

Lemma 7.8. There exists a Borel measurable Φ : [a, b)× [a, b)× [0, 1] −→ [a, b) such that

(δx ∗ δy)(B) = m{Φ(x, y, ·) ∈ B}, x, y ∈ [a, b), B a Borel subset of [a, b)

where m denotes Lebesgue measure on [0, 1].

Proof. Let Φ(x, y, ξ) = max
(
a, sup{z ∈ [a, b) : (δx ∗ δy)[a, z] < ξ}

)
. Using the continuity of the L-

convolution, one can show that Φ is Borel measurable, see [6, Theorem 7.1.3]. It is straightforward that

m{Φ(x, y, ·) ∈ [a, c]} = m{(δx ∗ δy)[a, c] ≥ ξ} = (δx ∗ δy)[a, c].

Let X1, U1, X2, U2, . . . be a sequence of independent random variables (on a given probability

space (Ω,A,π)) where the Xn have distribution PXn = µn ∈ P [a, b) and each of the (auxiliary) random

variables Un has the uniform distribution on [0, 1]. Set

S0 = 0, Sn = Sn−1 ⊕Un Xn (7.4)

where X ⊕U Y := Φ(X,Y, U). Then we have PSn = PSn−1 ∗ µn (n ∈ N0) and, consequently, {Sn}n∈N0 is

an L-additive Markov chain satisfying (7.3). The identity PSn = PSn−1 ∗ µn is easily checked:

PSn(B) = P
[
Φ(Sn−1, Xn, Un) ∈ B

]
=

∫

[a,b)

∫

[a,b)

m{Φ(x, y, ·) ∈ B}PSn−1(dx)PXn (dy)

=

∫

[a,b)

∫

[a,b)

(δx ∗ δy)(B)PSn−1(dx)PXn (dy)

= (PSn−1 ∗ µn)(B).

We now define the continuous-time analogue of L-random walks:

Definition 7.9. An [a, b)-valued Markov process Y = {Yt}t≥0 is said to be an L-Lévy process if there

exists an L-convolution semigroup {µt}t≥0 such that the transition probabilities of Y are given by

P
[
Yt ∈ B|Ys = x

]
= (µt−s ∗ δx)(B), 0 ≤ s ≤ t, a ≤ x < b, B a Borel subset of [a, b).

The notion of an L-Lévy process coincides with that of a Feller process associated with the Feller

semigroup Ttf = T µtf . Consequently, the general connection between Feller semigroups and Feller

processes (see e.g. [9, Section 1.2]) ensures that for each (initial) distribution ν ∈ P [a, b) and L-convolution

semigroup {µt}t≥0 there exists an L-Lévy process Y associated with {µt}t≥0 and such that PY0 = ν. Any

L-Lévy process has the following properties:

• It is stochastically continuous: Ys → Yt in probability as s→ t, for each t ≥ 0;

26



• It has a càdlàg modification: there exists an L-Lévy process {Ỹt} with a.s. right-continuous paths

and satisfying P
[
Yt = Ỹt

]
= 1 for all t ≥ 0.

(These properties hold for all Feller processes, cf. [9, Section 1.2].)

An analogue of the well-known theorem on appoximation of Lévy processes by triangular arrays holds

for L-Lévy processes (below the notation
d−→ stands for convergence in distribution):

Proposition 7.10. Let X be an [a, b)-valued random variable. The following assertions are equivalent:

(i) X = Y1 for some L-Lévy process Y = {Yt}t≥0.

(ii) The distribution of X is L-infinitely divisible;

(iii) Snmn

d−→ X for some sequence of L-random walks S1, S2, . . . (with S
j
0 = a) and some integers

mn → ∞.

Proof. The equivalence between (i) and (ii) is a restatement of the one-to-one correspondence (7.2)

between L-infinitely divisible measures and L-convolution semigroups. It is obvious that (i) implies (iii):

simply let mn = n and Sn the random walk whose step distribution is the law of Y1/n.

Suppose that (iii) holds and let πn, µ be the distributions of Snj , X respectively. Choose ε > 0 small

enough so that µ̂(λ) > Cε > 0 for λ ∈ [0, ε], where Cε > 0 is a constant. By (iii) and Proposition 4.6(c),

π̂n(λ)
mn → µ̂(λ) uniformly on compacts, which implies that π̂n(λ) → 1 for all λ ∈ [0, ε] and, therefore, by

Proposition 4.6(d) πn
w−→ δa. Now let k ∈ N be arbitrary. Since πn

w−→ δa, we can assume that each mn

is a multiple of k. Write νn = π
∗(mn/k)
n , so that ν∗kn

w−→ µ. By relative compactness of D({π∗mn
n }) (see

the proof of Theorem 7.3), the sequence {νn}n∈N has a weakly convergent subsequence, say νnj

w−→ µk

as j → ∞, and from this it clearly follows that µ∗k
k = µ. Consequently, (ii) holds.

As one would expect, the diffusion process generated by the Sturm-Liouville operator (1.4) (cf. Lemma

2.8) is an L-Lévy process:

Proposition 7.11. The irreducible diffusion process X generated by (L(b),D(b)
L ) is an L-Lévy process.

Proof. For t ≥ 0, a ≤ x < b let us write pt,x(dy) ≡ Px[Xt ∈ dy]. Recall from Lemma 2.9 that

pt,x(dy) ≡ p(t, x, y)r(y)dy =

∫

[0,∞)

e−tλwλ(x)wλ(y)ρL(dλ) r(y)dy, t > 0, a < x < b

where the integral converges absolutely. Consequently, by Proposition 2.6,

p̂t,x(λ) = e−tλwλ(x), t ≥ 0, a ≤ x < b

(the weak continuity of pt,x justifies that the equality also holds for t = 0 and for x = a). This shows that

pt,x = pt,a ∗ δx where p̂t,a(λ) = e−tλ. It is clear from the properties of the L-transform that {pt,a}t≥0 is

an L-convolution semigroup; therefore, X is an L-Lévy process.

An L-convolution semigroup {µt}t≥0 such that µ1 is an L-Gaussian measure is said to be an L-

Gaussian convolution semigroup, and an L-Lévy process associated with an L-Gaussian convolution

semigroup is called an L-Gaussian process.

It actually turns out that the diffusion X generated by (L(b),D(b)
L ) is an L-Gaussian process. This is

a consequence of the following characterization of L-Gaussian measures:

Proposition 7.12. Let Y = {Yt}t≥0 be an L-Lévy process, let {µt}t≥0 be the associated L-convolution

semigroup and let (G,D(G)) be the Cb-generator of the process Y . The following conditions are equivalent:

(i) µ1 is a Gaussian measure;

(ii) limt↓0
1
tµt

(
[a, b) \ Va

)
= 0 for every neighbourhood Va of the point a;

(iii) limt↓0
1
t (µt ∗ δx)

(
[a, b) \ Vx

)
= 0 for every x ∈ [a, b) and every neighbourhood Vx of the point x;
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(iv) Y has a modification whose paths are a.s. continuous.

If any of these conditions hold then the Cb-generator of Y is a local operator, i.e., (Gh)(x) = (Gg)(x)
whenever h, g ∈ D(G) and h = g on some neighbourhood of x ∈ [a, b).

Proof. (i)=⇒(ii): Let {tn}n∈N be a sequence such that tn → 0 as n→ ∞, and let νn = e
(

1
tn
µtn

)
. We

have

lim
n→∞

ν̂n(λ) = lim
n→∞

exp

[
1

tn

(
µ̂1(λ)

tn − 1
)]

= µ̂1(λ), λ > 0 (7.5)

and therefore, by Proposition 4.6(d), νn
w−→ µ1 as n→ ∞. From this it follows, cf. [56], that if πn denotes

the restriction of 1
tn
µtn to [a, b) \ Va, then {πn} is relatively compact; if π is a limit point, then e(π) is

a divisor of µ1. Since µ1 is Gaussian, e(π) = δa, hence π must be the zero measure, showing that (ii) holds.

(ii)=⇒(i): As in (7.5),

µ̂1(λ) = lim
n→∞

exp

[
1

tn

∫

[a,b)

(
wλ(x)− 1

)
µtn(dx)

]
= lim
n→∞

exp

[
1

tn

∫

Va

(
wλ(x) − 1

)
µtn(dx)

]
, λ > 0

where the second equality is due to (ii), noting that 1
tn

∫
[a,b)\Va

(wλ(x) − 1)µtn(dx) ≤ 2
tµtn

(
[a, b) \ Va

)
.

Given that νn = e
(

1
tn
µtn

) w−→ µ1, we have (again, see [56])

µ̂1(λ) = exp

[∫

(a,b)

(
wλ(x) − 1

)
η(dx)

]
, λ > 0

for some σ-finite measure η on (a, b) which, by the above, vanishes on the complement of any neighbour-

hood of the point a. Therefore, µ1 is Gaussian.

(ii)⇐⇒(iii): To prove the nontrivial direction, assume that (ii) holds, and fix x ∈ (a, b). Let Vx be

a neighbourhood of the point x and write Ex = [a, b) \ Vx. Pick a function h ∈ C4
c,0 such that 0 ≤ h ≤ 1,

h = 0 on Ex and h = 1 on some smaller neighbourhood Ux ⊂ Vx of the point x.

We begin by showing that

lim
y↓a

1− (T xh)(y)

1− wλ(y)
= 0 for each λ > 0. (7.6)

Indeed, it follows from Theorem 3.1 that limy↓a(T xh)(y) = 1, limy↓a ∂
[1]
y (T xh)(y) = 0 and

ℓy(T xh)(y) =

∫

[0,∞)

λ (Fh)(λ)wλ(x)wλ(y)ρL(dλ) =
(
T xℓ(h)

)
(y) −−−→

y↓a
ℓ(h)(x) = 0,

hence using L’Hôpital’s rule twice we find that limy↓a
1−(T xh)(y)
1−wλ(y)

= limy↓a
ℓy(T

xh)(y)
λwλ(y)

= 0 (λ > 0).

By (7.6), for each λ > 0 there exists aλ > a such that (T x
1Ex)(y) ≤

(
T x(1− h)

)
(y) ≤ 1−wλ(x) for

all y ∈ [a, aλ) (here 1Ex denotes the indicator function of Ex). We then estimate

1

t
(µt ∗ δx)(Ex) =

1

t

∫

[a,b)

(T x
1Ex)(y)µt(dy)

≤ 1

t

∫

[a,aλ)

(
1− wλ(y)

)
µt(dy) +

1

t
µt[aλ, b)

≤ 1

t

∫

[a,b)

(
1− wλ(y)

)
µt(dy) +

1

t
µt[aλ, b)

=
1

t

(
1− µ̂t(λ)

)
+

1

t
µt[aλ, b).

Given that we are assuming that (ii) holds and, by the L-semigroup property, limt↓0
1
t

(
1 − µ̂t(λ)

)
=

limt↓0
1
t

(
1− µ̂1(λ)

t
)
= − log µ̂1(λ), the above inequality gives

lim sup
t↓0

1

t
(µt ∗ δx)(Ex) ≤ − log µ̂1(λ).
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This holds for arbitrary λ > 0. Since the right-hand side is continuous and vanishes for λ = 0, we

conclude that limt↓0
1
t (µt ∗ δx)(Ex) = 0, as desired.

(iii)=⇒ (iv): This follows from a general result in the theory of Feller processes [21, Chapter 4,

Proposition 2.9] according to which limt↓0
1
tPx[Yt ∈ [a, b) \ Vx] = 0 is a sufficient condition for a given

[a, b)-valued Feller process Y to have continuous paths.

(iv)=⇒(iii): This is a consequence of Ray’s theorem for one-dimensional Markov processes, which

is stated and proved in [26, Theorem 5.2.1].

Finally, it is well-known that Markov processes with continuous paths have local generators (see e.g.

[26, Theorem 5.1.1]), thus the last assertion holds.

To finish this section, it is worth mentioning that analogues of the classical limit theorems — such

as laws of large numbers or central limit theorems — can be established for the L-convolution measure

algebra. As in the setting of hypergroup convolution structures (cf. Example 8.5), solutions {ϕk}k∈N of

the functional equation

(T yϕk)(x) =

k∑

j=0

(
k

j

)
ϕj(x)ϕk−j(y)

(
x, y ∈ [a, b)

)
, ϕ0 = 0,

which are called L-moment functions, play a role similar to that of the monomials under the ordinary

convolution.

For the sake of illustration, let us state some strong laws of large numbers which hold true for the

L-convolution: let {Sn} be an L-additive Markov chain constructed as in (7.4), and define the L-moment

functions of first and second order by ϕ1(x) = κη1(x), ϕ2(x) = 2[κη2(x) + η1(x)] respectively, where

κ := limξ→∞
A′(ξ)
A(ξ) = limx↑b

[(pr)1/2]′(x)
2r(x) and the ηj are given by (2.2). Then:

7.13.I. If {rn}n∈N is a sequence of positive numbers such that limn rn = ∞ and
∑∞
n=1

1
rn

(
E[ϕ2(Xn)]−

E[ϕ1(Xn)]
2
)
<∞, then

lim
n

1√
rn

(
ϕ1(Sn)− E[ϕ1(Sn)]

)
= 0 π-a.s.

7.13.II. If {Sn} is an L-random walk such that E[ϕ2(X1)
θ/2] < ∞ for some 1 ≤ θ < 2, then

E[ϕ1(X1)] <∞ and

lim
n

1

n1/θ

(
ϕ1(Sn)− nE[ϕ1(X1)]

)
= 0 π-a.s.

7.13.III. Suppose that ϕ1 ≡ 0. If {rn}n∈N is a sequence of positive numbers such that limn rn = ∞ and∑∞
n=1

1
rn
E[ϕ2(Xn)] <∞, then

lim
n

1

rn
ϕ2(Sn) = 0 π-a.s.

7.13.IV. Suppose that ϕ1 ≡ 0. If {Sn} is an L-random walk such that E[ϕ2(X1)
θ] < ∞ for some

0 < θ < 1, then

lim
n

1

n1/θ
ϕ2(Sn) = 0 π-a.s.

The above assertions can be proved exactly as in the hypergroup framework: the reader is referred to

[63, Section 7].

8 Examples

We begin with two simple examples where the Sturm-Liouville operator is regular and nondegenerate,

and the kernel of the L-transform can be written in terms of elementary functions.
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Example 8.1 (Cosine Fourier transform). Consider the Sturm-Liouville operator

ℓ = − d2

dx2
, 0 < x <∞

which is obtained by setting p = r = 1 and (a, b) = (0,∞). This operator trivially satisfies assumption

MP. Since the solution of the Sturm-Liouville boundary value problem (2.1) is wλ(x) = cos(τx) (where

λ = τ2), the L-transform is simply the cosine Fourier transform (Fh)(τ) =
∫∞

0
h(x) cos(τx)dx. By

elementary trigonometric identities, wτ (x)wτ (y) =
1
2 [wτ (|x − y|) + wτ (x + y)], hence the L-convolution

is given by

δx ∗ δy =
1

2
(δ|x−y| + δx+y), x, y ≥ 0.

In other words, ∗ is (up to identification) the ordinary convolution of symmetric measures.

Example 8.2. If we let p(x) = r(x) = (1 + x)2 and (a, b) = (0,∞), we obtain the differential operator

ℓ = − d2

dx2
− 2

1 + x

d

dx
, 0 < x <∞,

which satisfies Assumption MP with η(x) = 2
1+x . The function

wλ(x) =

{
1

1+x [cos(τx) +
1
τ sin(τx)], τ > 0

1, τ = 0
(λ = τ2)

is the solution of the boundary value problem (2.1), thus the L-transform can be expressed as a sum of

cosine and sine Fourier transforms. A straightforward computation [63, Example 4.10] shows that the

product formula wλ(x)wλ(y) =
∫
[a,b)

wλ d(δx ∗ δy) holds for δx ∗ δy defined by

(δx∗δy)(dξ) =
1

2(1 + x)(1 + y)

[
(1+ |x−y|)δx−y(dξ)+(1+x+y)δx+y(dξ)+(1+ξ)1[|x−y|,x+y](ξ)dξ

]
(8.1)

and therefore (by the uniqueness property, Proposition 4.6(b)) the L-convolution is given by (8.1). This

example, which was introduced in [63, Example 4.10], illustrates that, in general, convolutions associated

with regular Sturm-Liouville operators have both a discrete and an absolutely continuous component.

Next we present the chief example of a convolution associated with a singular Sturm-Liouville operator:

Example 8.3 (Hankel transform). Let α ≥ − 1
2 . The Bessel operator

ℓ = − d

dx2
− 2α+ 1

x

d

dx
, 0 < x <∞

has coefficients p(x) = r(x) = x2α+1. Clearly, Assumption MP holds with η = 0. Here the kernel of the

L-transform is

wλ(x) = Jα(τx) := 2αΓ(α+ 1)(τx)−αJα(τx) (λ = τ2)

where Jα is the Bessel function of the first kind (this is easily checked using the basic properties of

the Bessel function, cf. [42, Chapter 10]). The Sturm-Liouville type transform associated with the Bessel

operator is the Hankel transform, (Fh)(τ) =
∫∞

0
h(x)Jα(τx)x

2α+1dx. It follows from classical integration

formulae for the Bessel function [58, p. 411] that Jα(τx)Jα(τy) =
∫∞

0
Jα(τξ) (δx ∗α δy)(dξ), where

(δx ∗α δy)(dξ) =
21−2αΓ(α + 1)√
π Γ(α+ 1

2 )
(xyξ)−2α

[
(ξ2 − (x− y)2)((x+ y)2 − ξ2)

]α−1/2
1[|x−y|,x+y](ξ) r(ξ)dξ

for x, y > 0; this convolution is known as the Hankel convolution [25, 13] or Kingman convolution [30, 54].

This example has motivated the development of the theory of generalized translation and convolution

operators back since the pioneering work of Delsarte [17]. It plays a special role in the context of the
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Sturm-Liouville hypergroups in Example 8.5 below; in particular, it appears as the limit distribution in

central limit theorems on hypergroups [6, Section 7.5]. Moreover, since the diffusion (L-Lévy) process

generated by ℓ is the Bessel process — a fundamental continuous-time stochastic process [8], which in

the case α = d
2 − 1 (d ∈ N) can be defined as the radial part of a d-dimensional Brownian motion — the

Hankel convolution is a useful tool for the study of the Bessel process, cf. e.g. [44, 55].

The Jacobi operator provides another example of a singular Sturm-Liouville operator whose the

product formula and convolution can be written in terms of standard special functions.

Example 8.4 (Jacobi transform). The coefficients p(x) = r(x) = (sinh x)2α+1(coshx)2β+1 (α ≥ β ≥ − 1
2 ,

α 6= 1
2 ) give rise to the Jacobi operator

ℓ = − d

dx2
− [(2α+ 1) cothx+ (2β + 1) tanhx]

d

dx
, 0 < x <∞.

As in the previous example, Assumption MP holds with η = 0. The so-called Jacobi function

wλ(x) = φ(α,β)τ (x) := 2F1

(
1
2 (σ − iτ), 12 (σ + iτ);α + 1;−(sinhx)2

)
(σ = α+ β + 1, λ = τ2 + σ2)

where 2F1 denotes the hypergeometric function [42, Chapter 15], can be shown to be the unique solution of

the Sturm-Liouville problem (2.1). The associated integral transform is the (Fourier-)Jacobi transform,

(Fh)(τ) =
∫∞

0 h(x)φ
(α,β)
τ (x) (sinh x)2α+1(coshx)2β+1dx (this transformation is also known as Olevskii

transform, index hypergeometric transform or, in the case α = β, generalized Mehler-Fock transform [62]).

By a deep result of Koornwinder [22, 32], the product formula φ
(α,β)
τ (x)φ

(α,β)
τ (y) =

∫∞

0 φ
(α,β)
τ d(δx ∗α,β δy)

holds for the Jacobi convolution, defined by

(δx ∗α,β δy)(dξ) =
2−2σΓ(α+ 1)(coshx cosh y cosh ξ)α−β−1

√
π Γ(α+ 1

2 )(sinh x sinh y sinh ξ)2α
×

× (1− Z2)α−1/2
2F1

(
α+ β, α− β;α+ 1

2 ;
1
2 (1− Z)

)
1[|x−y|,x+y](ξ)r(ξ)dξ

where Z := (cosh x)2+(cosh y)2+(cosh ξ)2−1
2 cosh x cosh y cosh ξ .

For half-integer values of the parameters α, β, the Jacobi transform and convolution have various group

theoretic interpretations; in particular, they are related with harmonic analysis on rank one Riemannian

symmetric spaces [32]. Moreover, a remarkable property of the Jacobi transform is that it admits a

positive dual convolution structure, that is, there exists a family {θτ1,τ2} of finite positive measures such

that the dual product formula φ
(α,β)
τ1 (x)φ

(α,β)
τ2 (x) =

∫∞

0 φ
(α,β)
τ3 (x) θτ1,τ2(dτ3) holds, and this permits the

construction of a generalized convolution which trivializes the inverse Jacobi transform [3].

All the examples presented so far belong to the class of Sturm-Liouville hypergroup convolutions

which was introduced by Zeuner [63] as follows:

Example 8.5 (Sturm-Liouville hypergroups). Consider a Sturm-Liouville operator on the positive half-

line with coefficients p = r = A,

ℓ = − d2

dx2
− A′(x)

A(x)

d

dx
, 0 < x <∞,

where the function A satisfies the following conditions:

SL0 A ∈ C[0,∞) ∩ C1(0,∞) and A(x) > 0 for x > 0.

SL1 One of the following assertions holds:

SL1.1 A(0) = 0 and A′(x)
A(x) = α0

x +α1(x) for x in a neighbourhood of 0, where α0 > 0 and α1 ∈ C∞(R)

is an odd function;

SL1.2 A(0) > 0 and A ∈ C1[0,∞).
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SL2 There exists η ∈ C1[0,∞) such that η ≥ 0, φη ≥ 0 and the functions φη, ψη are both decreasing

on (0,∞) (φη, ψη are defined as in Assumption MP).

The last condition ensures that A satisfies Assumption MP, hence this is a particular case of the general

family of Sturm-Liouville operators considered in the previous sections. It was proved by Zeuner [63] that

the convolution measure algebra (MC[0,∞), ∗) is a commutative hypergroup with identity involution;

this means that the Banach algebra property of Proposition 4.3 and properties (b)–(c) of Corollary 5.2

hold, as well as the following axioms:

• (x, y) 7→ supp(δx ∗ δy) is continuous from [0,∞)× [0,∞) into the space of compact subsets of [0,∞)

(endowed with the Michael topology, see [27]);

• 0 ∈ supp(δx ∗ δy) if and only if x = y.

Observe that the Sturm-Liouville operator ℓ = − d2

dx2 − A′

A
d
dx is either singular or regular, depending

on whether the function A satisfies condition SL1.1 or SL1.2. In any event, the associated hyperbolic

equation ℓxf = ℓyf is uniformly hyperbolic on [0,∞)2. The construction of the product formula and

convolution presented in the previous sections generalizes that of Zeuner because it is also applicable to

parabolically degenerate operators.

The next example shows that the two hypergroup axioms on the (compact) support of δx ∗ δy are

generally false for operators associated with degenerate hyperbolic equations:

Example 8.6 (Index Whittaker transform). The choice p(x) = x2−2αe−1/x and r(x) = x−2αe−1/x, with

α < 1
2 , leads to the normalized Whittaker operator

ℓ = −x2 d
2

dx2
− (1 + 2(1− α)x)

d

dx
, 0 < x <∞.

The standard form of this differential operator (Remark 2.4) is ℓ̃ = − d2

dz2 − (e−z + 1 − 2α) ddz , where

z = log x ∈ R, and it is apparent that Assumption MP holds with η = 0. As pointed out in Section 3,

the fact that the operator ℓ̃ is defined on the whole real line means that the hyperbolic partial differential

equation associated with the normalized Whittaker operator has a non-removable parabolic degeneracy

at the initial line. The unique solution of the boundary value problem (2.1) turns out to be given by

wλ(x) =Wα,iτ (x) := xαe
1
2xWα,iτ (

1
x )

(
λ = τ2 + (12 − α)2

)

where Wα,iτ is the Whittaker function of the second kind of parameters α and iτ [42, Chapter 13].

The eigenfunction expansion of the normalized Whittaker operator yields the index Whittaker transform

[50, 49] (Fh)(τ) =
∫∞

0
h(x)Wα,iτ (x)x

−2αe−1/xdx. The product formula for the kernel Wα,iτ has recently

been established by the authors [46, 47] using techniques from classical analysis and known facts in

the theory of special functions; it is given by Wα,iτ (x)Wα,iτ (y) =
∫∞

0
Wα,iτ d(δx ∗α δy), where ∗α is the

Whittaker convolution, defined by

(δx ∗α δy)(dξ) =
2−1−α

√
π

(xyξ)−
1
2+α exp

(1
x
+

1

y
+

1

ξ
− (x+ y + ξ)2

8xyξ

)
D2α

(x+ y + ξ√
2xyξ

)
r(ξ)dξ

for x, y > 0, with Dµ denoting the parabolic cylinder function [20, Chapter VIII]. Notice in particular

that supp(δx ∗α δy) = [0,∞) for every x, y > 0.

The particular case α = 0 is worthy of special mention, because in this case the index Whittaker

transform reduces to (Fh)(τ) = π−1/2
∫∞

0 h(x)Kiτ (
1
2x )x

−1/2e−
1
2x dx, which is (a normalized form of)

the Kontorovich-Lebedev transform; here Kiτ is the modified Bessel function of the second kind with

parameter iτ [42, Chapter 10]. The Kontorovich-Lebedev transform plays a central role in the theory of

index type integral transforms [61]. The Whittaker convolution of parameter α = 0, which can be written

in the simplified form

(δx ∗0 δy)(dξ) =
1

2
√
πxyξ

exp
( 1

x
+

1

y
− (x+ y + ξ)2

4xyξ

)
dξ,
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is identical (up to an elementary change of variables) to the Kontorovich-Lebedev convolution, which was

introduced by Kakichev in [29] and has been extensively studied, cf. [61] and references therein.

Our final example illustrates that the (degenerate) hyperbolic equation approach allows us to gener-

alize the results on the Whittaker product formula and convolution to a much larger class of degenerate

operators:

Example 8.7. Let ζ ∈ C1(0,∞) be a nonnegative decreasing function such that
∫∞

1
ζ(y)dyy = ∞, and

let κ > 0. The differential expression

ℓ = −x2 d
2

dx2
−
[
κ+ x

(
1 + ζ(x)

)] d
dx
, 0 < x <∞

is a particular case of (1.4), obtained by considering p(x) = xe−κ/x+Iζ(x) and r(x) = 1
xe

−κ/x+Iζ(x),

where Iζ(x) =
∫ x
1 ζ(y)

dy
y . (If κ = 1 and ζ(x) = 1 − 2α > 0, we recover the normalized Whittaker

operator from Example 8.6.) The change of variable z = log x ∈ R transforms ℓ into the standard form

ℓ̃ = − d2

dz2 − A′(z)
A(z)

d
dz , where A′(z)

A(z) = κe−κz + ζ(ez). It is clear that ℓ satisfies Assumption MP with η = 0,

and the additional assumption limx↑b p(x)r(x) = ∞ holds because Iζ(∞) = ∞. Therefore, all the results

in the previous sections hold for the Sturm-Liouville operator ℓ. This shows that the class of Sturm-

Liouville operators for which one can construct a positivity-preserving convolution structure includes

irregular operators which are simultaneously degenerate (in the sense that the associated hyperbolic

equation is parabolic at the initial line) and singular (in the sense that the first order coefficient is

unbounded near the left endpoint).
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