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Abstract

We establish a positive product formula for the solutions of the Sturm-Liouville equation ℓ(u) = λu,

where ℓ belongs to a general class which includes singular and degenerate Sturm-Liouville operators.

Our technique relies on a positivity theorem for possibly degenerate hyperbolic Cauchy problems and on

a regularization method which makes use of the properties of the diffusion semigroup generated by the

Sturm-Liouville operator.

We show that the product formula gives rise to a convolution algebra structure on the space of finite

measures, and we discuss whether this structure satisfies the basic axioms of the theory of hypergroups.

We introduce the notion of a degenerate hypergroup of full support and improve the known existence

theorems for Sturm-Liouville hypergroups.

Keywords: Product formula, hypergroup, generalized convolution, Sturm-Liouville spectral theory,

degenerate hyperbolic equation.

1 Introduction

A hypergroup is a generalized convolution operator ∗ on the space MC(K) of finite complex measures

on an underlying space K which preserves the subset of probability measures on K and gives rise to a

structure of Banach algebra with unit on MC(K). In the most common axiomatic definition of hyper-

group, introduced by Jewett in [16], the convolution is also required to satisfy axioms of continuity and

compactness of support; the compactness axiom requires, in particular, that the convolution of Dirac

measures is a measure of compact support. An extensive theory of (probabilistic) harmonic analysis has

been developed in the context of hypergroups, see the monographs [4, 3] and references therein.

Starting from the seminal works of Delsarte [8] and Levitan [20] on generalized translation operators,

the development of the theory of hypergroups was largely motivated by the study of Sturm-Liouville

differential operators on an interval (a, b) of the real line. The key idea here is the following: it is well

known that the eigenfunction expansion of a Sturm-Liouville operator, say, of the form

ℓ = −
1

r

d

dx

(
p

d

dx

)
, a < x < b

gives rise (under certain conditions) to an integral transform (Fh)(λ) :=
∫ b

a h(x)wλ(x) r(x)dx (λ ∈ R)

which is an isometry between L2-spaces; here {wλ} is a family of solutions of the Sturm-Liouville equation
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ℓ(u) = λu. Now, if the functions wλ are bounded and satisfy wλ(a) = 1, then one may extend the

transformation F to measures µ ∈ MC[a, b) by defining

(Fµ)(λ) ≡ µ̂(λ) :=

∫ b

a

wλ(x)µ(dx), (1.1)

and then it is natural to ask: does there exist a (generalized) convolution operator ∗ which is trivialized

by the transformation (1.1), in the sense that the property µ̂ ∗ ν = µ̂ · ν̂ holds for all µ, ν ∈ MC[a, b)? If

µ and ν are taken to be Dirac measures at the points x, y ∈ [a, b), then the trivialization property reads

wλ(x)wλ(y) =

∫

[a,b)

wλ dνx,y (1.2)

where νx,y = δx ∗ δy. The construction of generalized convolutions is therefore closely related to the

problem of existence of a so-called product formula for the solutions of the Sturm-Liouville equation

ℓ(u) = λu; in this problem, the goal is to determine a family {νx,y} ⊂ MC[a, b) such that (1.2) holds.

For the hypergroup axioms to hold we actually need that the νx,y are probability measures; in this case

we say that (1.2) is a hypergroup-like product formula.

The Bessel operator − d
dx2 −

2α+1
x

d
dx and the Jacobi operator − d

dx2 −[(2α+1) cothx+(2β+1) tanhx] d
dx

are standard examples of Sturm-Liouville operators on the half-line [0,∞) for which the kernel of the

associated Sturm-Liouville integral transform (the Hankel and Jacobi transform, respectively) admits a

hypergroup-like product formula where the measures νx,y have been computed in closed form (see [14] and

[18], respectively). Much more generally, it was shown by Zeuner [31] that any Sturm-Liouville operator

of the form − 1
A

d
dx

(
A d

dx

)
, where A ∈ C1(0,∞) is positive, increasing and satisfies suitable assumptions

(see Subsection 5.2 below) also admits a hypergroup-like product formula; in general, the measures νx,y
of the product formula (1.2) are not known in closed form, but their existence can be proved using a

positivity property of hyperbolic partial differential equations.

A general property of the Sturm-Liouville operators considered by Zeuner is that the support supp(νx,y)

of the measures in the product formula is contained in [|x−y|, x+y]; in particular, supp(νx,y) is compact,

as required by the usual hypergroup axioms. However, the situation is quite different for the Whittaker

convolution, generated by the normalized Whittaker differential operator x2 d2

dx2 +(1+2(1−α)x) d
dx on the

half-line [0,∞). In fact, in this case the measures in the product formula, whose closed form expression

was recently determined by the authors in [25, 26], satisfy supp(νx,y) = [0,∞) for all x, y > 0. But it

turns out that the probability-preserving and continuity axioms are satisfied by the Whittaker convolu-

tion, and therefore it is still possible to develop harmonic analysis on the measure algebra
(
MC[0,∞), ∗

)

(see [25, 26]). Moreover, one can show that the Whittaker operator restricted to any interval [c,∞), c > 0,

can be reduced by a change of variable to an operator belonging to the class introduced by Zeuner, and

therefore determines a convolution satisfying the compact support axiom. Hence it is natural to interpret

the measure algebra associated to the Whittaker convolution as a degenerate hypergroup and to wonder

if it is possible to construct degenerate hypergroup structures for other Sturm-Liouville operators. The

use of the term “degenerate" is further justifies by the fact that in the limit c = 0 the hyperbolic Cauchy

problem associated with ℓ (defined in Subsection 4.1) becomes parabolically degenerate at the initial line.

In this paper, our purpose is to introduce a new technique for proving the existence of a hypergroup-like

product formula for Sturm-Liouville operators whose associated hyperbolic Cauchy problem is possibly

parabolically degenerate at the initial line. Our technique is based on a regularization method which we

now briefly sketch. The inversion formula for the integral transform F generated by ℓ provides a formal

candidate for the measure νx,y, namely the inverse transform F−1[w(·)(x)w(·)(y)]. However, the inversion

integral is, in general, divergent. To get around this, the idea is to consider instead the regularized inverse

transform F−1[e−t(·)w(·)(x)w(·)(y)], where t > 0, and to prove that the presence of the exponential term

ensures the convergence of the inversion formula. It will then be seen that the measure νx,y can be

recovered from the measures νt,x,y of the product formula for e−tλwλ(x)wλ(y) as the weak limit as t ↓ 0.

This weak convergence argument relies on the nontrivial fact that the νt,x,y (and therefore also νx,y)

are probability measures; to justify this, we use a partial differential equation approach based on the

maximum principle for hyperbolic equations.
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Since we deal with hyperbolic Cauchy problems which may be parabolically degenerate, the classical

theory of hyperbolic problems in two variables is, in general, not applicable. To overcome this, we use

the spectral theory of Sturm-Liouville operators to deduce existence, uniqueness and positivity results

for a general class of possibly degenerate Cauchy problems. This class also includes many (uniformly)

hyperbolic equations with singularities which fall outside the scope of the classical methods. In such

singular cases it will be seen that the uniform hyperbolicity yields a product formula where the νx,y have

compact support and the resulting generalized convolution operator satisfies all the hypergroup axioms,

leading to an existence theorem for Sturm-Liouville hypergroups which generalizes previous results in the

literature. On the other hand, as we will see, in the presence of parabolic degeneracy the product formula

is such that the measures νx,y are supported on the full interval [a, b). This allows us to interpret the

Whittaker convolution as a particular case of a general family of degenerate Sturm-Liouville hypergroups

of full support; this is relevant because, to the best of our knowledge, no full support convolution structures

generated by Sturm-Liouville operators other than the Whittaker operator were known to exist prior to

this work.

The paper is organized as follows. Section 2 collects some preliminary facts about the solutions of

Sturm-Liouville boundary value problems and the related eigenfunction expansions. In Section 3 we prove

that the kernel wλ(x) of the integral transform generated by ℓ can be written as the Fourier transform of a

probability measure, thereby generalizing a result which is known to hold for Sturm-Liouville hypergroups;

this so-called Laplace-type representation is later used in the proof of the product formula. The proof

of the hypergroup-like product formula for the functions wλ(x) is given in Section 4. In Section 5 we

show, using the properties of the transformation (1.1), that the convolution determined by the product

formula is continuous in the weak topology and yields a positivity-preserving Banach algebra structure

on MC[a, b); we then study the support of the convolution of Dirac measures in the nondegenerate and

degenerate cases, and relate our results with the axioms of hypergroups.

2 Preliminaries

The following notations will be used throughout the paper. For a subset E ⊂ Rd, C(E) is the space of

continuous complex-valued functions on E; Cb(E), C0(E) and Cc(E) are, respectively, its subspaces of

bounded continuous functions, of continuous functions vanishing at infinity and of continuous functions

with compact support; Ck(E) stands for the subspace of k times continuously differentiable functions.

Bb(E) is the space of complex-valued bounded and Borel measurable functions. The corresponding

spaces of real-valued functions are denoted by C(E,R), Cb(E,R), etc. For a given measure µ on E,

L2(E;µ) denotes the Lebesgue space of complex-valued square-integrable functions with respect to µ.

The restriction of a function f : E −→ C to a subset B ⊂ E is denoted by f |B
. The space of probability

(respectively, finite positive, finite complex) Borel measures on E will be denoted by P(E) (respectively,

M+(E), MC(E)). The total variation of µ ∈ MC(E) is denoted by ‖µ‖, and δx denotes the Dirac

measure at a point x.

In all that follows we consider a Sturm-Liouville differential expression of the form

ℓ = −
1

r

d

dx

(
p

d

dx

)
, x ∈ (a, b) (2.1)

(−∞ ≤ a < b ≤ ∞), where p and r are (real-valued) coefficients such that p(x), r(x) > 0 for all x ∈ (a, b)

and p, p′, r and r′ are locally absolutely continuous on (a, b). Concerning the behavior of the coefficients

at the boundary x = a, we will always assume that the boundary condition

∫ c

a

∫ c

y

dx

p(x)
r(y)dy < ∞ (2.2)

(where c ∈ (a, b) is an arbitrary point) is satisfied.

Some important properties of the solutions of the Sturm-Liouville equation ℓ(u) = λu (λ ∈ C) are

given in the following three lemmas. The notation u[1] := pu′ is used in the sequel.
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Lemma 2.1. For each λ ∈ C, there exists a unique solution wλ(·) of the boundary value problem

ℓ(w) = λw (a < x < b), w(a) = 1, w[1](a) = 0. (2.3)

Moreover, λ 7→ wλ(x) is, for each fixed x, an entire function of exponential type.

Proof. Let

η0(x) = 1, ηj(x) =

∫ x

a

(
s(x) − s(ξ)

)
ηj−1(ξ)r(ξ)dξ (j = 1, 2, . . .).

Pick an arbitrary β ∈ (a, b) and define S(x) =
∫ x

a

(
s(β) − s(ξ)

)
r(ξ)dξ, where s(x) :=

∫ x

c
dξ
p(ξ) . From the

boundary assumption (2.2) it follows that 0 ≤ S(x) ≤ S(β) < ∞ for x ∈ (a, β]. Furthermore, it is easy

to show (using induction) that |ηj(x)| ≤
1
j! (S(x))

j for all j. Therefore, the function

wλ(x) =

∞∑

j=0

(−λ)jηj(x) (a < x ≤ β, λ ∈ C)

is well-defined as an absolutely convergent series. The estimate

|wλ(x)| ≤
∞∑

j=0

|λ|j
(S(x))j

j!
= e|λ|S(x) ≤ e|λ|S(β) (a < x ≤ β)

shows that λ 7→ wλ(x) is entire and of exponential type. In addition, for a < x ≤ β we have

1− λ

∫ x

a

1

p(y)

∫ y

a

wλ(ξ) r(ξ)dξ dy = 1− λ

∫ x

a

(s(x) − s(ξ))wλ(ξ) r(ξ)dξ

= 1− λ

∫ x

a

(s(x) − s(ξ))

( ∞∑

j=0

(−λ)jηj(ξ)

)
r(ξ)dξ

= 1 +

∞∑

j=0

(−λ)j+1

∫ x

a

(s(x) − s(ξ))ηj(ξ) r(ξ)dξ

= 1 +

∞∑

j=0

(−λ)j+1ηj+1(x) = wλ(x),

i.e., wλ(x) satisfies

wλ(x) = 1− λ

∫ x

a

1

p(y)

∫ y

a

wλ(ξ) r(ξ)dξ dy

This integral equation is equivalent to (2.3), so the proof is complete.

We note also that the following converse of Lemma 2.1 holds: if
∫ c

a

∫ c

y
dx
p(x) r(y)dy = ∞ (so that (2.2)

fails to hold) then for λ < 0 there exists no solution of ℓ(w) = λw satisfying the boundary conditions

w(a) = 1 and w[1](a) = 0.

Indeed, if the integral
∫ c

a

∫ c

y
dx
p(x) r(y)dy diverges (which means, according to the Feller boundary

classification given in [15, Section 5.11], that a is an exit boundary or a natural boundary for the operator

ℓ) then it follows from [15, Sections 5.13–5.14] that any solution w of ℓ(w) = λw (λ < 0) either satisfies

w(a) = 0 or w[1](a) = +∞, so in particular (2.3) cannot hold.

Lemma 2.2. Let {am}m∈N be a sequence b > a1 > a2 > . . . with lim am = a. For m ∈ N and λ ∈ C, let

wλ,m(x) be the unique solution of the boundary value problem

ℓ(w) = λw (am < x < b), w(am) = 1, w[1](am) = 0. (2.4)

Then

lim
m→∞

wλ,m(x) = wλ(x) pointwise for each a < x < b and λ ∈ C.
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Proof. In the same way as in the proof of Lemma 2.1 we can check that the solution of (2.4) is given by

wλ,m(x) =

∞∑

j=0

(−λ)jηj,m(x) (am < x < b, λ ∈ C)

where η0,m(x) = 1 and ηj,m(x) =
∫ x

am

(
s(x) − s(ξ)

)
ηj−1,m(ξ)r(ξ)dξ. As before we have |ηj,m(x)| ≤

1
j! (S(x))

j for am < x ≤ β (where S is the function from the proof of Lemma 2.1). Using this estimate

and induction on j, it is easy to see that ηj,m(x) → ηj(x) as m → ∞ (a < x ≤ β, j = 0, 1, . . .). Noting

that the estimate on |ηj,m(x)| allows us to take the limit under the summation sign, we conclude that

wλ,m(x) → wλ(x) as m → ∞ (a < x ≤ β).

Lemma 2.3. If x 7→ p(x)r(x) is an increasing function, then the solution of (2.3) is bounded:

|wλ(x)| ≤ 1 for all a < x < b, λ ≥ 0. (2.5)

Proof. Let us start by assuming that p(a)r(a) > 0. For λ = 0 the result is trivial because w0(x) ≡ 1. Fix

λ > 0. Multiplying both sides of the differential equation ℓ(wλ) = λwλ by 2w
[1]
λ , we obtain − 1

pr [(w
[1]
λ )2]′ =

λ(w2
λ)

′. Integrating the differential equation and then using integration by parts, we get

λ
(
1− wλ(x)

2
)
=

∫ x

a

1

p(ξ)r(ξ)

(
w

[1]
λ (ξ)2

)′
dξ

=
w

[1]
λ (x)2

p(x)r(x)
+

∫ x

a

(
p(ξ)r(ξ)

)′
(

w
[1]
λ (ξ)

p(ξ)r(ξ)

)2

dξ, a < x < b

where we also used the fact that w
[1]
λ (a) = 0 and the assumption that p(a)r(a) > 0. The right hand side

is nonnegative, because x 7→ p(x)r(x) is increasing and therefore (p(ξ)r(ξ))′ ≥ 0. Given that λ > 0, it

follows that 1− wλ(x)
2 ≥ 0, so that |wλ(x)| ≤ 1.

If p(a)r(a) = 0, the above proof can be used to show that the solution of (2.4) is such that |wλ,m(x)| ≤

1 for all a < x < b, λ ≥ 0 and m ∈ N; then Lemma 2.2 yields the desired result.

Remark 2.4. We shall make extensive use of the fact that the differential expression (2.1) can be trans-

formed into the standard form

ℓ̃ = −
1

A

d

dξ

(
A

d

dξ

)
= −

d2

dξ2
−

A′

A

d

dξ
.

This is achieved by setting

A(ξ) :=
√
p(γ−1(ξ)) r(γ−1(ξ)), (2.6)

where γ−1 is the inverse of the increasing function

γ(x) =

∫ x

c

√
r(y)

p(y)
dy,

c ∈ (a, b) being a fixed point (if
√

r(y)
p(y) is integrable near a, we may also take c = a). Indeed, it is

straightforward to check that a given function ωλ : (a, b) → C satisfies ℓ(ωλ) = λωλ if and only if

ω̃λ(ξ) := ωλ(γ
−1(ξ)) satisfies ℓ̃(ω̃λ) = λω̃λ. It is interesting to note that the assumption of the previous

lemma (x 7→ p(x)r(x) is increasing) is equivalent to requiring that the first-order coefficient A′

A of the

transformed operator ℓ̃ is nonnegative.

As it is well-known, the spectral expansion of self-adjoint realizations of the differential operator (2.1)

in the space L2

(
(a, b); r(x)dx

)
give rise to a Sturm-Liouville type integral transform. The next proposition

collects some basic facts from the theory of eigenfunction expansions of Sturm-Liouville operators. For

brevity we write L2(r) := L2

(
(a, b); r(x)dx

)
.
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Proposition 2.5. Suppose that b is (according to Feller’s boundary classification) a natural boundary for

the differential expression ℓ, that is, the coefficients of ℓ satisfy

∫ b

c

∫ b

y

dx

p(x)
r(y)dy =

∫ b

c

∫ y

c

dx

p(x)
r(y)dy = ∞.

Then the operator

L : D
(2)
L ⊂ L2(r) −→ L2(r), Lu = ℓ(u)

where

D
(2)
L :=

{
u ∈ L2(r)

∣∣∣ u and u′ locally abs. continuous on (a, b), ℓ(u) ∈ L2(r), lim
x↓a

u[1](x) = 0
}

(2.7)

is self-adjoint. There exists a unique locally finite positive Borel measure ρL on R such that the map

h 7→ Fh, where

(Fh)(λ) :=

∫ b

a

h(x)wλ(x) r(x)dx
(
h ∈ Cc[a, b), λ ≥ 0

)
, (2.8)

induces an isometric isomorphism F : L2(r) −→ L2(R;ρL) whose inverse is given by

(F−1ϕ)(x) =

∫

R

ϕ(λ)wλ(x)ρL(dλ), (2.9)

the convergence of the latter integral being understood with respect to the norm of L2(r). The spectral

measure ρL is supported on [0,∞). Moreover, the differential operator L is connected with the integral

transform (2.8) via the identity

[F(Lh)](λ) = λ ·(Fh)(λ), h ∈ D
(2)
L (2.10)

and the domain D
(2)
L defined by (2.7) can be written as

D
(2)
L =

{
u ∈ L2(r)

∣∣∣ λ ·(Ff)(λ) ∈ L2

(
[0,∞);ρL

)}
.

Proof. The fact that (L,D
(2)
L ) is self-adjoint is well-known, see [23, 21]. The existence of a generalized

Fourier transform associated with the operator L is a consequence of the standard Weyl-Titchmarsh-

Kodaira theory of eigenfunction expansions of Sturm-Liouville operators (cf. [27, Section 3.1] and [29,

Section 8]).

In the general case the eigenfunction expansion is written in terms of two linearly independent eigen-

functions and a 2 × 2 matrix measure. However, from the regular/entrance boundary assumption (2.2)

it follows that the function wλ(x) is square-integrable near x = 0 with respect to the measure r(x)dx;

moreover, by Lemma 2.1, wλ(x) is (for fixed x) an entire function of λ. Therefore, the possibility of

writing the expansion in terms only of the eigenfunction wλ(x) follows from the results of [9, Sections 9

and 10].

The integral transform (Fh)(λ) =
∫ b

a
h(x)wλ(x) r(x)dx is the so-called L-transform. It is often

important to know whether the inversion integral for the L-transform is absolutely convergent. A sufficient

condition is provided by the following lemma:

Lemma 2.6. (a) For each µ ∈ C \ R, the integrals

∫

[0,∞)

wλ(x)wλ(y)

|λ− µ|2
ρL(dλ) and

∫

[0,∞)

w
[1]
λ (x)w

[1]
λ (y)

|λ− µ|2
ρL(dλ) (2.11)

converge uniformly on compact squares in (a, b)2.

(b) If h ∈ D
(2)
L , then

h(x) =

∫

[0,∞)

(Fh)(λ)wλ(x)ρL(dλ) (2.12)

6



h[1](x) =

∫

[0,∞)

(Fh)(λ)w
[1]
λ (x)ρL(dλ) (2.13)

where the right-hand side integrals converge absolutely and uniformly on compact subsets of (a, b).

Proof. (a) By [9, Lemma 10.6] and [28, p. 229],

∫

[0,∞)

wλ(x)wλ(y)

|λ− µ|2
ρL(dλ) =

∫ b

a

G(x, ξ, µ)G(y, ξ, µ) r(ξ)dξ =
1

Im(µ)
Im

(
G(x, y, µ)

)

where G(x, y, µ) is the resolvent kernel (or Green function) of the operator (L,D
(2)
L ). Moreover, according

to [9, Theorems 8.3 and 9.6], the resolvent kernel is given by

G(x, y, µ) =

{
wµ(x)ϑµ(y), x < y

wµ(y)ϑµ(x), x ≥ y

where ϑλ(·) is a solution of ℓ(u) = λu which is square-integrable near ∞ with respect to the measure

r(x)dx and verifies the identity wλ(x)ϑ
[1]
λ (x) − w

[1]
λ (x)ϑλ(x) ≡ 1. It is easily seen (cf. [24, p. 125]) that

the functions Im
(
G(x, y, µ)

)
and ∂

[1]
x ∂

[1]
y Im

(
G(x, y, µ)

)
are continuous in 0 < x, y < ∞. Essentially the

same proof as that of [24, Corollary 3] now yields that

∫

[0,∞)

w
[1]
λ (x)w

[1]
λ (y)

|λ− µ|2
ρL(dλ) =

1

Im(µ)
∂[1]
x ∂[1]

y Im
(
G(x, y, µ)

)

and that the integrals (2.11) converge uniformly for x, y in compacts.

(b) By Proposition 2.5 and the classical theorem on differentiation under the integral sign for Riemann-

Stieltjes integrals, to prove (2.12)–(2.13) it only remains to justify the absolute and uniform convergence

of the integrals in the right-hand sides.

Recall from Proposition 2.5 that the condition h ∈ D
(2)
L implies that Fh ∈ L2

(
[0,∞);ρL

)
and also

λ (Fh)(λ) ∈ L2

(
[0,∞);ρL

)
. As a consequence, we obtain

∫

[0,∞)

∣∣(Fh)(λ)wλ(x)
∣∣ρL(dλ)

≤

∫

[0,∞)

λ
∣∣(Fh)(λ)

∣∣
∣∣∣∣
wλ(x)

λ+ i

∣∣∣∣ρL(dλ) +
∫

[0,∞)

∣∣(Fh)(λ)
∣∣
∣∣∣∣
wλ(x)

λ+ i

∣∣∣∣ρL(dλ)

≤
(
‖λ (Fh)(λ)‖ρ + ‖(Fh)(λ)‖ρ

)∥∥∥∥
wλ(x)

λ+ i

∥∥∥∥
ρ

< ∞

where ‖ · ‖ρ denotes the norm of the space L2

(
R;ρL

)
, and similarly

∫

[0,∞)

∣∣(Fh)(λ)w
[1]
λ (x)

∣∣ρL(dλ) ≤
(
‖λ (Fh)(λ)‖ρ + ‖(Fh)(λ)‖ρ

)∥∥∥∥
w

[1]
λ (x)

λ+ i

∥∥∥∥
ρ

< ∞.

We know from part (a) that the integrals which define
∥∥wλ(x)

λ+i

∥∥
ρ

and
∥∥w

[1]
λ

(x)

λ+i

∥∥
ρ

converge uniformly, hence

the integrals in (2.12)–(2.13) converge absolutely and uniformly for x in compact subsets.

It is also useful to know that, according to a standard result from the theory of diffusion processes

and semigroups which we state below, Sturm-Liouville differential expressions of the form (2.1) generate

positivity-preserving contraction semigroups acting on the space of bounded continuous functions. We

recall from [6] that, for a subset E ⊂ Rd, a Feller semigroup {Tt}t≥0 on C0(E,R) is a strongly continuous,

positivity-preserving contraction semigroup on C0(E,R), and that a Feller semigroup is conservative if

its extension to Bb(E) satisfies Tt1 = 1 (here 1 denotes the function identically equal to one).
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Proposition 2.7. Suppose that b is a natural boundary for the differential expression ℓ. Then the operator

L(0) : D
(0)
L ⊂ C0([a, b),R) −→ C0([a, b),R), L(0)u = −ℓ(u)

with domain

D
(0)
L =

{
u ∈ C0([a, b),R)

∣∣ ℓ(u) ∈ C0([a, b),R), lim
x↓a

u[1](x) = 0
}

is the generator of a conservative Feller semigroup {Pt}t≥0 on C0([a, b),R). The semigroup admits the

representation

(Ptu)(x) =

∫ b

a

h(y) p(t, x, y) r(y)dy,
(
h ∈ Bb

(
[a, b),R

)
, t > 0, x ∈ (a, b)

)
(2.14)

where the (nonnegative) transition kernel p(t, x, y) is given by

p(t, x, y) =

∫

[0,∞)

e−tλ wλ(x)wλ(y)ρL(dλ)
(
t > 0, x, y ∈ (a, b)

)

with the integral converging absolutely and uniformly on compact squares of (a, b) × (a, b) for each fixed

t > 0. If h ∈ L2(r) ∩ Bb

(
[a, b),R

)
, then (2.14) can also be written as

(Ptu)(x) =

∫

[0,∞)

e−tλwλ(x) (Fh)(λ)ρL(dλ)
(
t > 0, x ∈ (a, b)

)
(2.15)

where the integral converges with respect to the norm of L2(r).

Proof. The first assertion is proved in [12, Sections 4 and 6] (see also [22, Section II.5]). The claimed

representation for the transition semigroup and kernel follows from [21, Sections 2–3].

3 Laplace-type representation

As mentioned in the introduction, the existence of a hypergroup-like product formula for the kernel of

the L-transform is strongly connected with the positivity of the associated Cauchy problem. We now

introduce an assumption which, as we will see in Subsection 4.1, is sufficient for the Cauchy problem to

be positivity preserving. Recall that the function A, defined in (2.6), is the coefficient associated with

the transformation of ℓ into the standard form (Remark 2.4).

Assumption MP. We have γ(b) =
∫ b

c

√
r(y)
p(y)dy = ∞, and there exists η ∈ C1(γ(a),∞) such that η ≥ 0,

φη := A′

A − η ≥ 0, and the functions φη and ψη := 1
2η

′ − 1
4η

2 + A′

2A ·η are both decreasing on (γ(a),∞).

This assumption will be held throughout the remainder of the paper.

Having in mind the product formula that we shall establish for a general Sturm-Liouville operator

satisfying Assumption MP, in this section we prove the related fact that the kernel wλ(x) of the L-

transform admits a representation as the Laplace transform of a subprobability measure. We start by

stating a basic property which holds for all Sturm-Liouville operators (2.1) satisfying this assumption:

Lemma 3.2. The function A′

A is nonnegative, and there exists a finite limit σ := limξ→∞
A′(ξ)
2A(ξ) ∈ [0,∞).

Proof. See [31, Section 2].

The existence of a Laplace-type representation for the kernel of the L-transform is already known to

hold for a Sturm-Liouville operator of the form − 1
A

d
dx

(
A d

dx

)
where the coefficient A satisfies the assump-

tions of the existence theorem of [31] for Sturm-Liouville hypergroups (see the discussion in Subsection

5.2). In particular, the following result is proved in [4, Theorem 3.5.58]:
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Proposition 3.3. Let A ∈ C1[0,∞) with A(x) > 0 for all x ≥ 0. Suppose that there exists η ∈ C1[0,∞)

such that η ≥ 0, φη ≥ 0 and the functions φη, ψη are both decreasing on (0,∞) (φη, ψη are defined as

in Assumption MP). For λ ∈ C, let ωλ(·) be the unique solution of the boundary value problem

−
1

A
(Aω′)′ = λω (0 < x < ∞), ω(0) = 1, ω′(0) = 0.

Then for each x ≥ 0 there exists a subprobability measure πx on R such that

ωτ2+σ2(x) =

∫

R

eiτsπx(ds) =

∫

R

cos(τs)πx(ds) (τ ∈ C)

where σ = limξ→∞
A′(ξ)
2A(ξ) .

The following theorem generalizes the proposition above to the class of operators ℓ of the form (2.1)

satisfying (2.2) and Assumption MP:

Theorem 3.4 (Laplace-type representation). For each x ∈ [a, b) there exists a subprobability measure νx

on R such that

wτ2+σ2(x) =

∫

R

eiτsνx(ds) =

∫

R

cos(τs) νx(ds) (τ ∈ C) (3.1)

where σ = limξ→∞
A′(ξ)
2A(ξ) . In particular, the boundedness property (2.5) extends to

|wτ2+σ2(x)| ≤ 1 on the strip |Im(τ)| ≤ σ (a ≤ x < b). (3.2)

Proof. For m ∈ N and λ ∈ C, let wλ,m be the solution of (2.4). The function w̃λ,m(ξ) = wλ,m(γ−1(ξ)) is

the solution of

ℓ̃(u) = λu (ãm < ξ < ∞), u(ãm) = 1, u[1](ãm) = 0

where ãm = γ(am). By Assumption MP, the function A(y) := A(y + ãm) satisfies the assumption of

Proposition 3.3. It follows that for each ξ > ãm there exists a subprobability measure πξ,m such that

w̃τ2+σ2,m(ξ) =

∫

R

eiτsπξ,m(ds) =

∫

R

cos(τs)πξ,m(ds) (τ ∈ C).

In particular, τ 7→ w̃τ2+σ2,m(ξ) (τ ∈ R) is the Fourier transform of the measure πξ,m. We know (from

Lemma 2.2) that w̃τ2+σ2,m(ξ) −→ w̃τ2+σ2(ξ) := wτ2+σ2(γ−1(ξ)) pointwise as m → ∞, the limit function

being continuous in τ (cf. Lemma 2.1). Applying the Lévy continuity theorem [1, Theorem 23.8], we

conclude that w̃τ2+σ2(ξ) is the Fourier transform of a subprobability measure πξ and, in addition, the

measures πξ,m converge weakly to πξ as m → ∞. Therefore, for ξ > γ(a) we have

w̃τ2+σ2(ξ) =

∫

R

eiτsπξ(ds) =

∫

R

cos(τs)πξ(ds) (τ ∈ R). (3.3)

In order to extend (3.3) to τ ∈ C, we let 0 ≤ φ1 ≤ φ2 ≤ . . . be functions with compact support such

that φn ↑ 1 pointwise, and for fixed ξ > γ(a), κ > 0 we compute
∫

R

cosh(κs)πξ(ds) = lim
n→∞

∫

R

φn(s) cosh(κs)πξ(ds)

= lim
n→∞

lim
m→∞

∫

R

φn(s) cosh(κs)πξ,m(ds)

≤ lim
m→∞

∫

R

cosh(κs)πξ,m(ds) = lim
m→∞

w̃σ2−κ2,m(ξ) = w̃σ2−κ2(ξ) < ∞

From this estimate we easily see that the right-hand side of (3.3) is an entire function of τ ; therefore, by

analytic continuation, (3.3) holds for all τ ∈ C. Setting νx = πγ(x) gives (3.1).

Finally, if |Im(τ)| ≤ σ then

|wτ2+σ2(x)| ≤

∫

R

| cos(τs)|νx(ds) ≤

∫

R

cosh(σs) νx(ds) = w0(x) = 1

and therefore (3.2) is true.

9



The rest of this section provides some additional properties of the solutions of ℓ(u) = λu which will

be needed later.

Proposition 3.5. If λ > σ2, then the equation ℓ(u) = λu is oscillatory at b, that is, all solutions of

ℓ(u) = λu have infinitely many zeros clustering at b. Consequently, b is a natural boundary for ℓ.

Proof. The results of [11, Lemma 3.7] on the asymptotic behavior of the solutions of the standardized

equation ℓ̃(u) = (τ2 + σ2)u show that for τ > 0 this equation has a linearly independent pair of solutions

with infinitely many zeros clustering at infinity; hence any solution of ℓ̃(u) = (τ2+σ2)u has this property

(cf. [7, Section 8.1]). It immediately follows that the same is true for any solution of ℓ(u) = (τ2 + σ2)u

(τ > 0).

According to [21, p. 348], if ℓ̃(u) = λu is oscillatory at b for some λ > 0 then b is a natural (Feller)

boundary for the operator ℓ, so the final assertion holds.

Proposition 3.6. The spectral measure from Proposition 2.5 is such that supp(ρL) = [σ2,∞). In addi-

tion, L has purely absolutely continuous spectrum in (σ2,∞).

Proof. To show that the essential spectrum of L equals [σ2,∞), we may assume that the differential

expression ℓ is regular at the endpoint a: this is so because, by a well-known result [28, Theorem 9.11],

the essential spectrum of L is the union of the essential spectrums of self-adjoint realizations of ℓ restricted

to the intervals (a, c) and (c, b) (where c ∈ (a, b)), and because it is known from [23, Theorem 3.1] that

the spectrum is purely discrete whenever there are no natural boundaries.

The equation ℓ(u) = λu is clearly non-oscillatory at a; it is oscillatory at b for λ > σ2 and (by the

Laplace representation (3.1)) non-oscillatory at b for λ < σ2. Hence it follows from [21, Theorem 2] that

the essential spectrum of L is contained in [σ2,∞). Now, the operator L is unitarily equivalent, via the

Liouville transformation (see e.g. [10, Section 4.3] and [21, Section 4]), to a self-adjoint realization of the

differential expression − d2

dξ2 + q, where

q(ξ) =
(A′(ξ)

2A(ξ)

)2
+
(A′(ξ)

2A(ξ)

)′

=
1

4
φ2

η(ξ) +ψη(ξ) +
1

2
φ′

η(ξ), ξ ∈ (γ(a),∞). (3.4)

It follows from [31, Lemma 2.9 and Remark 2.12] that the function η in Assumption MP can be chosen

such that limξ→∞ φη(ξ) = 0 and limξ→∞ η′(ξ) = 0. Consequently, limξ→∞
1
4φ

2
η(ξ)+ψη(ξ) = σ2. In turn,

the fact that φη is positive and decreasing clearly implies that φ′
η ∈ L1([c,∞), dξ) for c > γ(a). Using

[29, Theorem 15.3], we conclude that the spectrum of L is purely absolutely continuous on (σ2,∞) and

the essential spectrum equals [σ2,∞).

It remains to show that L has no eigenvalues on [0, σ2]. Indeed, if we assume that 0 ≤ λ0 ≤ σ2 is an

eigenvalue of L, then wλ0 belongs to D
(2)
L and therefore, by the Laplace representation (3.1), wλ belongs

to D
(2)
L for all λ ≥ σ2; since the eigenvalues are discrete, this is a contradiction.

Proposition 3.7. We have

lim
x↑b

wλ(x) = 0 for all λ > 0

if and only if limx↑b p(x)r(x) = ∞.

Proof. After transforming ℓ into the standard form (Remark 2.4), the result follows easily from [11,

Lemma 3.7].

4 Product formula

The goal of this section is to prove the main result of the paper, which is stated as follows:
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Theorem 4.1 (Product formula for wλ). For each x, y ∈ [a, b) there exists a measure νx,y ∈ P [a, b) such

that the product wλ(x)wλ(y) admits the integral representation

wλ(x)wλ(y) =

∫

[a,b)

wλ(ξ)νx,y(dξ), x, y ∈ [a, b), λ ∈ C.

4.1 The associated hyperbolic Cauchy problem

The proof of Theorem 4.1 relies crucially on the basic properties of the hyperbolic Cauchy problem

associated with ℓ, i.e., of the boundary value problem defined by

(ℓxf)(x, y) = (ℓyf)(x, y) (x, y ∈ (a, b)), f(x, a) = h(x), (∂[1]
y f)(x, a) = 0 (4.1)

where h is a given function, ∂[1]u = pu′ and the subscripts indicate the variable in which the operators

act.

The assumptions on the coefficients of ℓ introduced in the previous sections allow for the higher

order coefficient of ℓ to vanish at the endpoint a, in which case the hyperbolic Cauchy problem (4.1) is

parabolically degenerate at the initial line. In general, such hyperbolic problems cannot be dealt with

using the classical theory of hyperbolic equations in two variables. But, as we will show, the existence,

uniqueness and positivity properties for the Cauchy problem (4.1) can be deduced by making use of the

eigenfunction expansion of the Sturm-Liouville operator ℓ. In this subsection we only summarize the

main results; the proofs are delayed to to Appendix A.

Theorem 4.2 (Existence and uniqueness of solution). If h ∈ D
(2)
L and ℓ(h) ∈ D

(2)
L , then there exists a

unique solution f ∈ C2
(
(a, b)2

)
of the Cauchy problem (4.1) satisfying the conditions

(i) f(·, y) ∈ D
(2)
L for all a < y < b;

(ii) There exists a zero ρL-measure set Λ0 ⊂ [σ2,∞) such that for each λ ∈ [σ2,∞) \ Λ0 we have

F [ℓyf(·, y)](λ) = ℓy[Ff(·, y)](λ) for all a < y < b, (4.2)

lim
y↓a

[Ff(·, y)](λ) = (Fh)(λ), lim
y↓a

∂[1]
y F [f(·, y)](λ) = 0. (4.3)

This unique solution is given by

f(x, y) =

∫

[σ2,∞)

wλ(x)wλ(y) (Fh)(λ)ρL(dλ). (4.4)

Proof. See Appendix A.1.

Proposition 4.3 (Pointwise approximation by solutions of regularized problems). Let {am}m∈N be a

sequence b > a1 > a2 > . . . with lim am = a. If h ∈ D
(2)
L and ℓ(h) ∈ D

(2)
L , then for each m ∈ N the

function

fm(x, y) =

∫

[σ2,∞)

wλ(x)wλ,m(y) (Fh)(λ)ρL(dλ)
(
x ∈ (a, b), y ∈ (am, b)

)
(4.5)

is a solution of the Cauchy problem

(ℓxfm)(x, y) = (ℓyfm)(x, y), fm(x, am) = h(x), (∂[1]
y fm)(x, am) = 0. (4.6)

Moreover, we have

lim
m→∞

fm(x, y) = f(x, y) pointwise for each x, y ∈ (a, b). (4.7)

where f(x, y) is the solution (4.4) of the Cauchy problem (4.1).

Proof. See Appendix A.2.
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Proposition 4.4 (Positivity of solution for the regularized problem (4.6)). Let {am}m∈N as in the pre-

vious proposition and let h ∈ D
(2)
L with ℓ(h) ∈ D

(2)
L . If h ≥ 0, then the function fm given by (4.5) is such

that

fm(x, y) ≥ 0 for x ≥ y > am. (4.8)

If, in addition, h ≤ C (where C is a constant), then fm(x, y) ≤ C for x ≥ y > am.

Proof. See Appendix A.4.

Corollary 4.5 (Positivity of solution for the Cauchy problem (4.1)). Let h ∈ D
(2)
L with ℓ(h) ∈ D

(2)
L . If

h ≥ 0, then the function f given by (4.4) is such that

f(x, y) ≥ 0 for x, y ∈ (a, b).

If, in addition, h ≤ C, then f(x, y) ≤ C for x, y ∈ (a, b).

Proof. This is an immediate consequence of the pointwise convergence property (4.7) (note that the

conclusion holds for all x, y ∈ (a, b) because the function f(x, y) is symmetric).

We observe that the above existence, uniqueness and positivity results are valid, in particular, if the

initial condition h belongs to the space

C4
c,0 :=

{
u ∈ C4

c [a, b)
∣∣∣ ℓ(u), ℓ2(u) ∈ Cc[a, b), lim

x↓a
u[1](x) = lim

x↓a
[ℓ(u)][1](x) = 0

}

(clearly, if h ∈ C4
c,0 then h, ℓ(h) ∈ D

(2)
L ).

4.2 The time-shifted product formula

Before proving the product formula for the kernels {wλ(·)} themselves, we will establish a product formula

of the form (1.2) for the functions {e−tλwλ(·)}. This auxiliary result will be called the time-shifted product

formula because e−tλwλ(x) is the L-transform of the transition kernel p(t, x, y) of the Feller semigroup

generated by the Sturm-Liouville operator ℓ, cf. Proposition 2.7.

By the inversion formula (2.9) for the L-transform, a natural candidate for the measure of the product

formula for {wλ(·)} is

νx,y(dξ) =

∫

[σ2,∞)

wλ(x)wλ(y)wλ(ξ)ρL(dλ) r(ξ)dξ.

This is only a formal solution, because in general the integral does not converge. However, the uniform

convergence of this integral always holds (under the present assumptions on ℓ) if the exponential term

e−tλ is included in the integrand:

Lemma 4.6. Let t0 > 0 and K1,K2 compact subsets of (a, b). The integral

∫

[σ2,∞)

e−tλwλ(x)wλ(y)wλ(ξ)ρL(dλ)

converges absolutely and uniformly on (t, x, y, ξ) ∈ [t0,∞)×K1 ×K2 × [a, b).

Proof. This follows from Lemma 2.3 and the uniform convergence property of the integral representation

of the transition kernel of the Feller semigroup generated by −ℓ (Proposition 2.7).

In what follows we write

qt(x, y, ξ) :=

∫

[σ2,∞)

e−tλwλ(x)wλ(y)wλ(ξ)ρL(dλ).

This function, which is (at least formally) the density of the measure of the time-shifted product formula,

is for fixed t, x, y the density (with respect to r(ξ)dξ) of a subprobability measure:
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Lemma 4.7. The function qt(x, y, ξ) is nonnegative and such that
∫ b

a
qt(x, y, ξ) r(ξ)dξ ≤ 1 for all (t, x, y) ∈

(0,∞)× (a, b)× (a, b).

Proof. Since qt(x, y, ·) ∈ Cb[a, b), it suffices to show that for all g ∈ C4
c,0 with 0 ≤ g ≤ 1 we have

0 ≤ Qt,g(x, y) ≤ 1
(
t > 0, x, y ∈ (a, b)

)

where Qt,g(x, y) :=
∫ b

a
g(ξ) qt(x, y, ξ) r(ξ)dξ.

Fix t > 0 and g ∈ C4
c,0 with 0 ≤ g ≤ 1. By changing the order of integration, we have

Qt,g(x, y) =

∫

[σ2,∞)

e−tλwλ(x)wλ(y) (Fg)(λ)ρL(dλ).

Differentiating under the integral sign we easily check (by dominated convergence and using Lemma

2.6(b)) that ℓxQt,g = ℓyQt,g, (∂
[1]
y Qt,g)(x, a) = 0 and

Qt,g(x, a) =

∫

[σ2,∞)

e−tλwλ(x) (Fg)(λ)ρL(dλ) = (Ptg)(x)

where the last equality follows from (2.15) (here {Pt} is the Feller semigroup generated by (L(0),D
(0)
L )).

The fact that 0 ≤ g ≤ 1 clearly implies that 0 ≤ (Ptg)(x) ≤ 1 for x ∈ (a, b). One can verify, again via

Lemma 2.6(b), that the function h(x) = (Ptg)(x) is such that h ∈ D
(2)
L and ℓ(h) ∈ D

(2)
L . It then follows

from the positivity property of the hyperbolic Cauchy problem (Corollary 4.5) that 0 ≤ Qt,g(x, y) ≤ 1

for all x, y ∈ (a, b), as claimed.

Proposition 4.8 (Time-shifted product formula). The product e−tλwλ(x)wλ(y) admits the integral rep-

resentation

e−tλwλ(x)wλ(y) =

∫ b

a

wλ(ξ) qt(x, y, ξ) r(ξ)dξ, t > 0, x, y ∈ (a, b), λ ≥ 0 (4.9)

where the integral in the right hand side is absolutely convergent.

In particular,
∫ b

a
qt(x, y, ξ) r(ξ)dξ = 1 for all t > 0, x, y ∈ (a, b).

Proof. The absolute convergence of the integral in the right hand side is immediate from Lemmas 2.3

and 4.7.

By Proposition 2.5, the equality in (4.9) holds ρL-almost everywhere. Since supp(ρL) = [σ2,∞)

(Lemma 3.6), the fact that both sides of (4.9) are continuous functions of λ ≥ 0 allows us to extend by

continuity the equality (4.9) to all λ ≥ σ2. If σ = 0, we are done.

Suppose that σ > 0. By (3.2) and Lemma 4.7, together with standard results on the analyticity of

parameter-dependent integrals, the function τ 7→
∫ b

a wτ2+σ2(ξ) qt(x, y, ξ) r(ξ)dξ is an analytic function of

τ in the strip |Im(τ)| < σ. It is also clear that τ 7→ e−t(τ2+σ2)wτ2+σ2(x)wτ2+σ2(y) is an entire function.

By analytic continuation we see that these two functions are equal for all τ in the strip |Im(τ)| < σ;

consequently, (4.9) holds.

The last statement is obtained by setting λ = 0.

4.3 The product formula for wλ as the limit case

As one would expect, the product formula (4.10) will be deduced by taking (in a suitable way) the limit

as t ↓ 0 in the time-shifted product formula (4.9). First we present a lemma which will be needed to

handle the case where the functions wλ(x) do not vanish at the limit x ↑ b (cf. Proposition 3.7).

Lemma 4.9. For −∞ < κ ≤ 0, consider the modified differential expression

ℓ〈κ〉= −
1

r〈κ〉
d

dx

(
p〈κ〉

d

dx

)
, x ∈ (a, b)
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where p〈κ〉= w2
κ ·p and r〈κ〉= w2

κ ·r. Then Assumption MP also holds for ℓ〈κ〉, and the function

w
〈κ〉
λ (x) :=

wκ+λ(x)

wκ(x)

is, for each λ ∈ C, the unique solution of ℓ〈κ〉(w) = λw, w(a) = 1 and (p〈κ〉w′)(a) = 0. Moreover, the

spectral measure associated with ℓ〈κ〉 is given by

ρ
〈κ〉
L (λ1, λ2] = ρL(λ1 + κ, λ2 + κ] (−∞ < λ1 ≤ λ2 < ∞).

Proof. Fix κ < 0. The functions A and A〈κ〉 associated to the operators ℓ and ℓ〈κ〉 respectively (cf. (2.6))

are connected by A〈κ〉= w̃2
κ ·A, where w̃κ(ξ) = wκ(γ

−1(ξ)). Since wκ is increasing and unbounded (this

follows from classical results on the solutions of Sturm-Liouville type equations, e.g. [15, Sections 5.13–

5.14]), A〈κ〉 is increasing. Letting η〈κ〉 := η+
w̃′

κ

w̃κ
with η satisfying the conditions of Assumption MP, it is

easily seen that η〈κ〉 satisfies the conditions corresponding to A〈κ〉, hence Assumption MP holds for ℓ〈κ〉.

A simple computation gives

−
1

r〈κ〉

[
p〈κ〉

(wκ+λ

wκ

)′
]′

= −
1

w2
κ ·r

[
pw′

κ+λwκ − pwκ+λw
′
κ

]′

= −
1

w2
κ

[
ℓ(wκ+λ)wκ − wκ+λ ℓ(wκ)

]
= λ

wκ+λ(x)

wκ(x)

so that ℓ〈κ〉(w
〈κ〉
λ ) = λw

〈κ〉
λ . The boundary conditions at a are also straightforwardly checked. To prove

the last assertion, notice that the Fourier transforms associated with ℓ and ℓ〈κ〉 are related through the

identity (
F 〈κ〉 h

wκ

)
(λ) = (Fh)(κ+ λ), h ∈ L2(r)

and therefore

‖(Fh)‖L2(R,ρL) = ‖h‖L2(r) =

∥∥∥∥
h

wκ

∥∥∥∥
L2(r〈κ〉)

=
∥∥(Fh)(κ+ ·)

∥∥
L2(R,ρ

〈κ〉
L )

.

Recalling the uniqueness of the spectral measure for which the isometric property in Proposition 2.5

holds, we deduce that ρ
〈κ〉
L (λ1, λ2] = ρL(λ1 + κ, λ2 + κ].

We are finally ready to prove the product formula for the L-transform kernels {wλ(·)}. Recall that,

by definition [2, §30], the complex measures µn converge weakly (respectively, vaguely) to µ ∈ MC[a, b)

if limn

∫
[a,b)

g(ξ)µn(dξ) =
∫
[a,b)

g(ξ)µ(dξ) for all g ∈ Cb[a, b) (respectively, for all g ∈ C0[a, b)). We use

the notations
w

−→ and
v

−→ to denote weak and vague convergence, respectively.

Theorem 4.10 (Product formula for wλ). For x, y ∈ (a, b) and t > 0, let νt,x,y ∈ P [a, b) be the measure

defined by νt,x,y(dξ) = qt(x, y, ξ) r(ξ)dξ. Then for each x, y ∈ (a, b) there exists a measure νx,y ∈ P [a, b)

such that νt,x,y
w

−→ νx,y as t ↓ 0. Moreover, the product wλ(x)wλ(y) admits the integral representation

wλ(x)wλ(y) =

∫

[a,b)

wλ(ξ)νx,y(dξ), x, y ∈ (a, b), λ ∈ C. (4.10)

In particular, Theorem 4.1 holds.

Proof. Let {tn}n∈N be an arbitrary decreasing sequence with tn ↓ 0. Since any sequence of probability

measures contains a vaguely convergent subsequence [2, p. 213], there exists a subsequence {tnk
} and a

measure νx,y ∈ Mb,+[a, b) such that νtnk
,x,y

v
−→ νx,y as k → ∞. Let us show that all such subsequences

{νtnk
,x,y} have the same vague limit. Suppose that t1k, t

2
k are two different sequences with t

j
k ↓ 0 and that

νtj
k
,x,y

v
−→ νj

x,y as k → ∞ (j = 1, 2). For g ∈ C4
c,0 we have

∫

[a,b)

g(ξ)νj
x,y(dξ) = lim

k→∞

∫

[a,b)

g(ξ)νtj
k
,x,y(dξ)
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= lim
k→∞

∫

[σ2,∞)

e−tj
k
λwλ(x)wλ(y) (Fg)(λ)ρL(dλ)

=

∫

[σ2,∞)

wλ(x)wλ(y) (Fg)(λ)ρL(dλ)

(the second equality was justified in the proof of Lemma 4.7, and dominated convergence yields the

last equality). In particular,
∫
[a,b) g(ξ)ν

1
x,y(ξ) =

∫
[a,b) g(ξ)ν

2
x,y(ξ) for all g ∈ C4

c,0, and this implies that

ν1
x,y = ν2

x,y. Since all subsequences have the same vague limit, we conclude that νt,x,y
v

−→ νx,y as t ↓ 0.

Suppose first that limx↑b p(x)r(x) = ∞. Then, by Proposition 3.7, we have wλ ∈ C0[a, b) for λ > 0.

Accordingly, by taking the limit as t ↓ 0 of both sides of (4.9) we deduce that the product formula (4.10)

holds for all λ > 0.

To prove that (4.10) is valid in the general case, let κ < 0 be arbitrary. We know that the operator

ℓ〈κ〉 from Lemma 4.9 satisfies Assumption MP and limx↑b p
〈κ〉(x)r〈κ〉(x) = ∞. From the previous part of

the proof,

w
〈κ〉
λ (x)w

〈κ〉
λ (y) =

∫ b

a

w
〈κ〉
λ (ξ)ν〈κ〉

x,y(dξ), x, y ∈ (a, b), λ > 0 (4.11)

with ν
〈κ〉
x,y constructed as before. We easily verify that q

〈κ〉
t (x, y, ξ)r〈κ〉(ξ) = etκwκ(ξ)

wκ(x)wκ(y)
qt(x, y, ξ)r(ξ) and,

consequently, ν
〈κ〉
x,y(dξ) =

wκ(ξ)
wκ(x)wκ(y)

νx,y(dξ). It thus follows from (4.11) that

wκ+λ(x)wκ+λ(y) =

∫ b

a

wκ+λ(ξ)νx,y(dξ), x, y ∈ (a, b), λ > 0,

where κ < 0 is arbitrary; hence (4.10) holds for all λ ∈ R. If we then set λ = τ2 + σ2 in (4.10), we

straightforwardly verify that both sides are entire functions of τ (for the right hand side, this follows

from the Laplace-type representation (3.1) and the fact that the integral converges for all λ < 0), so by

analytic continuation the product formula holds for all λ ∈ C.

Given that w0(x) ≡ 1, setting λ = 0 in (4.10) shows that νx,y ∈ P [a, b); consequently, the measures

νt,x,y converge to νx,y in the weak topology (cf. [2, Theorem 30.8]). Clearly, the product formula (4.10)

can be extended to x, y ∈ [a, b) by setting νx,a := δx and νa,y := δy, hence Theorem 4.1 holds.

It is worth commenting that the reasoning used in this proof also allows us to justify that the time-

shifted product formula (4.9) is valid for all λ ∈ C.

As shown in the proof above, the measure νx,y of the product formula (4.10) is characterized by the

identity ∫

[a,b)

h(ξ)νx,y(dξ) =

∫

[σ2,∞)

wλ(x)wλ(y) (Fh)(λ)ρL(dλ), h ∈ C4
c,0. (4.12)

Furthermore, the relation between this measure and the measure νt,x,y(dξ) = qt(x, y, ξ) r(ξ)dξ of the

time-shifted product formula (4.9) can be written explicitly:

Corollary 4.11. The measure νt,x,y can be written in terms of the measure νx,y and the transition kernel

p(t, x, y) of the Feller semigroup generated by the Sturm-Liouville operator ℓ as

νt,x,y(dξ) =

∫ b

a

νz,y(dξ) p(t, x, z) r(z)dz
(
t > 0, x, y ∈ (a, b)

)
.

Proof. Recalling (2.15) and the proof of the previous proposition, we find that for g ∈ C4
c,0 we have

∫ b

a

∫

[a,b)

g(ξ)νz,y(dξ) p(t, x, z) r(z)dz =

∫ b

a

∫

[σ2,∞)

wλ(z)wλ(y) (Fg)(λ)ρL(dλ) p(t, x, z) r(z)dz

=

∫

[σ2,∞)

e−tλwλ(x)wλ(y) (Fg)(λ)ρL(dλ)

=

∫ b

a

g(ξ) qt(x, y, ξ) r(ξ)dξ,

hence the measures νt,x,y(dξ) and
∫ b

a
νz,y(dξ) p(t, x, z) r(z)dz are the same.
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5 Generalized convolutions and hypergroups

5.1 The convolution measure algebra

As usual in the theory of generalized convolutions, we define the convolution ∗ : MC[a, b)×MC[a, b) −→

MC[a, b) as the natural extension of the mapping (x, y) 7→ δx ∗ δy := νx,y, where νx,y is the measure of

the product formula (4.10):

Definition 5.1. Let µ, ν ∈ MC[a, b). The complex measure

(µ ∗ ν)(dξ) =

∫

[a,b)

∫

[a,b)

νx,y(dξ)µ(dx) ν(dy)

is called the L-convolution of the measures µ and ν.

The key tool for studying the properties of the L-convolution is the extension of the L-transform (2.8)

to complex measures, defined by

µ̂(λ) :=

∫

[a,b)

wλ(x)µ(dx), λ ≥ 0.

It is immediate from Lemmas 2.1 and 2.3 that |µ̂(λ)| ≤ µ̂(0) = ‖µ‖ for all µ ∈ M+[a, b). In addition,

this transformation has various properties which resemble those of the Fourier transform of complex

measures:

Proposition 5.2. The L-transform µ̂ of µ ∈ MC[a, b) has the following properties:

(i) µ̂ is continuous on [0,∞). Moreover, if a family of measures {µj} ⊂ MC[a, b) is tight and uniformly

bounded, then {µ̂j} is equicontinuous on [0,∞).

(ii) Each measure µ ∈ MC[a, b) is uniquely determined by µ̂|[σ2,∞)
.

(iii) If {µn} is a sequence of measures belonging to M+[a, b), µ ∈ M+[a, b), and µn
w

−→ µ, then

µ̂n −−−−→
n→∞

µ̂ uniformly for λ in compact sets.

(iv) Suppose that limx↑b wλ(x) = 0 for all λ > 0. If {µn} is a sequence of measures belonging to M+[a, b)

whose L-transforms are such that

µ̂n(λ) −−−−→
n→∞

f(λ) pointwise in λ ≥ 0 (5.1)

for some real-valued function f which is continuous at a neighborhood of zero, then µn
w

−→ µ for

some measure µ ∈ M+[a, b) such that µ̂ ≡ f .

Proof. (i) Let us prove the second statement, which implies the first. Set C = supj ‖µj‖. Fix λ0 ≥ 0

and ε > 0. By the tightness assumption, we can choose β ∈ (a, b) such that |µj |(β, b) < ε for all j.

Since the family {w(·)(x)}x∈(a,β] is equicontinuous on [0,∞) (this follows easily from the power series

representation of w(·)(x), cf. proof of Lemma 2.1), we can choose δ > 0 such that

|λ− λ0| < δ =⇒ |wλ(x)− wλ0 (x)| < ε for all a < x ≤ β.

Consequently,

∣∣µ̂j(λ)− µ̂j(λ0)
∣∣ =

∣∣∣∣
∫

(a,b)

(
wλ(x)− wλ0(x)

)
µj(dx)

∣∣∣∣

≤

∫

(β,b)

∣∣wλ(x)− wλ0 (x)
∣∣|µj |(dx) +

∫

(a,β]

∣∣wλ(x)− wλ0 (x)
∣∣|µj |(dx)
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≤ 2ε+ Cε = (C + 2)ε

for all j, provided that |λ− λ0| < δ, which means that {µ̂j} is equicontinuous at λ0.

(ii) Let µ ∈ MC[a, b) be such that µ̂(λ) = 0 for all λ ≥ 0. We need to show that µ is the zero

measure. For each h ∈ C4
c,0, by (4.12) we have

∫

[a,b)

h d(δx ∗ µ) =

∫

[σ2,∞)

(Fh)(λ)wλ(x) µ̂(λ)ρL(dλ) = 0.

Since h ∈ C4
c,0, Theorem 4.2 assures that limx↓a

∫
[a,b)

h dνx,y = h(y) for y ≥ 0; therefore, by dominated

convergence,

0 = lim
x↓a

∫

[a,b)

h d(δx ∗ µ) = lim
x↓a

∫

[a,b)

(∫

[a,b)

h dνx,y

)
µ(dy) =

∫

[a,b)

h(y)µ(dy)

This shows that
∫
[a,b)h(y)µ(dy) = 0 for all h ∈ C4

c,0 and, consequently, µ is the zero measure.

(iii) Since wλ(·) is continuous and bounded, the pointwise convergence µ̂n(λ) → µ̂(λ) follows from

the definition of weak convergence of measures. By Prokhorov’s theorem [5, Theorem 8.6.2], {µn} is tight

and uniformly bounded, thus (by part (i)) {µ̂n} is equicontinuous on [0,∞). Invoking [17, Lemma 15.22],

we conclude that the convergence µ̂n → µ̂ is uniform for λ in compact sets.

(iv) We only need to show that the sequence {µn} is tight and uniformly bounded. (Recall that a

family {µj} ⊂ MC[a, b) is said to be uniformly bounded if supj ‖µj‖ < ∞, and {µj} is said to be tight if

for each ε > 0 there exists a compact Kε ⊂ [a, b) such that supj |µj |([a, b) \Kε) < ε; these definitions are

taken from [5].) Indeed, if {µn} is tight and uniformly bounded, then Prokhorov’s theorem yields that

for any subsequence {µnk
} there exists a further subsequence {µnkj

} and a measure µ ∈ M+[a, b) such

that µnkj

w
−→ µ. Then, due to part (iii) and to (5.1), we have µ̂(λ) = f(λ) for all λ ≥ 0, which implies

(by part (ii)) that all such subsequences have the same weak limit; consequently, the sequence µn itself

converges weakly to µ.

The uniform boundedness of {µn} follows immediately from the fact that µ̂n(0) = µn[a, b) converges.

To prove the tightness, take ε > 0. Since f is continuous at a neighborhood of zero, we have 1
δ

∫ 2δ

0

(
f(0)−

f(λ)
)
dλ −→ 0 as δ ↓ 0; therefore, we can choose δ > 0 such that

∣∣∣∣
1

δ

∫ 2δ

0

(
f(0)− f(λ)

)
dλ

∣∣∣∣ < ε.

Next we observe that, due to the assumption that limx↑bwλ(x) = 0 for all λ > 0, we have
∫ 2δ

0

(
1 −

wλ(x)
)
dλ −→ 2δ as x ↑ b, meaning that we can pick β ∈ (a, b) such that

∫ 2δ

0

(
1− wλ(x)

)
dλ ≥ δ for all β < x < b.

By our choice of β and Fubini’s theorem,

µn

[
β, b) =

1

δ

∫

[β,b)

δ µn(dx)

≤
1

δ

∫

[β,b)

∫ 2δ

0

(
1− wλ(x)

)
dλµn(dx)

≤
1

δ

∫

[a,b)

∫ 2δ

0

(
1− wλ(x)

)
dλµn(dx)

=
1

δ

∫ 2δ

0

(
µ̂n(0)− µ̂n(λ)

)
dλ.

Hence, using the dominated convergence theorem,

lim sup
n→∞

µn[β, b) ≤
1

δ
lim sup
n→∞

∫ 2δ

0

(
µ̂n(0)− µ̂n(λ)

)
dλ
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=
1

δ

∫ 2δ

0

lim
n→∞

(
µ̂n(0)− µ̂n(λ)

)
dλ =

1

δ

∫ 2δ

0

(
f(0)− f(λ)

)
dλ < ε

due to the choice of δ. Since ε is arbitrary, we conclude that {µn} is tight, as desired.

An unsurprising consequence of the construction of the L-convolution is that it is trivialized by the

L-transform of measures. Indeed:

Proposition 5.3. Let µ, ν, π ∈ MC[a, b). We have π = µ ∗ ν if and only if

π̂(λ) = µ̂(λ) ν̂(λ) for all λ ≥ 0.

Proof. Using the product formula (4.10), we compute

µ̂ ∗ ν(λ) =

∫

[a,b)

wλ(x) (µ ∗ ν)(dx)

=

∫

[a,b)

∫

[a,b)

∫

[a,b)

wλ(ξ)νx,y(dξ)µ(dx)ν(dy)

=

∫

[a,b)

∫

[a,b)

wλ(x)wλ(y)µ(dx)ν(dy) = µ̂(λ) ν̂(λ), λ ≥ 0.

This proves the “only if" part, and the converse follows from the uniqueness property in Proposition

5.2(ii).

The next result summarizes the properties of the measure algebra determined by the L-convolution:

Proposition 5.4. The space (MC[a, b), ∗), equipped with the total variation norm, is a commutative

Banach algebra over C whose identity element is the Dirac measure δa. The subset P [a, b) is closed

under the L-convolution. Moreover, the map (µ, ν) 7→ µ ∗ ν is continuous (in the weak topology) from

MC[a, b)×MC[a, b) to MC[a, b).

Proof. Since µ̂ ∗ ν = µ̂ · ν̂ (Proposition 5.3), the commutativity, associativity and bilinearity of the L-

convolution follow at once from the uniqueness property of the L-transform (Proposition 5.2(ii)). One

can verify directly from the definition of the L-convolution that the submultiplicativity property ‖µ∗ν‖ ≤

‖µ‖·‖ν‖ holds, and that equality holds whenever µ, ν ∈ M+[a, b); it is also clear that the convolution of

positive measures is a positive measure. We conclude that the Banach algebra property holds and that

P [a, b) is closed under convolution.

If limx↑b wλ(x) = 0 for all λ > 0, the identity ν̂x,y(λ) = wλ(x)wλ(y) implies (by Proposition 5.2(iv))

that (x, y) 7→ νx,y is continuous in the weak topology. If the functions wλ(x) do not vanish at the limit

x ↑ b, let κ < 0 be arbitrary and let h ∈ Cb[a, b). Since wκ is increasing and unbounded, h
wκ

∈ C0[a, b).

By Lemma 4.9, the map (x, y) 7→ ν
〈κ〉
x,y (where ν

〈κ〉
x,y is the measure defined in the proof of Theorem 4.10)

is continuous, hence

(x, y) 7−→

∫

[a,b)

h(ξ)

wκ(ξ)
ν〈κ〉
x,y(dξ) =

1

wκ(x)wκ(y)

∫

[a,b)

h(ξ)νx,y(dξ)

is continuous. This shows that (x, y) 7→
∫
[a,b)h(ξ)νx,y(dξ) is continuous for all h ∈ Cb[a, b) and therefore

(x, y) 7→ νx,y is continuous in the weak topology. Finally, for h ∈ Cb[a, b) and µn, νn ∈ MC[a, b) with

µn
w

−→ µ and νn
w

−→ ν we have

lim
n

∫

[a,b)

h(ξ)(µn ∗ νn)(dξ) = lim
n

∫

[a,b)

∫

[a,b)

(∫

[a,b)

h dνx,y

)
µn(dx)νn(dy)

=

∫

[a,b)

∫

[a,b)

(∫

[a,b)

h dνx,y

)
µ(dx)ν(dy)

=

∫

[a,b)

h(ξ)(µ ∗ ν)(dξ)

due to the continuity of the function in parenthesis; this proves that (µ, ν) 7→ µ ∗ ν is continuous.
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5.2 The nondegenerate case: Sturm-Liouville hypergroups

The goal of this section is to determine sufficient conditions in order that the L-convolution defines a

hypergroup structure on the interval [a, b).

Let us recall the usual definition of a hypergroup, which was introduced in [16] (see also [4]). Let K be

a locally compact space and ∗ a bilinear operator on MC(K). The pair (K, ∗) is said to be a hypergroup

if the following axioms are satisfied:

H1. If µ, ν ∈ P(K), then µ ∗ ν ∈ P(K);

H2. µ ∗ (ν ∗ π) = (µ ∗ ν) ∗ π for all µ, ν, π ∈ MC(K);

H3. The map (µ, ν) 7→ µ ∗ ν is continuous (in the weak topology) from MC(K)×MC(K) to MC(K);

H4. There exists an element e ∈ K such that δe ∗ µ = µ ∗ δe = µ for all µ ∈ MC(K);

H5. There exists a homeomorphism (called involution) x 7→ x̌ of K onto itself such that (x̌)̌ = x and

e ∈ supp(δx ∗ δy) if and only if y = x̌;

H6. (µ ∗ ν )̌ = ν̌ ∗ µ̌, where µ̌ is defined via
∫
f(x)µ̌(dx) =

∫
f(x̌)µ(dx);

H7. (x, y) 7→ supp(δx ∗ δy) is continuous from K ×K into the space of compact subsets of K (endowed

with the Michael topology, see [16]).

We saw in Proposition 5.4 that L-convolution satisfies the axioms H1, H2, H3, H4 and H6 (with

K = [a, b) and e = a as the identity element; H6 holds for the identity involution x̌ = x). In order to

verify conditions H5 and H7, one needs to determine the support of νx,y = δx ∗ δy. A crucial tool for

determining supp(νx,y) is the integral identity which we now state:

Lemma 5.5. Let ℓB be the differential expression ℓBv := −v′′ − φηv
′ + ψηv. For γ(a) < c ≤ y ≤ x,

consider the triangle ∆c,x,y := {(ξ, ζ) ∈ R2 | ζ ≥ c, ξ + ζ ≤ x+ y, ξ − ζ ≥ x− y}, and let v ∈ C2(∆c,x,y).

Write B(x) := exp(12
∫ x

β
η(ξ)dξ) (with β > γ(a) arbitrary) and AB(x) = A(x)

B(x)2 . Then the following

integral equation holds:

AB(x)AB(y) v(x, y) = H + I0 + I1 + I2 + I3 − I4 (5.2)

where

H := 1
2AB(c)

[
AB(x− y + c) v(x− y + c, c) +AB(x + y − c) v(x+ y − c, c)] (5.3)

I0 := 1
2AB(c)

∫ x+y−c

x−y+c

AB(s)(∂yv)(s, c) ds (5.4)

I1 := 1
2

∫ y

c

AB(s)AB(x− y + s)
[
φη(s) + φη(x− y + s)

]
v(x− y + s, s) ds (5.5)

I2 := 1
2

∫ y

c

AB(s)AB(x+ y − s)
[
φη(s)− φη(x+ y − s)

]
v(x+ y − s, s) ds (5.6)

I3 := 1
2

∫

∆c,x,y

AB(ξ)AB(ζ)
[
ψη(ζ) −ψη(ξ)

]
v(ξ, ζ) dξdζ (5.7)

I4 := 1
2

∫

∆c,x,y

AB(ξ)AB(ζ) (ℓ
B
ζ v − ℓ

B
ξ v)(ξ, ζ) dξdζ. (5.8)

Proof. See Appendix A.3.

We note that the integral identity (5.2) is valid for any Sturm-Liouville operator ℓ satisfying Assump-

tion MP. The proof of the positivity of the Cauchy problem (Proposition 4.4 and Corollary 4.5) also relies

on this identity, see Appendix A.4.

A detailed study of supp(νx,y) was carried out by Zeuner in [31]. The next proposition shows that

the results of Zeuner can be applied to the L-convolution, provided that the differential operator (2.1)

has coefficients p = r = A defined on (0,∞), and there exists η ∈ C1[0,∞) satisfying the conditions given

in Assumption MP.
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Proposition 5.6. Suppose that

ℓ = −
1

A

d

dx

(
A

d

dx

)
, x ∈ (0,∞)

where the function p = r = A is increasing, and that there exists η ∈ C1[0,∞) such that η ≥ 0, φη ≥ 0

and the functions φη, ψη are both decreasing on (0,∞); assume also (without further loss of generality)

that φη(x) ց 0 as x → ∞. Let x0 = sup{x ≥ 0 | ψη(x) = ψη(0)} and x1 = inf{x > 0 | φη(x) = 0}.

Then:

(a) If x0 = ∞, x1 = 0 and η(0) = 0 then supp(δx ∗ δy) = {|x− y|, x+ y} for all x, y ≥ 0.

(b) If 0 < x0 < ∞, x1 = 0 and η(0) = 0 then

supp(δx ∗ δy) =





{|x− y|, x+ y}, x+ y ≤ x0

{|x− y|} ∪ [2x0 − x− y, x+ y], x, y < x0 < x+ y

[|x− y|, x+ y], max{x, y} ≥ x0.

(c) If x0 = ∞, 0 < x1 < ∞ and η(0) = 0 then

supp(δx ∗ δy) =

{
[|x− y|, x+ y], min{x, y} ≤ 2x1,

[|x− y|, 2x1 + |x− y|] ∪ [x+ y − 2x1, x+ y], min{x, y} > 2x1.

(d) If 0 < 3x1 < x0 < ∞ and η(0) = 0 then

supp(δx ∗ δy) =





[|x− y|, x+ y], min{x, y} ≤ 2x1 or max{x, y} ≥ x0 − x1,

[|x− y|, 2x1 + |x− y|]∪
∪ [x+ y − 2x1, x+ y],

min{x, y} > 2x1 and max{x, y} < x0 − x1.

(e) If x0 ≤ 3x1 or η(0) > 0 then supp(δx ∗ δy) = [|x− y|, x+ y] for all x, y ≥ 0.

Proof. Fix z ≥ 0, and let {hε} ⊂ C4
c,0 be a family of functions such that

hε(ξ) > 0 for z − ε < ξ < z + ε, hε(ξ) = 0 for ξ ≤ z − ε and ξ ≥ z + ε. (5.9)

Observe that z ∈ supp(δx ∗ δy) if and only if
∫
[0,∞) hε d(δx ∗ δy) > 0 for all ε > 0. Now, we know from

Theorem 4.2 and Corollary 4.5 that the function

fhε
(x, y) =

∫

[0,∞)

hε d(δx ∗ δy) =

∫

[σ2,∞)

wλ(x)wλ(y) (Fhε)(λ)ρL(dλ)

(the second equality is due to (4.12)) is a nonnegative solution of the Cauchy problem (4.1) with h ≡

hε; writing B(x) := exp(12
∫ x

0 η(ξ)dξ), it follows that vhε
(x, y) = B(x)B(y)fhε

(x, y) is a solution of

ℓBx v − ℓBy v = 0, ℓBx being the differential operator defined in Lemma 5.5. If we apply this lemma with

c > 0 and then let c ↓ 0, we deduce that the following integral equation holds:

AB(x)AB(y) vhε
(x, y) = H + I0 + I1 + I2 + I3 (5.10)

where H = 1
2A(0)

[A(x−y)
B(x−y) hε(x − y) + A(x+y)

B(x+y) hε(x + y)
]
, I0 = η(0)

4

∫ x+y

x−y
A(s)
B(s)hε(s) ds and I1, I2, I3 are

given by (5.5)–(5.7) with c = 0 and v = vhε
. Since hε and fhε

are nonnegative, all the terms in the

right-hand side of (5.10) are nonnegative; consequently, we have z ∈ supp(δx ∗ δy) if and only if at least

one of the terms in the right-hand side of (5.10) is strictly positive for all ε > 0. In order to ascertain

whether this holds or not, one needs to perform a thorough analysis of the integrals I0, I1, I2 and I3.

This has been done by Zeuner in [31, Proposition 3.9]; his results lead to the conclusion stated in the

proposition.
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Theorem 5.7. Let ℓ be a differential expression of the form (2.1). Suppose that γ(a) > −∞ and that

there exists η ∈ C1[γ(a),∞) satisfying the conditions given in Assumption MP. Then
(
[a, b), ∗

)
is a

hypergroup.

Proof. It was seen in Proposition 5.4 that the axioms H1, H2, H3, H4 and H6 hold for the L-convolution

(with x̌ = x); we need to check that axioms H5 and H7 are also satisfied.

Assume first that ℓ satisfies the assumptions of Proposition 5.6. Then the explicit expressions for

supp(δx ∗ δy) show that (in each of the cases (a)–(e)) supp(δx ∗ δy) depends continuously on (x, y) and

contains e = 0 if and only if x = y, hence axioms H5 and H7 hold. (Verifying the continuity is easy after

noting that the topology in the space of compact subsets can be metrized by the Hausdorff metric, cf.

[19, Subsection 4.1].)

Now, in the general case of an operator ℓ of the form (2.1), note that γ(a) > −∞ means that
√

r(y)
p(y)

is integrable near a, so that we may assume that γ(a) = 0 (otherwise, replace the interior point c by the

endpoint a in the definition of the function γ). By hypothesis, the transformed operator ℓ̃ = − 1
A

d
dξ (A

d
dξ )

defined via (2.6) satisfies the assumptions of Proposition 5.6; by the above, the associated convolution,

which we denote by ∗̃, satisfies axioms H5 and H7. From the product formulas for the solutions wλ(x)

and w̃λ(ξ) = wλ(γ
−1(ξ)) we deduce that

∫

[a,b)

wλ d(δx ∗ δy) = wλ(x)wλ(y) = w̃λ(γ(x))w̃λ(γ(y)) =

∫

[0,∞)

wλ(γ
−1(z))

(
δγ(x) ∗̃δγ(y)

)
(dz)

and, consequently, δx∗δy = γ−1(δγ(x) ∗̃δγ(y)) (the right hand side denoting the pushforward of the measure

δγ(x) ∗̃δγ(y) under the map ξ 7→ γ−1(ξ)). In particular, supp(δx ∗ δy) = γ−1
(
supp(δγ(x) ∗̃δγ(y))

)
; since γ

and γ−1 are continuous, we immediately conclude that the convolution ∗ also satisfies H5 and H7.

A hypergroup isomorphism between (K1, ∗) and (K2, ⋄) is an isomorphism between the Banach alge-

bras (Mb,C(K1), ∗) and (Mb,C(K2), ⋄) which preserves involution and point measures. The proof of The-

orem 5.7 shows that the hypergroups
(
[a, b), ∗

)
and

(
[0,∞), ∗̃

)
associated with the differential operators ℓ

and ℓ̃ are isomorphic, the isomorphism being the pushforward map µ ∈ MC[a, b) 7−→ γ−1(µ) ∈ MC[0,∞).

Let us write C∞
c,even := {h : [0,∞) → C | h is the restriction of an even C∞

c (R)-function}. The next

definition was introduced by Zeuner [30]:

Definition 5.8. A hypergroup ([0,∞), ∗) is said to be a Sturm-Liouville hypergroup if there exists a

function A on [0,∞) satisfying the condition

SL0 A ∈ C[0,∞) ∩ C1(0,∞) and A(x) > 0 for x > 0

such that, for every function h ∈ C∞
c,even, the convolution

vh(x, y) =

∫

[0,∞)

h(ξ)(δx ∗ δy)(dξ) (5.11)

belongs to C2
(
[0,∞)2

)
and satisfies (ℓxvh)(x, y) = (ℓyvh)(x, y), (∂yvh)(x, 0) = 0 (x > 0), where ℓx =

− 1
A

∂
∂x (A(x)

∂
∂x ).

A fundamental existence theorem for Sturm-Liouville hypergroups, which was proved by Zeuner [31,

Theorem 3.11], states: Suppose that A satisfies SL0 and is such that

SL1 One of the following assertions holds:

SL1.1 A(0) = 0 and A′(x)
A(x) = α0

x +α1(x) for x in a neighbourhood of 0, where α0 > 0 and α1 ∈ C∞(R)

is an odd function;

SL1.2 A(0) > 0 and A ∈ C1[0,∞).

SL2 There exists η ∈ C1[0,∞) such that η ≥ 0, φη ≥ 0 and the functions φη, ψη are both decreasing

on (0,∞) (φη, ψη are defined as in Assumption MP).
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Define the convolution ∗ via (5.11) where, for h ∈ C∞
c,even, vh denotes the unique solution of ℓxvh = ℓyvh,

vh(x, 0) = vh(0, x) = h(x), (∂yvh)(x, 0) = (∂xvh)(0, y) = 0. Then
(
[0,∞), ∗

)
is a Sturm-Liouville

hypergroup.

To the best of our knowledge, this is the most general known result giving sufficient conditions for the

existence of a Sturm-Liouville hypergroup on [0,∞) associated with a given function A. In fact, as far as

the authors are aware, all the concrete examples of hypergroup structures on [0,∞) which were known

prior to this work are particular cases of Sturm-Liouville hypergroups satisfying conditions SL0, SL1 and

SL2 (see [4, 13]). However, we can prove as a corollary of Theorem 5.7 that an existence theorem very

similar to that of Zeuner continues to hold if the condition SL1 is removed:

Corollary 5.9. Suppose that A satisfies SL0 and SL2. For h ∈ C4
c,0, denote by vh the unique solution of

ℓxvh = ℓyvh, vh(x, 0) = vh(0, x) = h(x), (∂
[1]
y vh)(x, 0) = (∂

[1]
x vh)(0, y) = 0 such that conditions (i)–(ii)

in Theorem 4.2 hold for f = vh. Define the convolution ∗ via (5.11). Then
(
[0,∞), ∗

)
is a hypergroup.

Proof. Just notice that, by (4.12) and Theorem 4.2, the definition of convolution given in the statement

of the corollary is equivalent to Definition 5.1.

This corollary shows that it is natural to modify the definition of Sturm-Liouville hypergroup (Defi-

nition 5.8) by replacing the space C∞
c,even by C4

c,0 and replacing ∂y by ∂
[1]
y in the initial condition, because

in this way we are able to extend the class of Sturm-Liouville hypergroups to all functions A satisfying

conditions SL0 and SL2.

We emphasize that condition SL1 imposes a great restriction on the behavior of the Sturm-Liouville

operator ℓ(u) = −u′′ − A′

A u′ near zero: in the singular case A(0) = 0, SL1 requires that A′(x)
A(x) ∼ α0

x .

Therefore, as shown in the next example, Corollary 5.9 leads, in particular, to a considerable extension

of the class of singular operators for which an associated hypergroup exists:

Example 5.10. If A satisfies SL0 and the function A′

A is nonnegative and decreasing, then SL2 is satisfied

with η := 0. Therefore, Corollary 5.9 assures that there exists a hypergroup associated with the operator

ℓ(u) = −u′′ − A′

A u′. Notice that this existence result holds without any restriction on the growth of A′(x)
A(x)

as x ↓ 0.

5.3 The degenerate case: degenerate hypergroups of full support

The goal of this subsection is to prove that in the degenerate case γ(a) = −∞ the pair
(
[a, b), ∗

)
is a

degenerate hypergroup of full support, in the sense of the following definition:

Definition 5.11. Let K be a locally compact space and ∗ a bilinear operator on MC(K). The pair

(K, ∗) is said to be a degenerate hypergroup of full support if conditions H1–H4 and H6 hold, together

with the following axiom:

DH. supp(δx ∗ δy) = K for all x, y ∈ K \ {e}.

As we saw in the proof of Proposition 5.6, in order to determine the support of δx ∗ δy one needs to

know when the solution of the Cauchy problem (4.1) is strictly positive. Our first step is to use Lemma 5.5

in order to derive an integral inequality which will turn out to be useful for studying the strict positivity

of solution.

Lemma 5.12. Write R(x) := A(x)
B(x) , where B(x) = exp(12

∫ x

β
η(ξ)dξ) (with β > γ(a) arbitrary). Take

h ∈ D
(2)
L with ℓ(h) ∈ D

(2)
L and h ≥ 0. Let u(x, y) := f(γ−1(x), γ−1(y)), where f is the solution (4.4) of

the Cauchy problem. Then the following inequality holds:

R(x)R(y)u(x, y) ≥ 1
2

∫ y

γ(a)

R(s)R(x− y + s)
[
φη(s) + φη(x− y + s)

]
u(x− y + s, s) ds
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+ 1
2

∫ y

γ(a)

R(s)R(x+ y − s)
[
φη(s)− φη(x+ y − s)

]
u(x+ y − s, s) ds

+ 1
2

∫

∆

R(ξ)R(ζ)
[
ψη(ζ) −ψη(ξ)

]
u(ξ, ζ) dξdζ

where ∆ ≡ ∆γ(a),x,y = {(ξ, ζ) ∈ R2 | ζ ≥ γ(a), ξ + ζ ≤ x+ y, ξ − ζ ≥ x− y}.

Proof. Let {am}m∈N be a sequence b > a1 > a2 > . . . with lim am = a. For m ∈ N, define um(x, y) :=

fm(γ−1(x), γ−1(y)), where fm is given by (4.5). The function vm(x, y) = B(x)B(y)um(x, y) is a solution

of

(ℓBx vm)(x, y) = (ℓBy vm)(x, y), x, y > ãm

vm(x, ãm) = B(x)B(ãm)h(γ−1(x)), x > ãm

(∂yvm)(x, ãm) = 1
2η(ãm)B(x)B(ãm)h(γ−1(x)), x > ãm

where ℓBv := −v′′ − φηv
′ + ψηv. Clearly, vm(x, ãm), (∂yvm)(x, ãm) ≥ 0. By Lemma 5.5, the integral

equation (5.2) holds with v = vm and c = am. It is clear that we have H ≥ 0, I0 ≥ 0 and I4 = 0

in the right hand side of (5.2); moreover, it follows from Proposition 4.4 and Assumption MP that the

integrands of I1, I2 and I3 are nonnegative. Consequently, for α ∈ [ãm, y] we have

R(x)R(y)um(x, y) ≥ 1
2

∫ y

α

R(s)R(x− y + s)
[
φη(s) + φη(x− y + s)

]
um(x− y + s, s) ds

+ 1
2

∫ y

α

R(s)R(x+ y − s)
[
φη(s)− φη(x+ y − s)

]
um(x+ y − s, s) ds

+ 1
2

∫

∆α,x,y

R(ξ)R(ζ)
[
ψη(ζ)−ψη(ξ)

]
um(ξ, ζ) dξdζ

(5.12)

where ∆α,x,y = {(ξ, ζ) ∈ R2 | ζ ≥ α, ξ + ζ ≤ x + y, ξ − ζ ≥ x − y}. Since by Proposition 4.3

limm→∞ um(x, y) = u(x, y) pointwise for x, y ∈ (γ(a),∞), by taking the limit we deduce that for each

fixed α ∈ (γ(a), y] the inequality (5.12) holds with um replaced by u. If we then take the limit α ↓ γ(a),

the desired integral inequality follows.

The next lemma will be helpful for verifying the strict positivity of the integrands in the above integral

inequality.

Lemma 5.13. If γ(a) = −∞, then at least one of the functions φη, ψη defined in Assumption MP is

non-constant on every neighbourhood of −∞.

Proof. Suppose by contradiction that γ(a) = −∞ and φη, ψη are both constant on an interval (−∞, κ] ⊂

R. Recall from the proof of Proposition 3.6 that L is unitarily equivalent to a self-adjoint realization of

− d2

dξ2 + q, where q is given by (3.4). Clearly, q(ξ) = q∞ := 1
4φ

2
η(κ) + ψη(κ) < −∞ for all ξ ∈ (−∞, κ).

It therefore follows from [29, Theorem 15.3] that the essential spectrum of any self-adjoint realization of

ℓ restricted to an interval (a, c) (for a < c < b) contains [q∞,∞). However, it follows from the boundary

condition (2.2) and [23, Theorem 3.1] that self-adjoint realizations of ℓ restricted to (a, c) have purely

discrete spectrum. This contradiction proves the lemma.

We are now ready to prove that in the case γ(a) = −∞ the solution of the (nontrivial) Cauchy

problem (4.1) always has full support on (a, b)2, even when the initial condition is compactly supported:

Theorem 5.14 (Strict positivity of solution for the Cauchy problem (4.1)). Suppose that γ(a) = −∞.

Take h ∈ D
(2)
L with ℓ(h) ∈ D

(2)
L . If h ≥ 0 and h(τ0) > 0 for some τ0 ∈ (a, b), then the function f given by

(4.4) is such that

f(x, y) > 0 for x, y ∈ (a, b).
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Proof. Let u(x, y) := f(γ−1(x), γ−1(y)) and τ̃0 = γ(τ0). Fix x0 ≥ y0 > −∞. Since limy→−∞ u(τ̃0, y) =

h(τ0) > 0, there exists κ ∈ (−∞,min{y0, τ0}) such that u(τ̃0, y) > 0 for all y ≤ κ.

Suppose φη is non-constant on every neighbourhood of −∞. Choosing a smaller κ if necessary, we

may assume that φη(κ) > φη(ξ) for all ξ > κ. For each x > τ̃0 and y ≤ κ we have by Lemma 5.12

R(x)R(y)u(x, y) ≥ 1
2

∫ y

−∞

R(s)R(x− y + s)
[
φη(s) + φη(x− y + s)

]
u(x− y + s, s) ds

and the integrand in the right hand side is continuous and strictly positive at s = y − x + τ̃0, so the

integral is positive and therefore u(x, y) > 0 for all x ≥ τ̃0 and y ≤ κ. Again by Lemma 5.12,

R(x0)R(y0)u(x0, y0) ≥
1
2

∫ y0

−∞

R(s)R(x0 + y0 − s)
[
φη(s)− φη(x0 + y0 − s)

]
u(x0 + y0 − s, s) ds

with the integrand being strictly positive for s < min{κ, x0 + y0 − τ̃0}, thus u(x0, y0) > 0.

Suppose now that ψη is non-constant on every neighbourhood of −∞ and that κ is chosen such that

ψη(κ) > ψη(ξ) for all ξ > κ. The integral inequality of Lemma 5.12 yields

R(x0)R(y0)u(x0, y0) ≥
1
2

∫

∆

R(ξ)R(ζ)
[
ψη(ζ)−ψη(ξ)

]
u(ξ, ζ) dξdζ.

where ∆ = {(ξ, ζ) ∈ R2 | ξ + ζ ≤ x0 + y0, ξ − ζ ≥ x0 − y0}. Clearly, the integrand is continuous and > 0

on {(τ0, ζ) | ζ ≤ min(y0 − |x0 − τ0|, κ)} ⊂ ∆, and it follows at once that u(x0, y0) > 0.

By Lemma 5.13 it follows that u(x0, y0) > 0. Since x0 ≥ y0 > −∞ are arbitrary we conclude that

f(x, y) > 0 for b > x ≥ y > a and, by symmetry, for x, y ∈ (a, b).

Corollary 5.15 (Existence theorem for degenerate hypergroups of full support). Let ℓ be a differential

expression of the form (2.1) and satisfying (2.2). Suppose that γ(a) = −∞. Then
(
[a, b), ∗

)
is a degenerate

hypergroup of full support.

Proof. By Proposition 5.4, the pair
(
[a, b), ∗

)
satisfies axioms H1–H4 and H6. As in the proof of Propo-

sition 5.6, z ∈ [a, b) belongs to supp(δx ∗ δy) if and only if
∫
[σ2,∞)

wλ(x)wλ(y) (Fhε)(λ)ρL(dλ) > 0 for all

ε > 0, where {hε} ⊂ C4
c,0 is a family of functions satisfying (5.9). But it follows from Theorem 5.14 that

fhε
(x, y) =

∫
[σ2,∞)

wλ(x)wλ(y) (Fhε)(λ)ρL(dλ) > 0 for all x, y ∈ (a, b). Hence each z ∈ [a, b) belongs to

all the sets supp(δx ∗ δy), x, y ∈ (a, b); therefore,
(
[a, b), ∗

)
satisfies axiom DH.

As discussed in the Introduction, the notion of degenerate hypergroup of full support is motivated by

the example of the so-called Whittaker convolution, associated with the normalized Whittaker differential

operator ℓ = −x2 d2

dx2 − (1 + 2(1 − α)x) d
dx and studied by the authors in [25, 26]. Corollary 5.15 shows

that many other Sturm-Liouville differential expressions yield convolution algebras with the full support

property.

Example 5.16. Let ζ ∈ C1(0,∞) be a nonnegative decreasing function and let κ > 0. The differential

expression

ℓ = −x2 d2

dx2
−
[
κ+ x

(
1 + ζ(x)

)] d

dx
, 0 < x < ∞

is a particular case of (2.1), obtained by considering p(x) = xe−κ/x+Iζ(x) and r(x) = 1
xe

−κ/x+Iζ(x),

where Iζ(x) =
∫ x

1 ζ(y)
dy
y . (If κ = 1 and ζ(x) = 1 − 2α > 0, we recover the normalized Whittaker

operator.) The change of variable z = log x transforms ℓ into the standard form ℓ̃ = − d2

dz2 − A′(z)
A(z)

d
dz ,

where A′(z)
A(z) = κe−κz + ζ(ez). It is clear that γ(a) = −∞ and that ℓ satisfies Assumption MP with η = 0,

and it is not difficult to show that the boundary condition (2.2) holds. Consequently, the Sturm-Liouville

operator ℓ gives rise to a convolution structure such that supp(δx ∗ δy) = [0,∞) for all x, y > 0.
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Appendix A Proofs of existence, uniqueness and positivity of so-

lution for the associated hyperbolic Cauchy problem

A.1 Proof of Theorem 4.2

We start by proving that there exists at most one solution of (4.1) satisfying the given conditions.

Let f1, f2 ∈ C2
(
(a, b)2

)
be two solutions of ℓxf = ℓyf such that (i)–(ii) hold for f ∈ {f1, f2}. Fix

λ ∈ [0,∞) \ Λ0 and let Ψj(y, λ) := [Ffj(·, y)](λ). We have

ℓyΨj(y, λ) = F [ℓyfj(·, y)](λ) = F [ℓxfj(·, y)](λ) = λΨj(y, λ), a < y < b

where the first equality is due to (4.2) and the last step follows from (2.10). Moreover,

lim
y↓a

Ψj(y, λ) = (Fh)(λ) and lim
y↓a

∂[1]
y Ψj(y, λ) = 0

by (4.3). It thus follows from Lemma 2.1 that

[Ffj(·, y)](λ) = Ψj(y, λ) = (Fh)(λ)wλ(y), a < y < b.

This equality takes place for ρL-almost every λ, so the isometric property of F gives f1(·, y) = f2(·, y)

Lebesgue-almost everywhere; since the fj are continuous, we conclude that f1(x, y) ≡ f2(x, y) for all

x, y ∈ (a, b).

In order to prove that (4.4) is the (unique) solution, we need to justify that ℓxf can be computed

via differentiation under the integral sign. It follows from (2.3) that w
[1]
λ (x) = −λ

∫ x

a
wλ(ξ) r(ξ)dξ and

therefore (by Lemma 2.3) |w
[1]
λ (x)| ≤ λ

∫ x

a r(ξ)dξ. Hence

∫

[σ2,∞)

∣∣(Fh)(λ)w
[1]
λ (x)wλ(y)

∣∣ρL(dλ) ≤
∫ x

a

r(ξ)dξ ·

∫

[σ2,∞)

λ
∣∣(Fh)(λ)wλ(y)

∣∣ρL(dλ) < ∞, (A.1)

where the convergence (which is uniform on compacts) follows from (2.10) and Lemma 2.6(b). Due to

the convergence of the differentiated integral, we have ∂
[1]
x f(x, y) =

∫
[σ2,∞)

(Fh)(λ)w
[1]
λ (x)wλ(y)ρL(dλ).

Since (ℓwλ)(x) = λwλ(x), in the same way we check that
∫
[σ2,∞)(Fh)(λ) (ℓwλ)(x)wλ(y)ρL(dλ) converges

absolutely and uniformly on compacts and is therefore equal to (ℓxf)(x, y). Consequently,

(ℓxf)(x, y) = (ℓyf)(x, y) =

∫

[σ2,∞)

λ (Fh)(λ)wλ(x)wλ(y)ρL(dλ).

Concerning the boundary conditions, Lemma 2.6(b) together with the fact that wλ(a) = 1 imply that

f(x, a) = h(x), and from (A.1) we easily see that limy↓a ∂
[1]
y f(x, y) = 0. This shows that f is a solution

of the Cauchy problem (4.1).

A.2 Proof of Proposition 4.3

Let us begin by justifying that ∂
[1]
x fm(x, y) and (ℓxfm)(x, y) can be computed via differentiation under

the integral sign. The differentiated integrals are given by

∫

[σ2,∞)

w
[1]
λ (x)wλ,m(y) (Fh)(λ)ρL(dλ) (A.2)

∫

[σ2,∞)

wλ(x)wλ,m(y) [F(ℓ(h))](λ)ρL(dλ) (A.3)

(for the latter, we used the identities (ℓwλ)(x) = λwλ(x) and (2.10)), and their absolute and uniform

convergence on compacts follows from the fact that h, ℓ(h) ∈ D
(2)
L , together with Lemma 2.6(b) and

the inequality |wλ,m(·)| ≤ 1 (which follows from Lemma 2.3 if we replace a by am). This justifies that

∂
[1]
x fm(x, y) and (ℓxfm)(x, y) are given by (A.2), (A.3) respectively.
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We also need to ensure that ∂
[1]
y fm(x, y) and (ℓyfm)(x, y) are given by the corresponding differentiated

integrals, and to that end we must check that

∫

[σ2,∞)

wλ(x)w
[1]
λ,m(y) (Fh)(λ)ρL(dλ)

converges absolutely and uniformly. Indeed, it follows from (2.4) that for y ≥ am we have w
[1]
λ,m(y) =

λ
∫ y

am
wλ,m(ξ) r(ξ)dξ and consequently |w

[1]
λ,m(y)| ≤ λ

∫ y

am
r(ξ)dξ; hence

∫

[σ2,∞)

∣∣wλ(x)w
[1]
λ,m(y) (Fh)(λ)

∣∣ρL(dλ) ≤
∫ y

am

r(ξ)dξ ·

∫

[σ2,∞)

λ
∣∣wλ(x)(Fh)(λ)

∣∣ρL(dλ) (A.4)

and the uniform convergence in compacts follows from (2.10) and Lemma 2.6(b).

The verification of the boundary conditions is straightforward: Lemma 2.6(b) together with the fact

that wλ,m(am) = 1 imply that fm(x, am) = h(x), and from (A.4) we easily see that ∂
[1]
y fm(x, am) = 0.

This shows that the function fm defined by (4.5) is a solution of the Cauchy problem (4.6).

Since wλ,m(y) → wλ(y) as m → ∞ (Lemma 2.2), the pointwise convergence fm(x, y) → f(x, y) follows

from the dominated convergence theorem (which is applicable due to Lemmas 2.3 and 2.6(b)).

A.3 Proof of Lemma 5.5

Just compute

I4 − I3 = 1
2

∫

∆c,x,y

(
∂

∂ξ

[
AB(ξ)AB(ζ) (∂ξv)(ξ, ζ)

]
−

∂

∂ζ

[
AB(ξ)AB(ζ) (∂ζv)(ξ, ζ)

])
dξdζ

= I0 −
1
2

∫ y

0

AB(s)AB(x− y + s) (∂ζv + ∂ξv)(x− y + s, s) ds

− 1
2

∫ y

0

AB(s)AB(x+ y − s) (∂ζv − ∂ξv)(x + y − s, s) ds

= I0 + I1 −

∫ y

c

d

ds

[
AB(s)AB(x− y + s) v(x− y + s, s)

]
ds

+ I2 −

∫ y

c

d

ds

[
AB(s)AB(x+ y − s) v(x+ y − s, s)

]
ds

where in the second equality we used Green’s theorem, and the third equality follows easily from the fact

that (AB)
′ = φηAB.

A.4 Proof of Proposition 4.4

The proof depends on the following maximum principle for the (standardized) hyperbolic equation:

Proposition A.1 (Weak maximum principle). Suppose Assumption MP holds, and let γ(a) < c ≤ y0 ≤

x0. If u ∈ C2(∆c,x0,y0) satisfies

(ℓ̃xu− ℓ̃yu)(x, y) ≤ 0, (x, y) ∈ ∆c,x0,y0

u(x, c) ≥ 0, x ∈ [x0 − y0 + c, x0 + y0 − c]

(∂yu)(x, c) +
1
2η(c)u(x, c) ≥ 0, x ∈ [x0 − y0 + c, x0 + y0 − c]

(A.5)

then u ≥ 0 in ∆c,x0,y0 .

Proof. Pick a function ω ∈ C2[c,∞) such that ℓBω < 0, ω(c) > 0 and ω′(c) ≥ 0 (where ℓBx is the

differential operator defined in Lemma 5.5). Clearly, it is enough to show that for all δ > 0 we have

v(x, y) := B(x)B(y)u(x, y) + δω(y) > 0 for (x, y) ∈ ∆c,x0,y0 .

By Lemma 5.5, the integral equation (5.2) holds for the function v. Assume by contradiction that there

exist δ > 0, (x, y) ∈ ∆c,x0,y0 for which we have v(x, y) = 0 and v(ξ, ζ) ≥ 0 for all (ξ, ζ) ∈ ∆c,x,y ⊂ ∆c,x0,y0 .
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It is clear from the choice of ω that v(·, c) > 0, thus we have H ≥ 0 in the right hand side of (5.2).

Similarly, (∂yv)(·, c) = B(x)B(y)
[
(∂yu)(·, c) +

1
2η(c)u(·, c)

]
+ δω′(c) ≥ 0, hence I0 ≥ 0. Since φη is

positive and decreasing and ψη is decreasing (cf. Assumption MP) and we are assuming that u ≥ 0 on

∆c,x,y, it follows that I1 ≥ 0, I2 ≥ 0 and I3 ≥ 0. In addition, I4 < 0 because (ℓBζ v − ℓBξ v)(ξ, ζ) =

B(x)B(y)(ℓ̃ζu− ℓ̃ξu)(ξ, ζ) + (ℓBω)(ζ) < 0. Consequently, (5.2) yields 0 = AB(x)AB(y)v(x, y) ≥ −I4 > 0.

This contradiction shows that v(x, y) > 0 for all (x, y) ∈ ∆c,x0,y0 .

Proof of Proposition 4.4. It follows from Proposition 4.3 that the function um(x, y) := fm(γ−1(x), γ−1(y))

is a solution of the Cauchy problem

(ℓ̃xum)(x, y) = (ℓ̃yum)(x, y), x, y > ãm (A.6)

um(x, ãm) = h(γ−1(x)), x > ãm (A.7)

(∂yum)(x, ãm) = 0, x > ãm (A.8)

where ãm = γ(am). Clearly, um satisfies the inequalities (A.5) for arbitrary x0 ≥ y0 ≥ ãm (here c = ãm).

By Proposition A.1, um(x0, y0) ≥ 0 for all x0 ≥ y0 > ãm; consequently, (4.8) holds.

The proof that h ≤ C implies fm ≤ C is straightforward: if we have h ≤ C, then ũm(x, y) =

C − um(x, y) is a solution of (A.6) with initial conditions ũm(x, ãm) = C − h(γ−1(x)) ≥ 0 and (A.8),

thus the reasoning of the previous paragraph yields that C − um ≥ 0 for x ≥ y > ãm.
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