
PERMANENCE IN POLYMATRIX REPLICATORS

TELMO PEIXE

Abstract. Generally a biological system is said to be permanent
if under small perturbations none of the species goes to extinction.
In 1979 P. Schuster, K. Sigmund, and R. Wol� [14] introduced
the concept of permanence as a stability notion for systems that
models the self-organization of biological macromolecules. After,
in 1987 W. Jansen [8], and J. Hofbauer and K. Sigmund [5] give
su�cient conditions for permanence in the usual replicators. In
this paper we extend these results for polymatrix replicators.

1. Introduction

In the 1970's J. Maynard Smith and G. Price [10] applied the the-
ory of strategic games developed by J. von Neumann and O. Morgen-
stern [17] in the 1940's to investigate the dynamical processes of bio-
logical populations, giving rise to the feld of the Evolutionary Game
Theory (EGT).
Some classes of ordinary di�erential equations (odes) which play a

central role in EGT are the Lotka-Volterra (LV) systems, the replicator
equation, the bimatrix replicator and the polymatrix replicator.
In 1979 P. Schuster, K. Sigmund, and R. Wol� introduced in [14] the

concept of permanence as a stability notion for systems that models
the self-organization of biological macromolecules.
Generally, we say that a biological system is permanent if, for small

perturbations, none of the species goes to extinction.
The Lotka-Volterra systems, independently introduced in 1920s by

A. J. Lotka [9] and V. Volterra [16], are perhaps the most widely known
systems used in scienti�c areas as diverse as physics, chemistry, biology,
and economy.
Another classical model widely used is the replicator equation which

in some sense J. Hofbauer [4] proved is equivalent to the LV system.
The replicator equation was introduced by P. Taylor and L. Jonker [15].

It models the time evolution of the probability distribution of strate-
gical behaviors within a biological population. Given a payo� matrix
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A ∈ Mn(R), the replicator equation refers to the following ode

x′i = xi
(
(Ax)i − xT Ax

)
, i = 1, . . . , n,

on the simplex ∆n−1 = {x ∈ Rn
+ :
∑n

j=1 xj = 1}.
In the case we want to model the interaction between two popula-

tions (or a population divided in two groups, for example, males and
females), where each group have a di�erent set of strategies (asymmet-
ric games), and all interactions involve individuals of di�erent groups,
the common used model is the bimatrix replicator, that �rst appeared
in [11] and [13]. Given two payo� matrices A ∈ Mn×m(R) and
B ∈ Mm×n(R), for the strategies in each group, the bimatrix repli-
cator refers to the ode{

x′i = xi
(
(Ay)i − xT Ay

)
i = 1, . . . , n

y′j = yj
(
(Bx)j − yT B x

)
j = 1, . . . ,m

on the product of simplices ∆n−1 × ∆m−1. Each state in this case is
a pair of frequency vectors, representing respectively the two groups'
strategic behavioral frequencies. It describes the time evolution of the
strategy usage frequencies in each group.
Suppose now that we want to study a population divided in a �nite

number of groups, each of them with �nitely many behavioral strate-
gies. Bilateral interactions between individuals of any two groups (in-
cluding the same) are allowed, but competition takes place inside the
groups, i.e., the relative success of each strategy is evaluated within the
corresponding group.
H. Alishah and P. Duarte [1] introduced the model that they desig-

nated as polymatrix games to study this kind of populations. In [2]
H. Alishah, P. Duarte and T. Peixe study particular classes of poly-
matrix games, namely the conservative and dissipative. The system of
odes, designated as the polymatrix replicator, that model this game,
will be presented later in section 3. The phase space of these systems
are prisms, products of simplexes ∆n1−1 × . . .∆np−1, where p is the
number of groups and nj the number of behavioral strategies inside
the j-th group, for j = 1, . . . , p. This class of evolutionary systems
includes both the replicator (the case of only one group of individuals)
and bimatrix replicator models (the case of two groups of individuals).
In 1987 J. Hofbauer and K. Sigmund [5] and W. Jansen [8] give

su�cient conditions for permanence in the usual replicators. Besides
we introduce the concept of permanece in the polymatrix replicators,
in this paper we also extend these results for polymatrix replicators.
This paper is organized as follows. In section 2, we recall the replica-

tor equation, its relation with the LV systems, some properties of these
systems, and the concept of permanence. In section 3 we introduce and
recall the de�nition of polymatrix replicator. In section 4 we extend
the concept of permanence to polymatrix replicators and the results
given by J. Hofbauer and K. Sigmund [5] and W. Jansen [8]. Finally,
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in section 5 we illustrate our main results of permanence in polymatrix
replicators with two examples.

2. Replicator equation and Permanence

In this section we present some elementary de�nitions and properties
of the replicator equation. For more details on the subject see [6] for
instance.
Consider a population where individuals interact with each other

according to a set of n possible strategies. The state of the popu-
lation concerning this interaction is fully described by a vector x =
(x1, . . . , xn)T , where xi represents the frequency of individuals using
strategy i, for i = 1, . . . , n. The set of all population states is the
simplex ∆n−1 = {x ∈ Rn

+ :
∑n

j=1 xj = 1}.
If an individual using strategy i interacts with an individual using

strategy j, the coe�cient aij represents the average payo� for that in-
teraction. Let A = (aij) ∈ Mn(R) be the matrix consisting of these
aij's. Assuming random encounters between individuals of that popu-
lation, the average payo� for strategy i is given by

(Ax)i =
n∑
k=1

aikxk ,

and the global average payo� of all population strategies is given by

xTAx =
n∑
i=1

n∑
k=1

aikxixk .

The logarithmic growth rate dxi
dt
/xi of the frequency of strategy i is

equal to the payo� di�erence (Ax)i−xTAx, which yields the replicator
equation

dxi
dt

= xi
(
(Ax)i − xTAx

)
, i = 1, . . . , n , (2.1)

de�ned on the simplex ∆n−1, that is invariant under (2.1) (see for
example [6, Section 7.1]).
The replicator equation models the frequency evolution of certain

strategical behaviours within a biological population. In fact, the equa-
tion says that the logarithmic growth of the usage frequency of each
behavioural strategy is directly proportional to how well that strategy
fares within the population.
This system of odes was introduced in 1978 by P. Taylor and L.

Jonker [15] and was designated as replicator equation by P. Schuster
and K. Sigmund [12] in 1983.
In 1981 J. Hofbauer [4] stated an important relation between the LV

systems and the replicator equation. The replicator equation is a cubic
equation on the compact set ∆n−1 while the LV equation is quadratic
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on Rn
+. However, Hofbauer proved that the replicator equation in n+1

variables is equivalent to the LV equation in n variables (see also [6]).
In LV systems the existence of an equilibrium point in Rn

+ is related
with the orbit's behaviour. Namely, a LV system admits an interior
equilibrium point if and only if int(Rn

+) contains α or ω-limit points.
Moreover, if there exists a unique interior equilibrium point and if the
solution does not converge to the boundary neither to in�nity, then
its time average converges to the equilibrium point, as stated in the
following result.

Theorem 2.1. Suppose that x(t) is a solution of a n-dimensional LV
system such that 0 < m ≤ xi(t) ≤ L, for all t ≥ 0 and i ∈ {1, . . . , n}.
Then, there exists a sequence (Tk)k∈N such that Tk → +∞ and an
equilibrium point q ∈ int(Rn

+) such that

lim
k→+∞

1

Tk

∫ Tk

0

x(t) dt = q.

Moreover, if the LV system has only one equilibrium point q ∈ int(Rn
+),

then

lim
T→+∞

1

T

∫ T

0

x(t) dt = q.

Proof. A proof of this theorem can be seen in [3]. �

By the equivalence between the LV and the replicator equation, to-
gether with the observation above about the existence of interior equi-
librium points, we have the following known result.

Proposition 2.2. If the replicator (2.1) has no equilibrium point in
int(∆n−1), then every solution converges to the boundary of ∆n−1.

J. Hofbauer in [7] prove also a natural extension of Theorem 2.1 in
LV systems to the replicator equation.

Theorem 2.3. If the replicator (2.1) admits a unique equilibrium point
q ∈ int(∆n−1), and if the ω-limit of the orbit of x(t) is in int(∆n−1),
then

lim
t→∞

1

T

∫ T

0

x(t) dt = q .

We recall now the concept of permanence in the replicator equation,
that is a stability notion introduced by Schuster et al. in [14].

De�nition 2.4. A replicator equation (2.1) de�ned on ∆n−1 is said to
be permanent if there exists δ > 0 such that, for all x ∈ int(∆n−1),

lim inf
t→∞

d
(
ϕt(x), ∂∆n−1) > δ ,

where ϕt denotes the �ow determined by system (2.1) and ∂∆n−1 is
the boundary of ∆n−1.
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In the context of biology, a system to be permanent means that
su�ciently small perturbations cannot lead any species to extinction.
The following theorem due to Jansen [8] is also valid for LV systems.

Theorem 2.5. Let X be the replicator vector �eld de�ned by (2.1).
If there is a point p ∈ int(∆n−1) such that for all boundary equilibria
x ∈ ∂∆n−1,

pT Ax > xT Ax , (2.2)

then the vector �eld X is permanent.

This Theorem 2.5 is a corollary of the following theorem which gives
su�cient conditions for a system to be permanent. This result is stated
and proved by Hofbauer and Sigmund in [5, Theorem 1] or [6, Theorem
12.2.1].

Theorem 2.6. Let P : ∆n−1 −→ R be a smooth function such that P =
0 on ∂∆n−1 and P > 0 on int(∆n−1). Assume there is a continuous
function Ψ : ∆n−1 −→ R such that

(1) for any orbit x(t) in int(∆n−1), d
dt

logP (x(t)) = Ψ(x(t)) ,

(2) for any orbit x(t) in ∂∆n−1, ∃ T > 0 s. t.
∫ T
0

Ψ(x(t)) dt > 0.

Then the vector �eld X is permanent.

3. Polymatrix Replicator

In this section we present the de�nition of polymatrix replicator. For
more details on the subject, namely some of its properties or special
classes, see [1] and [2].
Consider a population divided in p groups, labelled by an integer

α ranging from 1 to p. Individuals of each group α ∈ {1, . . . , p} have
exactly nα strategies to interact with other members of the population,
including the same group.
Fer each α, β ∈ {1, . . . , p}, consider a real matrix, say Aα,β, of

the type nα × nβ whose entries aα,βij , where i ∈ {1, . . . , nα} and j ∈
{1, . . . , nβ}, represents the average payo� of an individual of the group
α using the ith strategy (of the group α) when interacting with an in-
dividual of the group β using the jth strategy (of the group β). Thus,

considering a matrix, say A, consisting of all of these entries aα,βij for all
α, β ∈ {1, . . . , p} and i ∈ {1, . . . , nα} and j ∈ {1, . . . , nβ}, we have that
A is a square block matrix of order n, made up of these block matrices
Aα,β, where n = n1 + . . .+ np.
Let n = (n1, . . . , np). The state of the population in time t is de-

scribed by a point x(t) = (xα(t))1≤α≤p in the prism

Γn := ∆n1−1 × . . .×∆np−1 ⊂ Rn ,

where ∆nα−1 = {x ∈ Rnα
+ :

nα∑
i=1

xαi = 1}, xα(t) = (xα1 (t), . . . , xαnα(t)) and

the entry xαi (t) represents the usage frequency of the ith strategy within
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the group α in time t. The prism Γn is a (n − p)-dimensional simple
polytope whose a�ne support is the (n − p)-dimensional subspace of
Rn de�ned by the p equations

nα∑
i=1

xαi = 1, α ∈ {1, . . . , p} .

We denote by ∂Γn the boundary of Γn.
Assuming random encounters between individuals of that popula-

tion, for each group α ∈ {1, . . . , p}, the average payo� for a strategy
i ∈ {1, . . . , nα}, is given by

(Ax(t))i′ =

p∑
β=1

(
Aα,β

)
i
xβ(t) =

p∑
β=1

nβ∑
k=1

aα,βik x
β
k(t) ,

where i′ := n1 + · · ·+ nα−1 + i, and the average payo� of all strategies
in α is given by

nα∑
i=1

xαi (t) (Ax(t))i′ ,

which can also be written as
p∑

β=1

(xα(t))TAα,βxβ(t) .

The growth rate
dxαi (t)

dt
/xαi (t) of the frequency of the strategy i ∈

{1, . . . , nα}, for each α ∈ {1, . . . , p}, is equal to the payo� di�erence
(Ax(t))i′ −

∑p
β=1(x

α(t))TAα,βxβ(t), which yields the following ode on
the prism Γn,

dxαi
dt

= xαi

(
(Ax)i′ −

p∑
β=1

(xα)TAα,βxβ

)
, α ∈ {1, . . . , p}, i ∈ {1, . . . , nα},

(3.1)
called the polymatrix replicator. The (t)'s were intentionally omitted
in equation (3.1) for notation simpli�cation.
Notice that interactions between individuals of any two groups (in-

cluding the same) are allowed. Notice also that this equation implies
that competition takes place inside the groups, i.e., the relative success
of each strategy is evaluated within the corresponding group.
The �ow φtn,A of this equation leaves the prism Γn invariant. (The

proof of this result follows by the same argument presented in the proof
that the Cartesian product ∆n−1 ×∆m−1 is invariant for the bimatrix
replicator, see [6, Section 10.3]). Hence, by compactness of Γn, the �ow
φtn,A is complete. The underlying vector �eld on Γn will be denoted by
XA,n.
In the case p = 1, we have Γn = ∆n−1 and (3.1) is the usual

replicator equation associated to the payo� matrix A.
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When p = 2, and A11 = A22 = 0, Γn = ∆n1−1×∆n2−1 and (3.1) be-
comes the bimatrix replicator equation associated to the pair of payo�
matrices (A12, A21).
More generally, it also includes the replicator equation for n-person

games (when Aα,α = 0 for all α ∈ {1, . . . , p}).

4. Permanence in the Polymatrix Replicator

In this section we extend to polymatrix replicators the de�nition
and some properties of permanence stated in the context of LV and
replicator systems.
If an orbit in the interior of the state space converges to the boundary,

this corresponds to extinction. Despite we give a formal de�nition of
permanence in polymatrix replicators (see De�nition 4.2), as we saw in
the context of the LV systems and the replicator equation, we say that
a system is permanent if there exists a compact set K in the interior of
the state space such that all orbits starting in the interior of the state
space end up in K. This means that the boundary of the state space
is a repellor.
Consider a polymatrix replicator (3.1) and X := XA,n its associated

vector �eld de�ned on the (n − p)-dimensional prism Γn. For each
α ∈ {1, . . . , p}, we denote by πα : Rn → Rn the projection x 7→ y
de�ned by

yβi :=

{
xαi if β = α
0 if β 6= α

, for all β ∈ {1, . . . , p}, i ∈ {1, . . . , nβ}.

The following result is an extension of the average principle in LV
systems (see Theorem 2.1) and replicator equation (see Theorem 2.3)
to the framework of the polymatrix replicator systems.

Proposition 4.1 (Average Principle). Let x(t) ∈ int (Γn) be an interior
orbit of the vector �eld X such that for some ε > 0 and some time
sequence Tk → +∞, as k → +∞, one has

(1) d (x(Tk), ∂Γn) ≥ ε for all k ≥ 0,

(2) lim
k→+∞

1

Tk

∫ Tk

0

x(t) dt = q,

(3) lim
k→+∞

1

Tk

∫ Tk

0

πα (x(t))T Ax(t) dt = aα, for all α ∈ {1, . . . , p}.

Then q is an equilibrium of X and aα = πα(q)TAq, for all α ∈ {1, . . . , p}.
Moreover,

lim
k→+∞

1

Tk

∫ Tk

0

x(t)TAx(t) dt = qTAq .
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Proof. Let α ∈ {1, . . . , p} and i, j ∈ {1, . . . , nα}. Let i′ := n1 + · · · +
nα−1 + i and j′ := n1 + · · ·+nα−1 + j. Observe that from (2) we obtain

lim
k→+∞

1

Tk

∫ Tk

0

(Ax(t))i′ dt = (Aq)i′ .

By (1) we have for all k, ε < xαi (Tk) < 1− ε. Hence, considering ek the
kth-vector of the canonical basis of Rn,

(Aq)i′ − (Aq)j′ = eTi′Aq − eTj′Aq

= lim
k→+∞

1

Tk

∫ Tk

0

(
eTi′Ax(t)− eTj′Ax(t)

)
dt

= lim
k→+∞

1

Tk

(
log

xαi (Tk)

xαj (Tk)
− log

xαi (0)

xαj (0)

)
= 0 .

It follows that q is an equilibrium of X, and for all i, j ∈ {1, . . . , nα},
(Aq)i = (Aq)j = πα(q)T Aq.
Finally, using (1)-(3),

0 = lim
k→+∞

1

Tk
(log xαi (Tk)− log xαi (0))

= lim
k→+∞

1

Tk

∫ Tk

0

dxαi
dt

(t)

xαi (t)
dt

= lim
k→+∞

1

Tk

∫ Tk

0

(
(Ax(t))i′ −

p∑
β=1

(xα(t))TAαβxβ(t)

)
dt

= lim
k→+∞

1

Tk

∫ Tk

0

(
(Ax(t))i′ − πα(x(t))TAx(t)

)
dt

= (Aq)i′ − lim
k→+∞

1

Tk

∫ Tk

0

πα (x(t))T Ax(t) dt = (Aq)i′ − aα ,

which implies that aα = πα(q)TAq, and hence

lim
k→+∞

1

Tk

∫ Tk

0

x(t)TAx(t) dt = qTAq .

�

The de�nition of permanence in the replicator equation (see De�-
nition 2.4) can be naturally extended to the polymatrix replicator, as
follows.

De�nition 4.2. Given a vector �eld X de�ned in Γn, we say that
the associated �ow ϕtX is permanent if there exists δ > 0 such that
x ∈ int (Γn) implies

lim inf
t→+∞

d
(
ϕtX(x), ∂Γn

)
≥ δ .

The following theorem extends Theorem 2.6 for polymatrix replica-
tors.
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Theorem 4.3. Let Φ : Γn → R be a smooth function such that
Φ = 0 on ∂Γn and Φ > 0 on int (Γn). Assume there is a continu-
ous function Ψ : Γn → R such that

(1) for any orbit x(t) in int (Γn), d
dt

log Φ(x(t)) = Ψ(x(t)) ,

(2) for any orbit x(t) in ∂Γn, ∃ T > 0 s.t.
∫ T
0

Ψ(x(t)) dt > 0.

Then the vector �eld X is permanent.

J. Hofbauer and K. Sigmund in [6, Theorem 12.2.1] state and prove a
result that is abstract and applicable to a much wider class of systems,
including polymatrix replicator systems. In fact, where they refer Sn
we can consider any d-dimensional simple polytope, since the proof
is exactly the same replacing Sn by this polytope. Hence, the result
stated in Theorem 4.3 as the one stated in the following Remark 4.4
are just an adaptation for polymatrix replicator systems of the result
in [6, Theorem 12.2.1] and [6, Theorem 12.2.2], respectively, whose
proofs are exactly the same as the ones made by J. Hofbauer and K.
Sigmund, just needing to replace Sn by Γn.

Remark 4.4. If we consider Γn instead of Sn in the result stated and
proved by J. Hofbauer and K. Sigmund in [6, Theorem 12.2.2], we
obtain an analogous result for polymatrix replicator systems saying
that for the conclusion in Theorem 4.3 it is enough to check (2) for all
ω-limit orbits in ∂Γn. Thus, de�ning

(2') for any ω-limit orbit x(t) in ∂Γn,
∫ T
0

Ψ(x(t)) dt > 0 for some
T > 0,

we have that condition (2') implies (2).

Let k ∈ N0 with 0 ≤ k ≤ n− p− 1, where p is the number of groups
in some population and n =

∑p
α=1 nα, with nα being the the number

of strategies in each group α ∈ {1, . . . , p}, as de�ned in the beginning
of section 3. Now let the k-dimensional face skeleton of Γn, denoted by
∂kΓn, to be the union of all j-dimensional faces of Γn, with 0 ≤ j ≤ k.
In particular, the vertex skeleton of Γn is the union ∂0Γn of all vertices
of Γn, and the edge skeleton of Γn is the union ∂1Γn of all vertices and
edges of Γn. We will use this sets in the proof of the following theorem,
which is an extension of Theorem 2.5 to polymatrix replicator systems.

Theorem 4.5. If there is a point q ∈ int (Γn) such that for all boundary
equilibria x ∈ ∂Γn,

qTAx > xTAx , (4.1)

then X is permanent.

Proof. The proof we present here is essentially an adaptation of the
argument used in the proof of Theorem 13.6.1 in [6].
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Take the given point q ∈ int (Γn) and consider Φ : Γn → R,

Φ(x) :=

p∏
α=1

nα∏
i=1

(xαi )q
α
i .

We can easily see that Φ = 0 on ∂Γn and Φ > 0 on int (Γn).
Consider now the continuous function Ψ : Γn → R,

Ψ(x) := qTAx− xTAx .

We have that
d

dt
log Φ(x(t)) = Ψ(x(t)) .

It remains to show that for any orbit x(t) in ∂Γn, there exists a T > 0
such that ∫ T

0

Ψ (x(t)) dt > 0 . (4.2)

We will prove by induction in k ∈ N0 that if x(t) ∈ ∂kΓn then (4.2)
holds for some T > 0.
If x(t) ∈ ∂0Γn then x(t) ≡ q′ for some vertex q′ of Γn. Since by (4.1)

Ψ(q′) > 0, (4.2) follows. Hence the induction step is true for k = 0.
Assume now that conclusion (4.2) holds for every orbit x(t) ∈ ∂m−1Γn,

and consider an orbit x(t) ∈ ∂mΓn. Then there is an m-dimensional
face σ ⊂ ∂mΓn that contains x(t). We consider two cases:

(i) If x(t) converges to ∂σ (the boundary of σ), i.e., limt→+∞ d (x(t), ∂σ) =
0, then the ω-limit of x(t), ω(x), is contained in ∂σ. By induction hy-
pothesis, (4.2) holds for all orbits inside ω(x), and consequently, by
Remark 4.4 the same is true about x(t).

(ii) If x(t) does not converge to ∂σ, there exists ε > 0 and a sequence
Tk → +∞ such that d (x(Tk), ∂σ) ≥ ε for all k ≥ 0. Let us write

x̄(T ) =
1

T

∫ T

0

x(t) dt and aα(T ) =
1

T

∫ T

0

πα(x(t))TAx(t) dt

for all α ∈ {1, . . . , p}. Since the sequences x̄(Tk) and aα(Tk) are
bounded, there is a subsequence of Tk, that we will keep denoting by Tk,
such that x̄(Tk) and aα(Tk) converge, say to q′ and aα, respectively, for
all α ∈ {1, . . . , p}. Thus, since x(t) is contained in the m-dimensional
face σ and we are in the case where x(t) does not converge to ∂σ,
considering the system restricted to σ, we can apply Proposition 4.1
and deduce that q′ is an equilibrium point in σ and aα = πα(q′)TAq′.
Therefore

1

Tk

∫ Tk

0

Ψ (x(t)) dt

converges to qTAq′ − q′TAq′, which by (4.1) is positive. This im-
plies (4.2) and hence proves the permanence of X. �
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A particular class of interest in the setting of the polymatrix repli-
cators is the dissipative polymatrix replicator. For formal de�nitions
and properties on conservative and dissipative polymatrix replicators
see [2]. For this class of systems we have that if a dissipative poly-
matrix replicator only has one globally attractive interior equilibrium,
then it is permanent.the following remark.
Given this, and by the de�nition of permanence, an interesting ques-

tion is whether dissipativity is a necessary condition for permanence.
This is not true, as illustrated by the �rst example in the next section,
since we prove that the system is permanent but not dissipative.

5. Example

We present here two examples of polymatrix replicators that are
permanent.
We prove that the �rst example is permanent because it satis�es

condition (4.1) of Theorem 4.5. Moreover, we show that this system
is not dissipative, illustrating that dissipativity is not necessary for
permanence.
In the second example, we prove that the system is permanent since it

is dissipative and have a unique globally attractive interior equilibrium.
However, it does not satisfy condition (4.1) (of Theorem 4.5), what
illustrates that this condition (4.1) is not necessary for permanence.
There is much more to analyse in the structure/dynamics of these

two examples, but this will be done in future work to appear.
All computations and pictures presented in this section were done

with Wolfram Mathematica and Geogebra software.

5.1. Example 1. Consider a population divided in 4 groups where
individuals of each group have exactly 2 strategies to interact with
other members of the population, whose the associated payo� matrix
is

A =



1 −1 −1 1 −100 100 −100 100
−1 1 1 −1 100 −100 100 −100
101 −101 −10 10 −1 1 −100 100
−101 101 10 −10 1 −1 100 −100

1 −1 100 −100 −190 190 −101 101
−1 1 −100 100 190 −190 101 −101

1 −1 5 −5 100 −100 −100 100
−1 1 −5 5 −100 100 100 −100


.

The phase space of the associated polymatrix replicator de�ned by
the payo� matrix A is the prism

Γ(2,2,2,2) := ∆1 ×∆1 ×∆1 ×∆1 ≡ [0, 1]4 .
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Besides the 16 vertices of Γ(2,2,2,2) (see Table 1), this system has 2
equilibria on 3d-faces of Γ(2,2,2,2) (see Table 2), 6 equilibria on 2d-faces
of Γ(2,2,2,2) (see Table 3), and 12 equilibria on 1d-faces (the edges) of
Γ(2,2,2,2) (see Table 4).

Vertices of Γ(2,2,2,2) f(vi)

v1 = (1, 0, 1, 0, 1, 0, 1, 0) −394
v2 = (1, 0, 1, 0, 1, 0, 0, 1) −4
v3 = (1, 0, 1, 0, 0, 1, 1, 0) −392
v4 = (1, 0, 1, 0, 0, 1, 0, 1) −6
v5 = (1, 0, 0, 1, 1, 0, 1, 0) −602
v6 = (1, 0, 0, 1, 1, 0, 0, 1) −592
v7 = (1, 0, 0, 1, 0, 1, 1, 0) −204
v8 = (1, 0, 0, 1, 0, 1, 0, 1) −198
v9 = (0, 1, 1, 0, 1, 0, 1, 0) −198
v10 = (0, 1, 1, 0, 1, 0, 0, 1) −204
v11 = (0, 1, 1, 0, 0, 1, 1, 0) −592
v12 = (0, 1, 1, 0, 0, 1, 0, 1) −602
v13 = (0, 1, 0, 1, 1, 0, 1, 0) −6
v14 = (0, 1, 0, 1, 1, 0, 0, 1) −392
v15 = (0, 1, 0, 1, 0, 1, 1, 0) −4
v16 = (0, 1, 0, 1, 0, 1, 0, 1) −394

Table 1. The vertices of Γ(2,2,2,2) and the value of f(vi), where
f(x) = (x−q)TAx and q =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
∈ int

(
Γ(2,2,2,2)

)
.

Equilibria on 3d-faces of Γ(2,2,2,2) f(qi)

q1 =
(
0.05266, 0.9473, 0.93275, 0.0672483, 0.991199, 9049

1028189
, 0, 1

)
−201.7

q2 =
(
0.9473, 0.05266, 0.0672483, 0.93275, 9049

1028189
, 0.991199, 1, 0

)
−201.7

Table 2. The equilibria on 3d-faces of Γ(2,2,2,2) and the value
of f(qi), where f(x) = (x−q)TAx and q =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
∈

int
(
Γ(2,2,2,2)

)
.

All these equilibria belong to ∂Γ(2,2,2,2) and satisfy

(1) (Ax)1 = (Ax)2 , (Ax)3 = (Ax)4 , (Ax)5 = (Ax)6 , (Ax)7 = (Ax)8,
(2) xα1 + xα2 = 1, for all α ∈ {1, . . . , 4} ,

where x = (x11, x
1
2, x

2
1, x

2
2, x

3
1, x

3
2, x

4
1, x

4
2) ∈ R8.

We have that all equilibria on ∂Γ(2,2,2,2) satisfy (4.1). In fact, we have
that for all equilibria x ∈ ∂Γ(2,2,2,2),

(x− q)T Ax < 0,
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Equilibria on 2d-faces of Γ(2,2,2,2) f(qi)

q3 =
(
0, 1, 0, 1, 9803

29100
, 19297
29100

, 893
2910

, 2017
2910

)
−19.2

q4 =
(
0, 1, 1, 0, 9649

14550
, 4901
14550

, 994
1455

, 461
1455

)
−76.7

q5 =
(
0, 1, 171

400
, 229
400
, 29
40
, 11
40
, 0, 1

)
−197.4

q6 =
(
1, 0, 0, 1, 4901

14550
, 9649
14550

, 461
1455

, 994
1455

)
−76.7

q7 =
(
1, 0, 1, 0, 19297

29100
, 9803
29100

, 2017
2910

, 893
2910

)
−19.2

q8 =
(
1, 0, 229

400
, 171
400
, 11
40
, 29
40
, 1, 0

)
−197.4

Table 3. The equilibria on 2d-faces of Γ(2,2,2,2) and the value
of f(qi), where f(x) = (x−q)TAx and q =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
∈

int
(
Γ(2,2,2,2)

)
.

Equilibria on 1d-faces of Γ(2,2,2,2) f(qi)

q9 =
(
0, 1, 0, 1, 1, 0, 97

100
, 3
100

)
−5.94

q10 =
(
1, 0, 1, 0, 0, 1, 3

100
, 97
100

)
−5.94

q11 =
(
0, 1, 1, 0, 0, 1, 1

50
, 49
50

)
−593.96

q12 =
(
1, 0, 0, 1, 1, 0, 49

50
, 1
50

)
−593.96

q13 =
(
0, 1, 1, 0, 47

95
, 48
95
, 1, 0

)
−207.1

q14 =
(
1, 0, 0, 1, 48

95
, 47
95
, 0, 1

)
−207.1

q15 =
(
0, 1, 2

5
, 3
5
, 1, 0, 0, 1

)
−307.2

q16 =
(
1, 0, 3

5
, 2
5
, 0, 1, 1, 0

)
−307.2

q17 =
(
0, 1, 0, 1, 1

2
, 1
2
, 0, 1

)
−203

q18 =
(
1, 0, 1, 0, 1

2
, 1
2
, 1, 0

)
−203

q19 =
(
0, 1, 1

2
, 1
2
, 0, 1, 0, 1

)
−488

q20 =
(
1, 0, 1

2
, 1
2
, 1, 0, 1, 0

)
−488

Table 4. The equilibria on 1d-faces of Γ(2,2,2,2) and the value
of f(qi), where f(x) = (x−q)TAx and q =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
∈

int
(
Γ(2,2,2,2)

)
.

with

q =

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
∈ int

(
Γ(2,2,2,2)

)
,

as we can see in Table 1, Table 2, Table 3, and Table 4.
Hence, by Theorem 4.5, we can conclude that the system de�ned by

the payo� matrix A is permanent.
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We prove now that this system is not dissipative. By de�nition [2,
De�nition 5.1] this system is dissipative if there exists a positive diag-
onal matrix D of the form

D =



d1 0 0 0 0 0 0 0
0 d1 0 0 0 0 0 0
0 0 d2 0 0 0 0 0
0 0 0 d2 0 0 0 0
0 0 0 0 d3 0 0 0
0 0 0 0 0 d3 0 0
0 0 0 0 0 0 d4 0
0 0 0 0 0 0 0 d4


,

such that the quadratic formQAD : H(2,2,2,2) −→ R de�ned byQAD (x) =
xTADx is negative semide�nite, where H(2,2,2,2) is the subspace (as de-
�ned in [2])

H(2,2,2,2) = {x ∈ R8 : xα1 + xα2 = 0, for allα ∈ {1, . . . , 4}} .
By the de�nition of H(2,2,2,2) we have that the symmetric matrix as-
sociated to the quadratic form QAD (x) is the four dimensional square
matrix

S =


2d1 101d1 − d2 d1 − 100d3 d1 − 100d4

101d1 − d2 −20d2 100d2 − d3 5d2 − 100d4
d1 − 100d3 100d2 − d3 −380d3 100d3 − 101d4
d1 − 100d4 5d2 − 100d4 100d3 − 101d4 −200d4

 .

We can see, for example by the criterion of the principal minors, that
this symmetric matrix S is not negative semide�nite (notice that d1,
d2, d3 and d4 must be positive). Hence, we conclude that the system
de�ned by the payo� matrix A is not dissipative. Since we have al-
ready seen that this system is permanent, this example illustrates that
dissipativity is not necessary for permanence.

5.2. Example 2. Consider a population divided in 3 groups where
individuals of each group have exactly 2 strategies to interact with
other members of the population, whose the associated payo� matrix
is

A =


0 −102 0 79 0 18

102 0 0 −79 −18 9
0 0 0 0 9 −18

−51 51 0 0 0 0
0 102 −79 0 −18 −9

−102 −51 158 0 9 0

 .

The phase space of the associated polymatrix replicator de�ned by
the payo� matrix A is the prism

Γ(2,2,2) := ∆1 ×∆1 ×∆1 ≡ [0, 1]3 .
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This system only has one interior equilibrium,

q =

(
1

2
,
1

2
,

71

158
,

87

158
,
2

3
,
1

3

)
∈ int

(
Γ(2,2,2,2)

)
.

Moreover, besides the 8 vertices of Γ(2,2,2),

v1 = (1, 0, 1, 0, 1, 0) , v2 = (1, 0, 1, 0, 0, 1) ,

v3 = (1, 0, 0, 1, 1, 0) , v4 = (1, 0, 0, 1, 0, 1) ,

v5 = (0, 1, 1, 0, 1, 0) , v6 = (0, 1, 1, 0, 0, 1) ,

v7 = (0, 1, 0, 1, 1, 0) , v8 = (0, 1, 0, 1, 0, 1) ,

it has 2 equilibria on two opposite 2d-faces of Γ(2,2,2),

q1 =

(
7

17
,
10

17
,
37

79
,
42

79
, 1, 0

)
, and q2 =

(
23

34
,
11

34
,

65

158
,

93

158
, 0, 1

)
,

as represented in Figure 1. In fact, all these equilibria satisfy

(1) (Ax)1 = (Ax)2 , (Ax)3 = (Ax)4 , (Ax)5 = (Ax)6,
(2) xα1 + xα2 = 1, for all α ∈ {1, . . . , 3} ,

where x = (x11, x
1
2, x

2
1, x

2
2, x

3
1, x

3
2) ∈ R6.

Consider the positive diagonal matrix

D =



1
51

0 0 0 0 0
0 1

51
0 0 0 0

0 0 1
79

0 0 0
0 0 0 1

79
0 0

0 0 0 0 1
9

0
0 0 0 0 0 1

9

 ,

and the a�ne subspace (as de�ned in [2])

H(2,2,2) = {x ∈ R6 : xα1 + xα2 = 0, for allα ∈ {1, . . . , 3}} .

The quadratic form QAD : H(2,2,2) −→ R de�ned by QAD (x) = xTADx,

is QAD (x) = −2 (x31)
2 ≤ 0. Hence, by [2, De�nition 5.1], this system is

dissipative.
Computing the eigenvalues of the matrix of the linearized system

around the interior equilibrium point, we �nd that it is a globally at-
tractive equilibrium. Since the interior equilibrium is unique it fol-
lows that the system is permanent. However, this second example
does not satis�es condition (4.1) of Theorem 4.5. In fact there is no
q ∈ int

(
Γ(2,2,2)

)
such that

xTAx− qTAx < 0 ,

for all equilibria x ∈ ∂Γ(2,2,2). Hence, this example illustrates that
condition (4.1) is not necessary for permanence.
We give now a brief description of the dynamics of this example, as

illustrated by the plot of three orbits in Figure 1. This system has a
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Figure 1. Two di�erent perspectives of the polytope Γ(2,2,2)

where the polymatrix replicator given by the payo� matrix A is
de�ned. Namelly, the plot of its equilibria and three interior orbits.

strict global Lyapunov function h : int
(
Γ(2,2,2,2)

)
→ R for XA, de�ned

by

h (x) = −
3∑

α=1

2∑
i=1

qαi
dα

log xαi ,

where XA is the associated vector �eld, q is the interior equilibrium,
and d1 = 1

51
, d2 = 1

79
, d3 = 1

9
(the elements on the main diagonal of

matrix D). In fact this function h has an absolute minimum at q and

satisfy ḣ = Dhx(XA) < 0 for all x ∈ int
(
Γ(2,2,2,2)

)
with x 6= q. Hence,

by Proposition 13 and Proposition 17 in [2], the ω-limit of any interior
point x ∈ int

(
Γ(2,2,2,2)

)
is the equilibrium q. The equilibria q1 and q2

in faces of Γ(2,2,2) are centres in each corresponding face, i.e., for any
initial condition in one of these faces the corresponding orbit will be
periodic around the equilibrium point in that same face.
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