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Abstract

This paper presents a multinomial method for option pricing when the
underlying asset follows an exponential Variance Gamma process. The
continuous time Variance Gamma process is approximated by a discrete
time Markov chain with the same firsts four cumulants. This approach
is particularly convenient for pricing American and Bermudan options,
which can be exercised at any time up to expiration date. Numerical
computations of European and American options are presented, and com-
pared with results obtained with finite differences methods and with the
Black Scholes model.

Keywords: American option, Lévy processes, Moment Matching, Multi-
nomial tree, Variance Gamma.

1 Introduction

Since the early nineties, a lot of research has been done on the topic of pure
jump Lévy processes to describe the dynamics of the asset returns. The main
contributions are due to Madan and Seneta (1990), Eberlein and Keller (1995),
Geman et al. (1998), Barndorff-Nielsen (1998).

Lévy processes are stochastic processes with independent and stationary
increments that have nice analytical properties and reproduce quite well the
statistical features of the financial data. For example, in Figure 1 we show four
histograms of the daily log-returns of four indices: the S&P 500 Stock Index,
the KOSPI (Korea Composite Stock Price Index), XAO (All Ordinaries Aus-
tralian Index) and TAIEX (Taiwan Capitalization weighted Stock Index). The
histograms are plotted together with the fitted Normal and Variance Gamma
(VG) densities. It is straightforward to check that the VG density reproduces
much better the high peaks near the origin, and the heavy tails of the empirical
data.
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Figure 1: Histogram of daily log-returns for S&P500, KOSPI, XAO and TAIEX.
The dashed line corresponds to the VG density. The continuous line is the
normal density. The VG parameters are obtained with the method of moments,
as explained in Seneta (2004).

The Variance Gamma process is a pure jump Lévy process with infinite
activity. This means that when the magnitude of the jumps becomes infinitesi-
mally small, the arrival rate of jumps tends to infinity. The first complete pre-
sentation of the symmetric VG model is due to Madan and Seneta (1990) where,
with respect to the Normal case, only an additional parameter is introduced to
control the kurtosis, while the skewness is still not considered. The authors
model the log-returns as a driftless Brownian motion with a random Gamma
distributed variance. This is the origin of the name “Variance Gamma”.

There are two representations of the VG process. In the first, the VG process
is obtained by time changing a Brownian motion with drift: the Brownian
motion is evaluated at random times that are Gamma distributed. A possible
interpretation is that the economical relevant times are random. The non-
symmetric VG process is described by Madan et al. (1998), where the authors
also presented an explicit form of the return density function and closed form
formula for the price of a vanilla European option. The authors consider a
Brownian motion with drift, and this gives the possibility to control the skewness
as well.

As a pure jump process, the VG process does not have a continuous mar-
tingale component. It resembles the Brownian motion because it has an infinite
number of jumps in any time interval, but unlike Brownian motion it has finite
variation, so the sum of the absolute value of the jumps in any time interval
converges. This property can be derived easily by the second representation
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of the VG process as the difference of two (finite variation) Gamma processes.
The proof can be found in Madan et al. (1998), where the authors show that
the two representations are equivalent, and also derive the VG characteristic
function as the product of two Gamma characteristic functions. This repre-
sentation has another interesting economical interpretation as the difference of
gains and losses. The Gamma processes are always increasing, therefore this
representation is coherent with independent gains and losses.

The VG process was first presented in the context of option pricing in Madan
and Milne (1991), where it was used in the pricing of European options. The
problem for European options can be easily solved by the analytical formula of
Madan et al. (1998) or numerically by different tecniques. Monte Carlo methods
for VG are presented in Fu (2000). A finite difference scheme for the VG Par-
tial Integro-Differential Equation (PIDE) is described in Cont and Voltchkova
(2005). In Carr and Madan (1998), the authors show how to solve the option
pricing problem using the Fourier transform method. The problem for American
options is considered in Hirsa and Madan (2001) and Almendral and Ooster-
lee (2007), where finite difference schemes are applied to solve the American
options PIDE for VG. However, the option pricing problem for an asset follow-
ing a risk neutral VG process, has never (to our knowledge) been faced in the
literature using a tree method. The tree method was first introduced by Cox
et al. (1979) for a market where the log-price can change only in two different
ways: an upward jump, or a downward jump. For this reason this discrete
model is called binomial model. The authors prove that when the number of
time steps increses, the discrete random walk of the log-price converges to the
Brownian motion and the option price converges to that of Black and Scholes
(1973). Multinomial models are a generalization of the binomial model and at
each time step it considers more than just two possible future states. In this
work we consider multinomial methods as developed by Yamada and Primbs
(2001), Yamada and Primbs (2003) and Yamada and Primbs (2004).

In Section 2 we present the basic features of Lévy processes, in particular
finite variation processes. The VG process and exponential VG are introduced
in the successive subsections. A short summary of some useful concepts such
as Poisson integration, and the relation between the Lévy symbol with the
cumulants are collected in the Appendices A and B. In Section 3 we review
the construction of the multinomial tree that approximates the VG process
following the method of moment matching proposed by Yamada and Primbs
(2001). We prove that the multinomial tree converges to the continuous time
jump process that we introduce to approximate the VG process. In Section
4, which is the most important of the paper, we describe the algorithm for
pricing options with the multinomial method and show the numerical results for
European and American options. In Section 5 we presents a topic that deserves
further research. We show how to obtain the parameters of the discrete time
Markov chain that approximate the VG process, by discretizing its infinitesimal
generator. However, using this method, the transition probabilities are not
always positive. These coincide with the probabilities obtained with the moment
matching condition only for a particular choice of the parameters. This topic
can be further investigated. In Section 6 there are the conclusions.
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2 Lévy processes

Let Xt be a stochastic process defined on a probability space (Ω,F , (Ft≥0),P),
Xt is said to be a Lévy process if it satisfies the three properties:

1. X0 = 0.

2. Xt has independent and stationary increments.

3. Xt is stochastically continuous: ∀ε, t > 0 limh→0 P
(
|Xt+h−Xt| > ε

)
= 0.

The characteristic function of every Lévy process Xt has the Lévy-Khintchine
representation:

φXt(u) = E[eiuXt ] (1)

= etη(u)

= exp

[
t

(
ibu− 1

2
σ̃2u2 +

∫
R

(
eiux − 1− iux1(|x|<1)(x)

)
ν(dx)

)]
,

where η(u) is called Lévy symbol, b ∈ R and σ̃ ≥ 0 are constants1 and ν(dx) is
the Lévy measure which satisfies:

ν({0}) = 0,

∫
R
(1 ∧ x2)ν(dx) <∞. (2)

The Lévy triplet (b, σ̃, ν) completely characterizes a Lévy process. Every Lévy
process can be written as the superposition of a Brownian motion with drift
and a pure jump process. This is the so called Lévy-Itō decomposition:

dXt = bdt+ σ̃dWt +

∫
|x|≥1

xN(dt, dx) +

∫
|x|<1

xÑ(dt, dx), (3)

where Wt is a standard Brownian motion, N(dt, dx) and Ñ(dt, dx) are the Pois-
son random measure and the compensated Poisson random measure (see Ap-
pendix A).

We are interested in particular in processes with finite variation and finite
moments. We see that the Lévy measure contains all the information we need:

• A Lévy process with triplet (b, σ̃, ν) is of finite variation if and only if

σ̃ = 0 and

∫
|x|<1

|x|ν(dx) <∞. (4)

• A Lévy process has finite moment of order n, E[Xn
t ] <∞, if and only if∫

|x|≥1

|x|nν(dx) <∞. (5)

1The diffusion coefficients is usually referred as σ. Here we call it σ̃ because we will call σ
a parameter of the VG process.

4



For a proof see Applebaum (2009), Theorem 2.4.25 and Theorem 2.5.2. As a
conseguence of these two properties, the truncator term 1(|x|<1) can be absorbed
in the parameter b. It is easy to verify that every finite variation Lévy process
is a compound Poisson process:

Xt = b′t+

∫
R
xN(t, dx), (6)

with b′ = b−
∫
|x|<1

xν(dx). The Lévy symbol is:

η(u) = ib′u+

∫
R

(eiux − 1)ν(dx). (7)

2.1 The Variance Gamma process

The VG process is obtained by time changing a Brownian motion with drift.
The new time variable is a stochastic process Tt whose increments are Gamma
distributed and Tt ∼ Γ(µt, κ) with density2:

fTt(x) =
(µκ )

µ2t
κ

Γ(µ
2t
κ )

x
µ2t
κ −1e−

µx
κ x ≥ 0. (8)

The Gamma process Tt is a subordinator. A subordinator is a one dimensional
Lévy process that is non-decreasing almost surely. Therefore it is consistent to
represent a time variable. It is possible to prove that every subordinator is a
finite variation process (see Applebaum (2009)).

Consider a Brownian motion with drift Xt = θt+ σWt, with Wt ∼ N (0, t),
and replace the time variable by the Gamma subordinator Tt ∼ Γ(t, κ) (with
µ = 1). We obtain the Variance Gamma process:

Xt = θTt + σWTt . (9)

It depends on three parameters:

• θ, the drift of the Brownian motion,

• σ, the volatility of the Brownian motion,

• κ, the variance of the Gamma process.

The characteristic function of the VG process can be computed easily by condi-
tioning on the realization of the Gamma time (Proposition 1.3.27 of Applebaum
(2009))

φXt(u) =

(
1− iκ

(
uθ +

i

2
σ2u2

))− t
κ

(10)

=

(
1− iθκu+

1

2
σ2κu2

)− t
κ

, (11)

2Usually the Gamma distribution is paramentrized by a shape and scale positive parameters

X ∼ Γ(ρ, ζ). The Gamma process Xt ∼ Γ(ρt, ζ) has pdf fXt (x) = ζ−ρt

Γ(ρt)
xρt−1e

− x
ζ and has

moments E[Xt] = ρζt and Var[Xt] = ρζ2t. Here we use a parametrization as in Madan et al.

(1998) such that E[Xt] = µt and Var[Xt] = κt, so ζ = κ
µ

, ρ = µ2

κ
.
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and the Lévy symbol is thus

η(u) = − 1

κ
log(1− iθκu+

1

2
σ2κu2). (12)

Using the formula (66) in Appendix B for the cumulants we derive:

c1 = tθ (13)

c2 = t(σ2 + θ2κ)

c3 = t(2θ3κ2 + 3σ2θκ)

c4 = t(3σ4κ+ 12σ2θ2κ2 + 6θ4κ3).

The VG Lévy measure is3:

ν(dx) =
e
θx
σ2

κ|x|
exp

−
√

2
κ + θ2

σ2

σ
|x|

 dx. (14)

It satisfies conditions (4) and (5). The finite variation process can be represented
as a compound Poisson process as in (6) and (7), with no additional drift b′ = 0.

Xt =

∫
R
xN(t, dx). (15)

All the informations are contained in the Lévy measure (14), which completely
describes the process. Even if the process has been created by Brownian sub-
ordination, it has no diffusion component. The Lévy triplet is (0, 0, ν). Using
the formalism of Poisson integrals in Appendix A, the Lévy symbol (12) has the
representation4:

η(u) =

∫
R
(eiux − 1)ν(dx). (16)

2.2 Exponential VG model

Under the risk neutral measure Q, the dynamics of the stock price is described
by an exponential Lévy model :

St = S0e
rt+Xt , (17)

where r is the risk free interest rate, and Xt is a general Lévy process. Under
Q, the discounted price is a Q-martingale:

EQ[Ste−rt∣∣S0

]
= EQ[S0e

Xt
∣∣S0

]
= S0, (18)

and so EQ[eXt |X0 = 0] = 1. The condition for the existence of the exponential
moment E[eXt ] <∞ is equivalent to∫

|x|>1

exν(dx) <∞, (19)

3In Madan et al. (1998) the authors derive the expression for the Lévy measure using the
VG representation as the difference of two Gamma processes and then change the parameters.

4See Example 8.10 in Sato (1999).
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as proved in the Lemma 25.7 in Sato (1999). For the VG process it is easy to
verify that it is satisfied. We need to add a correction term to Xt to satisfy the
martingale condition5. The following process is a martingale:

St = S0e
(r+ω)t+Xt . (20)

where w = 1
κ log(1− θκ− 1

2σ
2κ). Passing to the log-prices Yt = log(St), we get

a Poisson process as in Eq. (6) with b′ = r + ω

Yt = Y0 + (r + ω)t+

∫
R
xN(t, dx). (21)

Let V (t, Yt) be the value of an option at time t. By the martingale pricing theory,
the discounted price of the option is a martingale. From this it is possible to
derive the partial integro-differential equation (PIDE) for the price of the option

EQ
[
d
(
e−rtV (t, Yt)

)]
=
∂V (t, y)

∂t
+ LYtV (t, y)− rV (t, y) = 0, (22)

where LYtV (t, Yt) is the infinitesimal generator of the log-price process (21).
The resulting PIDE is

∂V (t, y)

∂t
+ (r + ω)

∂V (t, y)

∂y
+

∫
R

[
V (t, y + x)− V (t, y)

]
ν(dx) = rV (t, y). (23)

3 The multinomial method

In this section we introduce the multinomial method proposed in Yamada and
Primbs (2004). The stock price is considered as a Markov chain with L possible
future states at each time. In this setting, the time t ∈ [t0, T ] is discretized as
tn = t0 + n∆t for n = 0, ..., N and ∆t = (T − t0)/N . We denote the stock price
at time tn as S(tn) = Sn.

Consider the up/down factors u > d > 0 and write the discrete evolution of
the stock price Sn as:

Sn+1 = uL−ldl−1Sn l = 1, ..., L (24)

where each future state has transition probability pl, satisfying
∑L
l=1 pl = 1.

The value of the stock at time tn can assume j ∈ [1, n(L − 1) + 1] possible
values:

S(j)
n = un(L−l)+1−jdj−1S0. (25)

The multinomial tree is recombining if for a constant c > 1, u/d = c. Regarding
our work, we only consider five branches, L = 5. As explained in Yamada and
Primbs (2004), this number of branches is enough to model the features of a
stochastic process up to its fourth moment.

5 To find the correction ω we have to find the exponential moment of Xt using its charac-
teristic function:

E[eXt ] = φXt (−i) = e−ωt

.
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3.1 Moment matching

To determine the parameters of the Markov chain we ask for the local moments
to be equal to that of the continuous process. First, rewrite the continuous
process (21) as the sum of a drift term and a martingale term:

Yt+∆t − Yt = (r + ω)∆t+

∫
R
xN(∆t, dx) (26)

= (r + ω + θ)∆t+

∫
R
xÑ(∆t, dx)

where θ =
∫
R xν(dx) is the mean of the Poisson process (for ∆t = 1), and the

compensated Poisson integral term is a martingale (see Appendix A).
We can pass to log-prices Yn = log(Sn) in the discrete Eq. (24), and write

it as the sum of a drift component and a random variable with L possible
outcomes:

∆Y = Yn+1 − Yn = (L− l) log(u) + (l − 1) log(d) (27)

= b∆t+ (L− 2l + 1)α(∆t).

The term b∆t is the drift term, while (L − 2l + 1)α(∆t) is a random variable
that satisfies the martingale condition

E
[
(L− 2l + 1)α(∆t)

]
= α(∆t)

L∑
l=1

pl(L− 2l + 1) = 0,

with α(∆t) a function of ∆t.
The corresponding up/down factors have the following representation:

u = exp

(
b

L− 1
+ α(∆t)

)
d = exp

(
b

L− 1
− α(∆t)

)
, (28)

and we can readly see that if u/d is constant, the tree recombines.
Given the mean c1 = E[∆Y ] = b∆t, the k-central moment is

E
[
(∆Y − c1)k

]
= α(∆t)k E

[
(L− 2l + 1)k

]
. (29)

The moment matching condition requires that the central moments of the dis-
crete process (27) are equal to the central moments of the continuous process
(26):

α(∆t)k E
[
(L− 2l + 1)k

]
= µk. (30)

Using the relation between central moments and cumulants (Eq. (67) in Ap-
pendix B) we can solve the linear system of equations for the transition proba-
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bilities:

p1 =
1

196α(t)4

[
3

2
c22 − 2c2α(t)2 + 2c3α(t) +

1

2
c4

]
(31)

p2 =
1

196α(t)4

[
−6c2 + 32c2α(t)2 − 4c3α(t)− 2c4

]
p3 = 1 +

1

196α(t)4

[
3c4 + 9c22 − 60c2α(t)2

]
p4 =

1

196α(t)4

[
−6c2 + 32c2α(t)2 + 4c3α(t)− 2c4

]
p5 =

1

196α(t)4

[
3

2
c22 − 2c2α(t)2 − 2c3α(t) +

1

2
c4

]
.

The drift parameter (for ∆t = 1) can be easily computed as b = r+ω+ θ. The
only missing parameter to determine is α(∆t). This is a function of the time
increment ∆t and can be be determined using the higher order in the moment
matching condition together with the condition of positive probabilities.

Recall that in the well known binomial model for a diffusion process, it
takes the value α(∆t) = σ̃

√
∆t, and represents the volatility of the increments

in ∆t, see Cox et al. (1979). In the trinomial model, it takes the well known
value α(∆t) = 3

4 σ̃
√

∆t, see for instance Yamada and Primbs (2001). For the
multinomial method a good representation for the parameter is

α(∆t) =
√
c2

√
3 + κ̄

12
, (32)

where κ̄ = c4/c
2
2 is the excess of kurtosis6. We refer to the paper of Yamada and

Primbs (2004) for the derivation. This choiche guarantees that the probabilities
pi for i = 1...5 are always positive and sum to one. We can use the formula
(32), together with (31), to obtain the simpler form:

[p1, p2, p3, p4, p5] =

[
3 + κ̄+ s

√
9 + 3κ̄

4(3 + κ̄)2
,

3 + κ̄− s
√

9 + 3κ̄

2(3 + κ̄)2
, (33)

3 + 2κ̄

2(3 + κ̄)
,

3 + κ̄+ s
√

9 + 3κ̄

2(3 + κ̄)2
,

3 + κ̄− s
√

9 + 3κ̄

4(3 + κ̄)2

]
.

where s = c3/
√
c32 is the skewness.

Remark 1. The standard deviation of a Lévy process with finite moments fol-
lows the square root rule. This means that the term α(∆t) has to be proportional
to the square root of ∆t. In the binomial and trinomial models, the proportion-
ality constant is explicit, while for the pentanomial method it is implicit in the
formula (32). Expanding the formula using the expression (13) for the cumu-
lants, it is possible to check that the square root rule is satisfied at first order in√

∆t.

6I use the bar over κ, to distinguish the kurtosis from the variance of the gamma process
κ.
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3.2 Convergence

In this section we prove that the multinomial method converges to a compound
Poisson process that is an approximation of the Variance Gamma process.

We call a generic compound Poisson process (6), with the same first four
cumulants (13) of the original VG process (21), the approximated VG process
XA. The cumulant generating function of the increment ∆XA has the following
series representation (see Appendix (B)):

H∆XA(u) = ic1u−
c2u

2

2
− ic3u

3

3!
+
c4u

4

4!
+O(u5). (34)

We can check that this expression holds for the VG increments as well, simply
by using a Taylor expansion up to the fourth order on the VG Lévy exponent
(12), and adding the addidional drift term c1 = b∆t = (r + ω + θ)∆t.

Theorem 3.1. The increments of the discrete Markov chain (27) and the in-
crements of the approximated VG process XA have the same distribution.

Proof. The idea of the proof is to show that the cumulant generating function
of the discrete process (27) coincides with that of the approximated VG process
(34). We prove it using the moment matching condition (30).

H∆Y (u) = log
(
φ∆Y (u)

)
= log

(
E
[
eiu∆Y

])
(35)

= log

(
E
[
eiu
(
b∆t+(L−2l+1)α(∆t)

)])
= iub∆t+ log

(
E
[
eiu
(

(L−2l+1)α(∆t)
)])

.

We can expand in Taylor series up to the fourth order in u, and use the moment
matching condition (30) to obtain:

H∆Y (u) = log

( 4∑
k=0

(iu)k

k!

(
α(∆t)

)kE[(L− 2l + 1
)k]

+O(u5)

)
(36)

= log

( 4∑
k=0

(iu)k

k!
µk +O(u5)

)

=

4∑
k=0

(iu)k

k!
ck +O(u5)

= HXA(u),

where c0 = 0.

Remark 2. The proof can be easly generalized for a Taylor expansion of order
n. For n → ∞, the approximated VG process converges to the original VG
process. However the number of branches of the discrete tree goes to infinity
as well. The five branches we consider are enough to describe the features of
the underlying process and, at the same time, keep the numerical problem quite
simple.

10



Theorem 3.2. The distribution of the multinomial tree at time N converges to
the distribution of the approximated VG process at time N , when ∆t→ 0.

For the proof of this theorem we refer to the proof in Section 4.2 of Yamada
and Primbs (2004). They prove that when the ∆t→ 0 the characteristic funcion
of the multinomial tree converges to the characteristic function of a Poisson
process.

4 Numerical results

In this section we present the steps to implement the algorithm to price Euro-
pean and American options by the multinomial method. Then we compare the
results with the ones obtained by the PIDE method and Black-Scholes model.

4.1 Algorithm

In order to implement the multinomial method, we suggest the following algo-
rithm:

1. Estimate the four risk neutral parameters (b, θ, σ, κ) of the VG process
with drift (26). This can be done as described in Seneta (2004).

2. Compute the cumulants of the VG process with parameters estimated in
1. using the relations in (66). Then compute the mean, variance, skewness
and kurtosis.

3. Compute the transition probabilities vector (33).

4. Compute the up/down factors u and d (28) and then the vector of prices
SN at terminal time N as in Eq. (25).

5. Evaluate the payoff of the option V N (SN ) at terminal time N .

6. Compute the values of the option at the previous time level. The value is
the conditional expectation given the current value of the price of the five
future option values:

V n = e−r∆tEQ
[
V n+1(Sn+1)

∣∣∣∣S(k)
n = s(k)

n

]
. (37)

7. In computing the price of an American option, the value at the previous
time level is the maximum between the conditional expectation and the
intrinsic value of the option. For an American put we have:

V n = max

{
e−r∆tEQ

[
V n+1(Sn+1)

∣∣∣∣S(k)
n = s(k)

n

]
,K − S(k)

n

}
. (38)

8. Iterate the algorithm until the initial time t0.

The points 1. and 2. can be skipped if using a non-parametric model and the
moments can be computed directly from the data. However, in this work we
want to start from a parametric model. We assume the following values for the
VG parameters:

11



r θ σ κ

0.06 -0.1 0.2 0.2

Table 1: r is the risk free interest rate. θ, σ, κ are the VG parameters.

4.2 European options

We compare the numerical results obtained for European call and put options
with the values obtained solving the VG PIDE, Eq. (23).

• VG PIDE : We solve the partial integro-differential equation following the
method proposed by Cont and Voltchkova (2005). The Lévy measure
is singular in the origin and this is a problem for the computation of
the integral term. The authors propose to approximate the small jumps
with infinite activity, with a Brownian motion. Therefore the original VG
process becomes an approximated jump diffusion process. The associated
PIDE is then solved with the implicit-explicit scheme proposed in the same
paper.

• Multinomial : We follow the algorithm proposed in the previous section.
The number of time steps for all the computations is N = 2000.

Figure 2: European call option with strike K = 40 and time to maturity 1 year.

Figures (2) and (3) show that the prices obtained by the multinomial method
agree with the prices obtained by solving the VG PIDE.

There are many other methods to compute the price of an European call
and put option, such as the closed formula developed by Madan et al. (1998),
the FFT method of Carr and Madan (1998) and the Monte Carlo algorithms
explained in Cont and Tankov (2003). The big advantage of the multinomial
method is in the computation of the price of American options, where the other

12



Figure 3: European put option with strike K = 40 and time to maturity 1 year.

algorithms (in particular PIDEs and Least Squares Monte Carlo) are difficult
to implement and are much slower.

4.3 American options

In this section we present the numerical results for American put options and
compare them with the prices obtained with the Black-Scholes model.

S0 T BS Eu. Put VG Eu. Put BS Am. Put VG Am. Put
36 1 3.8443 3.7837 4.4867 4.3173
36 2 3.7632 3.7695 4.8483 4.8817
38 1 2.8521 2.7756 3.2573 3.2034
38 2 2.9901 3.0232 3.7512 3.8401
40 1 2.0660 2.0908 2.3194 2.3767
40 2 2.3553 2.4046 2.8897 2.9997
42 1 1.8413 1.5014 1.6214 1.6947
42 2 1.4648 1.9252 2.2167 2.3366
44 1 1.4296 1.1229 1.1132 1.2267
44 2 1.0171 1.5205 1.6936 1.8449

Table 2: Values for European and American put options using Black-Scholes
and Variance Gamma model. Strike K = 40. BS values have σ = 0.2.

In Table (2), we present some results for European and American put op-
tions using the Black Scholes and the Variance gamma models. We choose the
parameters and the values of strike and spot price in order to compare with
other computations in the literature. The reader may compare our results with
those obtained in Longstaff and Schwartz (2001).
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Even if we compare results obtained with two different processes, the com-
parison makes sense as long as the processes have the same mean and variance.
At first order approximation, we can ignore the term in θ2 appearing in the
formula for c2. Therefore c2 = t(σ2 + θ2κ) ≈ tσ2.

The Black-Scholes prices are computed using a binomial algorithm. Of
course the same values can be obtained with the multinomial algorithm in the
limit of θ, κ → 0. Recall that under the Black-Scholes model, the log-returns
follow a Brownian motion. Looking at the definition of the VG process (9), it is
easy to see that when the drift θ and the variance of the Gamma subordinator
κ are zero, the process turns out to be a Brownian motion:

XV G
t →

θ,κ→0
σWt

As a conseguence, the price process (20) converges to the Geometric Brownian
Motion:

St = S0e
(r+ω)t+Xt →

θ,κ→0
S0e

(r− 1
2σ

2)t+σWt

where:

lim
θ,κ→0

w = lim
θ,κ→0

1

κ
log(1− θκ− 1

2
σ2κ)

= −1

2
σ2

5 Finite difference approximation

Consider the VG PIDE (23):

∂V (t, x)

∂t
+ (r + ω)

∂V (t, x)

∂x
+

∫
R

[
V (t, x+ y)− V (t, x)

]
ν(dy) = rV (t, x). (39)

We can expand V (t, x+ y) using the Taylor formula up to the fourth order:

V (t, x+ y) = V (t, x) +
∂V (t, x)

∂x
y +

1

2

∂2V (t, x)

∂x2
y2 (40)

+
1

6

∂3V (t, x)

∂x3
y3 +

1

24

∂4V (t, x)

∂x4
y4

and use the expression for the cumulants (see Appendix A). We call c̃n the
cumulant evaluated at t = 1 :

c̃n =

∫
R
ynν(dy). (41)

The approximated equation is a fourth order PDE:

∂V (t, x)

∂t
+ (r + ω + c̃1)

∂V (t, x)

∂x
+

1

2
c̃2
∂2V (t, x)

∂x2
(42)

+
1

6
c̃3
∂3V (t, x)

∂x3
+

1

24
c̃4
∂4V (t, x)

∂x4
= rV (t, x)

Consider the variable x in the interval [xmin, xmax] and discretize time and
space, such that h = ∆x = xmax−xmin

N and ∆t = T−t0
M for N,M ∈ N. Using the

14



variables xi = xmin + ih for i = 0, ..., N and tn = t0 + n∆t for n = 0, ...,M , we
use the short notation

V (tn, xi) = V ni .

We can use the following discretization for the time derivative, corresponding
to an explicit method:

∂V (t, x)

∂t
=
V n+1
i − V ni

∆t
, (43)

and the central difference for the spatial derivative:

∂V (t, x)

∂x
=
V n+1
i+h − V

n+1
i−h

2h
, (44)

∂2V (t, x)

∂x2
=
V n+1
i+h + V n+1

i−h − 2V n+1
i

h2
,

∂3V (t, x)

∂x3
=
V n+1
i+2h − V

n+1
i−2h + 2V n+1

i−h − 2V n+1
i+h

2h3
,

∂4V (t, x)

∂x4
=
V n+1
i−2h + V n+1

i+2h − 4V n+1
i−h − 4V n+1

i+h + 6V n+1
i

h4
.

The discretized equation is:(
V n+1
i − V ni

∆t

)
+ (r + ω + c̃1)

(
V n+1
i+h − V

n+1
i−h

2h

)
(45)

+
1

2
c̃2

(
V n+1
i+h + V n+1

i−h − 2V n+1
i

h2

)
+

1

6
c̃3

(
V n+1
i+2h − V

n+1
i−2h + 2V n+1

i−h − 2V n+1
i+h

2h3

)
+

1

24
c̃4

(
V n+1
i−2h + V n+1

i+2h − 4V n+1
i−h − 4V n+1

i+h + 6V n+1
i

h4

)
= rV ni

Rearranging the terms we obtain:

(1 + r∆t)V ni =V n+1
i+h

[
(r + ω + c̃1)∆t

2h
+
c̃2∆t

2h2
− c̃3∆t

6h3
− c̃4∆t

6h4

]
(46)

+V n+1
i−h

[
−(r + ω + c̃1)∆t

2h
+
c̃2∆t

2h2
+
c̃3∆t

6h3
− c̃4∆t

6h4

]
+V n+1

i+2h

[
c̃3∆t

12h3
+
c̃4∆t

24h4

]
+V n+1

i−2h

[
− c̃3∆t

12h3
+
c̃4∆t

24h4

]
+V n+1

i

[
1− c̃2∆t

h2
+
c̃4∆t

4h4

]
.

If we rename the coefficients, the equation is:

(1 + r∆t)V ni = V n+1
i+h p+h +V n+1

i−h p−h +V n+1
i+2hp+2h +V n+1

i−2hp−2h +V n+1
i p0. (47)
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The coefficients can be interpreted as the (risk neutral) transition probabilities
for the Markov chain:

X(tn+1) =



X(tn) + 2h with P(xi → xi + 2h) = p+2h

X(tn) + h with P(xi → xi + h) = p+h

X(tn) with P(xi → xi) = p0

X(tn)− h with P(xi → xi − h) = p−h

X(tn) + 2h with P(xi → xi − 2h) = p−2h

It is straightforward to verify that the probabilities sum to 1. The value of the
option in the previous time step is thus the discounted expectation under the
risk neutral probability measure Q:

V ni =
1

1 + r∆t
EQ
[
V n+1(X(tn+1))

∣∣∣∣X(tn) = xi

]
. (48)

Define the increments ∆X = X(tn+1) −X(tn). We check that the local prop-
erties for the moments of the Markov chain are satisfied:

µ′ = E[∆X] =
(
r + ω + c̃1

)
∆t (49)

µ′2 =E[∆X2] = c̃2∆t (50)

µ′3 =E[∆X3] =
(
(r + ω + c̃1)h2 + c̃3

)
∆t (51)

µ′4 =E[∆X4] =
(
c̃2h

2 + c̃4
)
∆t. (52)

At first order in ∆t we can calculate the variance, skewness and kurtosis7 :

Var[∆X] ≈ c̃2∆t (53)

Skew[∆X] ≈ (r + ω + c̃1)

(c̃2)3/2

h√
∆t

+
c̃3

(c̃2)3/2

1√
∆t

(54)

Kurt[∆X] ≈ h2

c̃2

1

∆t
+

c̃4
(c̃2)2

1

∆t
. (55)

So, with a step size h proportional to the square root of ∆t as in (32), we
confirm that the local variance, skewness and kurtosis are consistent with their
definition in terms of cumulants, up to a constant factor.

Using the a step size h = 2α(∆t), these probabilities can be approximated
by the probabilities in (33). However, the probabilities obtained by the dis-
cretization of the PDE are not always positive. The two sets of probabilities are
close only for a well determined set of parameters. This can be a topic of further
research. We can plot, for example, the two probabilities obtained respectively
by Moment Matching and PDE discretization:

pMM
3 =

3 + 2κ̄

2(3 + κ̄)
and pPDE3 = 1− c̃2∆t

h2
+
c̃4∆t

4h4

7Remind that Skew[X] = µ3

µ
3/2
2

and Kurt[X] = µ4

µ2
2

, with µi the central i-th moment.

Remind also that µ3 = µ′3 − 3µ′µ′2 + 2µ′3 and µ4 = µ′4 − 4µ′µ′3 + 6µ′2µ′2 − 3µ′4

16



Figure 4: Probabilities pMM
3 and pPDE3 as functions of the kurtosis.

6 Conclusions

In this paper we show how to price options using a multinomial method when
the underlying price is modelled as a Variance Gamma process. The multino-
mial method is well known in the literature, see for example Cont and Tankov
(2003), Yamada and Primbs (2001), Yamada and Primbs (2003) and Yamada
and Primbs (2003), but in the literature the are no works (to our knowledge)
that analyse the VG process and compare it with other results.

The VG process is approximated by a general jump process that has the same
firsts four cumulants of the original VG process. We proved that the multinomial
method converges to this approximated process. We obtained numerical results
for European and American options, and compared them with PIDE methods
and with results computed within the Black Scholes framework. It turns out
that the multinomial method is faster than Finite Differences methods and easier
to implement.

We proposed a topic of further research in Section 5. The probabilities ob-
tained by discretizing the approximated PDE are not always positive. They are
related with the probabilities obtained by moment matching for some particular
choice of the parameters. This relation can be further investigated. Another
possible topic of further research is the comparison of our results for the Amer-
ican options with other numerical methods such as the Least Square Monte
Carlo (Longstaff and Schwartz (2001)) and finite differences (Almendral and
Oosterlee (2007)).

17



Acknowledgements

Our sincere thanks are for the Department of Mathematics of ISEG and CEMAPRE,
University of Lisbon, http://cemapre.iseg.ulisboa.pt/. This research was
supported by the European Union in the FP7-PEOPLE-2012-ITN project STRIKE
- Novel Methods in Computational Finance (304617), and by CEMAPRE MULTI/00491,
financed by FCT/MEC through Portuguese national funds. We wish also to ac-
knowledge all the members of the STRIKE network, http://www.itn-strike.
eu/.

A Poisson integration

A convenient tool for analysing the jumps of a Lévy process is the random
measure of jumps. With this formalism is possible to describe jump processes
with infinite activity, like the VG. The jump process associated to the Lévy
process Xt is defined, for each 0 ≤ t ≤ T , by:

∆Xt = Xt −Xt− (56)

where Xt− = lims↑tXs. Consider a set A ∈ B(R\{0}) , the random measure of
the jumps of the process Xt is defined by:

N(t, A)(ω) = #{∆Xs(ω) ∈ A : 0 ≤ s ≤ t} (57)

=
∑
s≤t

1A(∆Xs(ω)).

This measure counts the number of jumps of size in A, up to time t. Fix
A ∈ B(R\{0}). The process N(t, A)(ω) is a Poisson process with intensity

ν(A) = E[N(1, A)], (58)

(see Applebaum (2009) theorem 2.3.5). The process N(t, A) is called Poisson
random measure. The Lévy measure corresponds to the intensity of the Poisson
measure. The Compensated Poisson random measure is defined by

Ñ(t, A) = N(t, A)− tν(A), (59)

which is a martingale.
The next step is to define the integration with respect to a random measure.

Following Applebaum (2009), let f : R → R be a Borel-measurable function.
We define the Poisson integral of f as:∫

A

f(x)N(t, dx)(ω) =
∑
x∈A

f(x)N(t, {x})(ω). (60)

For the case of integration of the identity funcion, we see that every compound
Poisson process can be represented by:

Xt =
∑
s∈[0,t]

∆Xs =

∫ t

0

∫
R
xN(dt, dx). (61)
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We can also define in the same way the compensated Poisson integral with
respect the compensated Poisson measure.

We present a last formula for computing the moments of a general com-
pound Poisson process. Let f : R → R be a measurable function and Xt =∫
A
f(x)N(t, dx), the characteristic function of Xt is:

E[eiuXt ] = E
[
exp

(
iu

∫
A

f(x)N(t, dx))

)]
(62)

= exp

(
t

∫
A

[eiuf(x) − 1]ν(dx)

)
.

Assuming that E[Xn
t ] < ∞, all the moments can be computed from (62) by

differenciation using eq:

E[Xn
t ] =

1

in
∂nφXt(u)

∂un

∣∣∣∣
u=0

, ∀n ∈ N. (63)

For the case of f identity function and A = R, we find the expression for the
cumulants using (66).

cn = t

∫
R
xnν(dx). (64)

The cumulants of Xt are thus the moments of its Lévy measure.

B Cumulants

The cumulant generating function HXt(u) of Xt is defined as the natural log-
arithm of its characteristic function (see Cont and Tankov (2003)). Using the
Lévy-Khintchine representation for the characteristic function (1), it is easy to
find its relation with the Lévy simbol:

HXt(u) = log(φXt(u)) (65)

= tη(u)

=

∞∑
n=1

cn
(iu)n

n!

The cumulants of a Lévy process are thus defined by:

cn =
t

in
∂nη(u)

∂un

∣∣∣∣
u=0

. (66)

The cumulants are closely related to the central moments µn:

µ0 = 1, µ1 = 0, µn =

n∑
k=1

(
n− 1

k − 1

)
ckµn−k for n > 1. (67)

For a Poisson process with finite firsts n moments, all the information about
the cumulants is contained inside the Lévy measure. Expand in Taylor series
the exponential

eiux ≈ 1 + iux− u2x2

2
− iu3x3

3!
+
u4x4

4!
+ . . .
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The Lévy symbol from the representation (7) becomes:

tη(u) = ib′ut+ t

∫
R

(eiux − 1)ν(dx) (68)

= i

(
b−

∫
|x|<1

xν(dx)

)
ut+ iut

∫
R
xν(dx)− u2

2
t

∫
R
x2ν(dx)

− iu3

3!
t

∫
R
x3ν(dx) +

u4

4!
t

∫
R
x4ν(dx) + . . .

= ic1u−
c2u

2

2
− ic3u

3

3!
+
c4u

4

4!
+ . . .

with c1 = t
(
b+

∫
|x|≥1

xν(dx)
)
.
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