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Abstract

We present an approach for pricing a European call option in presence
of proportional transaction costs, when the stock price follows a general
exponential Lévy process. The model is a generalization of the celebrated
work of Davis, Panas and Zariphopoulou (1993), where the value of the op-
tion is found using the concept of utility indifference price. This requires to
solve two stochastic singular control problems in finite time, satisfying the
same Hamilton-Jacobi-Bellman equation and with different terminal con-
ditions. We solve numerically the continuous time optimization problem
using the Markov chain approximation method, and consider the under-
lying stock following an exponential Merton jump-diffusion process. This
model takes into account the possibility of portfolio bankruptcy. We show
numerical results for the simpler case of an infinitely rich investor, whose
probability of default can be ignored. Option prices are obtained for both
the writer and the buyer.

Key words: option pricing, transaction costs, Lévy processes, indif-
ference price, singular stochastic control, variational inequality, Markov
chain approximation.

1 Introduction

The problem of pricing a European call option was first solved mathematically
in the paper of Black and Scholes (1973). Even if it is quite evident that this
model is too simplistic to represent the real features of the market, it is still
nowadays one of the most used model to price and hedge options. The reason
for its success is that it gives a closed form solution for the option price, and
that the hedging strategy is easly implementable. The Black-Scholes model
considers a complete market, i.e. a market where it is possible to create a
portfolio containing cash and shares of the underlying stocks, such that following
a particular trading strategy it is always possible to replicate the payoff of the
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option. In this framework, this particular portfolio is called replicating portfolio
and the trading strategy to hedge the option is called delta hedge. However, this
model does not consider many features that characterize the real market.

In the Black-Scholes model, the stock price follows a geometric Brownian
motion. This is equivalent to assume that the log-returns are normally dis-
tributed. However, a deep statistical analysis of financial data, reveals that the
normality assumption is not a very good approximation of reality (see Cont
(2001)). Indeed, it is easy to see that empirical log-return distributions have
substantially more mass around the origin and along the tails (heavy tails).
This means that normal distribution underestimates the probability of large
log-returns, and considers them just as rare events. In the real market instead,
log-returns manifest frequently high peaks, that come more and more evident
when looking at short time scales. The log-returns peaks correspond to sudden
large changes in the price, which are called jumps. There is a huge literature
of option pricing models that consider an underlying process with a discontin-
uous path. Most of these models consider the log-prices dynamics following a
Lévy process. These are stochastic processes with independent and stationary
increments, that satisfy the additional property of stochastic continuity. Good
references on the theory of Lévy processes are the books of Sato (1999) and
Applebaum (2009). Financial applications are discussed in the book of Cont
and Tankov (2003).

A second issue of the Black-Scholes model is that it does not consider the
presence of market frictions such as bid/ask spread, transaction fees or budget
constraints. The securities in the market are traded with a bid-ask spread, and
this means that there are two prices for the same security. But the Black-Scholes
formula just gives one price. Moreover, the replicating portfolio cannot be per-
fectly implemented, since the delta-hedging strategy involves continuous time
trading. This is impractical because the presence of transaction costs makes it
infinitely costly. Another kind of market friction that needs to be considered are
the budget constraints. A bound in the budget or a restriction in the possibility
of selling short, clearly restricts the set of possible trading strategies.
Many authors attempted to include the presence of proportional transaction
costs in option pricing models. In Leland (1985), in order to avoid continuous
trading, the author specifies a finite number of trading dates. He obtains a
Black-Scholes type partial differential equation (PDE) with an adjusted volatil-
ity term, that takes into account the transaction costs. However, trading at
fixed dates is not optimal, and the option price goes to infinity as the number of
dates grows. Further work in this direction has been done by Boyle and Vorst
(1992), which considers a multiperiod binomial model as in Cox et al. (1979),
with transaction costs. Here again, the cost of the replicating portfolio depends
on the number of time periods. A different approach has been introduced by
Hodges and Neuberger (1989). In their work, they used an alternative definition
of the option price called indifference price, based on the concepts of expected
utility and certainty equivalent. An overview of these concepts applied to several
incomplete market model can be found in Carmona (2009).
As long as the perfect replicating portfolio is no longer implementable in pres-
ence of transaction costs, the hedging strategy cannot be anymore riskless. The
model has to take into account the risk profile of the writer/buyer to describe
his trading preferences. Hodges and Neuberger (1989) define the option price
as the value that makes an investor indifferent between holding a porfolio with
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an option and without, in terms of expected utility of the final wealth. They
showed that it is impossible to hedge perfectly the option. The optimal strategy
is to keep the portfolio’s value within a band called no transaction region. Us-
ing numerical experiments, they showed that this strategy outperform the one
proposed in Leland (1985). This approach has been further developed in Davis
et al. (1993), where the problem is formulated rigorously as a singular stochastic
optimal control problem. The authors proved that the value functions of the
two optimization problems can be interpreted as the solutions of the associated
Hamilton-Jacobi-Bellman (HJB) equation in the viscosity sense. They prove
also that the numerical scheme, based on the Markov chain approximation, con-
verges to the viscosity solution. Numerical methods for this model are presented
in Davis and Panas (1994), Clewlow and Hodges (1997) and Monoyios (2003),
Monoyios (2004).
In Whalley and Wilmott (1997) and Barles and Soner (1998) are discussed two
different asymptotic analysis of the problem for small levels of transaction costs.
Essentially the authors reduce the HJB equation to a simpler non-linear PDE.
Further studies are presented in the thesis work of Damgaard (1998), where the
author studied the robustness of the model from a theoretical and numerical
point of view. He found that under particular conditions the model is quite
robust with respect to the choice of the utility function.

In this work we want to develop a model for pricing options using the concept
of indifference price, as done in Davis et al. (1993). In our model we consider
proportional transaction costs, and a stock dynamics following an exponential
Lévy process. In contrast with the Black-Scholes model, we obtain two prices:
the price for the buyer and the price for the writer of the option, which is a
more realistic property of the model. The presence of jumps means we have
to consider the possibility of insolvency. A sudden jump in the price can have
dangerous consequences and cause the bankruptcy of the investor. It turns out
that it is very difficult to solve the general maximization problem numerically.
In order to simplify the problem, we consider the special case of an investor with
infinite wealth (always solvent) and an exponential utility function to describe
his risk profile. Under these assumptions it is possible to reduce by one the
number of variables of the HJB equation.

In Section 2, after a short review of Lévy processes theory, we introduce
the model’s equations and definitions. We derive the HJB equation associ-
ated to the maximization problem. In Section 3 we obtain a general Markov
chain approximation of the continuous time problem. We introduce the Merton
jump-diffusion process and refer to Appendix B for its specific Markov chain ap-
proximation. The numerical results are presented in Section 4 and a complete
summary of all the outcomes is presented in the conclusive Section 5.

2 The model

2.1 Exponential Lévy models

Let Xt be a Lévy process defined on a filtered probability space (Ω,F , (Ft),P),
where Ft is the natural filtration and t ∈ [t0, T ]. We assume that Xt has the
characteristic Lévy triplet (b, σ, ν), where b ∈ R, σ ≥ 0 and ν is a positive
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measure on R, called Lévy measure which satisfies:

ν({0}) = 0,

∫
R

(1 ∧ z2)ν(dz) <∞. (1)

We model the log-prices dynamics with the Lévy process Xt. Thus the price of
a stock St follows an exponential Lévy process:

St = S0e
Xt . (2)

Motivated by practical reasons, we only consider processes with finite mean
and variance. The conditions for finite second moments: E[|Xt|2] < ∞ and
E[exp(2Xt)] < ∞, are directly related to the integrability conditions of the
Lévy measure: ∫

|z|≥1

|z|2ν(dz) <∞
∫
|z|≥1

e2zν(dz) <∞. (3)

Considering the above conditions, the processes follow the SDEs:

dXt =

(
b+

∫
|z|≥1

zν(dz)

)
dt+ σdWt +

∫
R
zÑ(dt, dz), (4)

and

dSt
St

=

(
b+

1

2
σ2 +

∫
R

(
ez − 1− z1{|z|<1}

)
ν(dz)

)
dt (5)

+ σdWt +

∫
R

(ez − 1)Ñ(dt, dz),

where the term Ñ(dt, dz) is the compensated Poisson martingale measure. It is
defined as

Ñ(dt, dz) = N(dt, dz)− dt ν(dz), (6)

where N(dt, dz) is the Poisson random measure with intensity dt ν(dz).
The Eq. (4) is also called the Lévy-Itô decomposition, and Eq. (5) can be
derived applying the Itô lemma to (2).
In the following, we indicate the drift term simply as

µ = b+
1

2
σ2 +

∫
R

(
ez − 1− z1{|z|<1}

)
ν(dz). (7)

2.1.1 Lévy processes as Markov processes

Lévy processes are Markov processes. The infinitesimal generator associated to
the price process (5) is given by:

LSf(s) = lim
t→0

E[f(St)|S0 = s]− f(s)

t
(8)

= µs
∂f(s)

∂s
+

1

2
σ2s2 ∂

2f(s)

∂s2

+

∫
R

[
f(sez)− f(s)− s(ez − 1)

∂f(s)

∂s

]
ν(dz).
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with f ∈ C2(R)
⋂
C2(R), where C2(R) is the space of twice differenciable func-

tions and C2(R) is the space of continuous functions with polinomial growth of
second degree at infinity.
We can define the transition probabilities associated to the Lévy process. For
any Borel set B ∈ B(R):

ps,t(x,B) = P (X(t) ∈ B|X(s) = x). (9)

Transition probabilities are connected with conditional expectation by the sim-
ple relation:

E[f(X(t))|X(s) = x] =

∫
R
f(y)ps,t(x, dy) (10)

2.2 Portfolio dynamics with transaction costs

In this section we introduce the market model with proportional transaction
costs that generalizes the model of Davis et al. (1993). Let us consider a portfolio
composed by one risk-free asset B (bank account) paying a fixed interest rate
r > 0 and a stock S. We denote with Y the number of shares of the stock S that
the investor holds. The state of the investor at time t ∈ [t0, T ] is (Bπt , Y

π
t , St).

The portfolio evolves following the SDE:
dBπt = rBtdt− (1 + θb)StdLt + (1− θs)StdMt

dY πt = dLt − dMt

dSt = St

(
µdt+ σdWt +

∫
R(ez − 1)Ñ(dt, dz)

)
.

(11)

The parameters θb, θs ≥ 0 are the proportional transaction costs when buying
and selling, respectively. The process π(t) = (L(t),M(t)) is the trading strategy
and represents the cumulative number of shares bought and sold respectively in
[t0, T ].
These processes are right-continuous, Ft-adapted and nondecreasing. By con-
vention L(t−0 ) = M(t−0 ) = 0 and we allow a possible initial transaction at t0.
Furthermore, π(t) is progressively measurable:

E[L(t)n] <∞ , E[M(t)n] <∞ for n = 1, 2 and ∀t ∈ [t0, T ].

Define the cash value as the value in cash when the shares in the portfolio are
liquidated: long positions are sold and short positions are covered.

c(y, s) =

{
(1 + θb)ys, if y ≤ 0

(1− θs)ys, if y > 0.
(12)

For t ∈ [t0, T ], we define the total wealth process:

Wπ
t = Bπt + c(Y πt , St). (13)

In this model we require that the portfolio’s wealth Wt is greater than a fixed
constant −C, with C ≥ 0 for all t ∈ [t0, T ], as a condition for the investor to be
solvent. We define the solvency region:

S =

{
(Bt, Yt, St) ∈ R× R× R+ : Bt + c(Yt, St) ≥ −C

}
. (14)
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As long as we describe the underlying stock as a process with jumps, we cannot
guarantee that the portfolio stays solvent for all t ∈ [t0, T ]. Holding short
positions, it is possible that a sudden increase in the value of the stock can
cause the total wealth to jump instantaneously out of the solvency region. The
same happens with a downward jump when the investor is long in stocks and
negative in cash. The sudden decrease of the stock’s price makes him unable to
pay his debts. If the investor goes bankrupt, there are no trading strategies to
save him.
Define the first exit time from the solvency region as

τS = inf
{
t ∈ [t0, T ] : Wt 6∈ S

}
. (15)

Define the set of admissible trading strategies Π(Bt, Yt, St), as the set of all
right-continuous, nondecreasing, Ft-measurable processes L(t) and M(t), such
that (Bπ(t), Y π(t), S(t);π(t)) is a solution of (11) for t ∈ [t0, τS ∧ T ], and with
initial values (B0, Y0, S0) .

Remark: The original model, as formulated by Hodges and Neuberger (1989)
and Davis et al. (1993), considers a portfolio starting with zero total wealth.
But it does not consider the possibility of insolvency.
The writer (or buyer) of the option creates a portfolio at time t0 in order to
hedge the option. Therefore it is reasonable to assume that it does not own any
shares in the underlying stock before t0. We consider, following the previous
works, an initial portfolio with zero shares and the initial value B0 in the cash
account. This assumption can be easly relaxed to include an initial amount Y0

of shares if needed.

2.3 Utility maximization

2.3.1 No option

The objective of the investor is to maximize the expected utility of the wealth
at τS ∧ T over all the admissible strategies. This expectation is conditioned on
the initial value of cash B0, number of shares Y0 and value of the stock S0. We
can write the value function of the maximization problem:

V 0(t0, B0, Y0, S0) = sup
π∈Π(Bt,Yt,St)

EB0,Y0,S0

[
U(WT ) 1{τS>T} + U(−C) 1{τS≤T}

]
(16)

where U : S → R is a concave and increasing utility function, such that U(0) = 0.
It is important to note that the utility function has to be defined also for nega-
tive numbers (this condition excludes the use of a logarithmic utility).
We use indicator functions to consider separately the cases of solvency and insol-
vency. The second term inside the expectation considers the case of bankruptcy,
where the value function assumes the least possible value attainable by the util-
ity function.

2.3.2 Writer/Buyer of the option

Assume that the investor builds a portfolio with a cash account, shares of a
stock and in addition sells or purchases a European call option written on the
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same stock, with strike price K and expirity date T . This means that at time
t0 the initial amount in the cash account increases by the option’s value pw (in
the writer case), or decrease by pb (in the buyer case).
Define the wealth process for the writer and buyer respectively by:

• Ww
t = Bt+c(Yt, St)1{t<T,c(1,ST )≤K}+

(
c
(
Yt−1, St

)
+K

)
1{t=T,c(1,ST )>K}

• W b
t = Bt+c(Yt, St)1{t<T,c(1,ST )≤K}+

(
c
(
Yt+1, St

)
−K

)
1{t=T,c(1,ST )>K}.

In the case the option is exercised, c(1, ST ) > K, the buyer pays the writer the
strike K in cash, and the writer delivers one share to the buyer.
Remember that in a market with transaction costs the real value of a share is
given by the bilinear cash value function (12). So, the buyer of the option does
not exercise when ST > K, but when c(1, ST ) = ST (1− θs) > K.
The solvency regions are:

• Sw =

{
(Bt, Yt, St) ∈ R× R× R+ : Ww

t > −C
}

• Sb =

{
(Bt, Yt, St) ∈ R× R× R+ : W b

t > −C
}
.

The investor wishes to maximize the expected utility of the wealth of his port-
folio.

V j(t0, B0, Y0, S0) = sup
π∈Π(Bt,Yt,St)

EB0,Y0,S0

[
U(W j

T ) 1{τS>T}+U(−C) 1{τS≤T}

]
,

(17)
for j = w, b.

2.3.3 Indifference pricing

With this model we can compute two option prices: the price for the writer and
the price for the buyer. These prices are defined, respectively, as the amount
required to get the same maximal expected utility of the wealth of the portfo-
lio without the option. To compute the option price, it is necessary to solve
two portfolio optimization problems: the problem without the option and the
problem with the option. We define the

• Writer price:

V 0(t0, B0, Y0, S0) = V w(t0, B0 + pw, Y0, S0) (18)

• Buyer price:

V 0(t0, B0, Y0, S0) = V b(t0, B0 − pb, Y0, S0) (19)

The prices pw and pb can be obtained implicitly by these conditions.
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2.3.4 Hamilton-Jacobi-Bellman Equation

We present the HJB equation associated to the singular stochastic optimal con-
trol problems described before. These problems are called singular because the
controls (dL(t), dM(t)) are allowed to be singular with respect to the Lebesgue
measure dt. A rigorous derivation of the following equation can be found in
Fleming and Soner (2005). It turns out that the HJB equation of the singular
control problem is a variational inequality:

max

{
∂V j

∂t
+ rb

∂V j

∂b
+ µs

∂V j

∂s
+

1

2
σ2s2 ∂

2V j

∂s2
(20)

+

∫
R

[
V j(t, b, y, sez)− V j(t, b, y, s)− s(ez − 1)

∂V j

∂s

]
ν(dz) ,

∂V j

∂y
− (1 + θb)s

∂V j

∂b
, −
(
∂V j

∂y
− (1− θs)s

∂V j

∂b

)}
= 0,

for (t, b, y, s) ∈ [t0, T ] × Sj and j = 0, w, b. The boundary conditions are given
by Eqs. (16) and (17). The main difference between our model and the previous
models in the literature, is that this HJB equation is a partial integro-differential
equation (PIDE), which involves an additional integral operator. The presence
of this non-local operator implies that we need to define the lateral conditions
not only on the boundary of the solvency region, but also beyond.
This is given by the condition

V j(t,Wt) = U(−C) for Wt 6∈ Sj j = 0, w, b. (21)

The variational inequality (20) says that the maximum of three operators is
equal to zero. This feature can be interpreted better if we consider the state
space divided into three different regions: the Buy, the Sell and the No Trans-
action (NT) regions.
The optimization problem is a free boundary problem, and its solution consist of
finding the value function V and the optimal boundaries of these three regions.
These boundaries completely characterize the investor’s trading strategy. The
optimal strategy consists in keeping the portfolio process inside the NT region.
If the portfolio jumps outside the NT region, the optimal strategy is to trade
in order to bring back the portfolio on the boundary of the NT region. We
can argue that Buy and Sell regions are separated by the NT region, since it is
clearly not optimal to buy and sell a stock at the same time.
In the Buy and Sell regions the value functions remain constant along the di-
rections of the trades. Respectively, we have:

• Buy: V (t, b, y, s) = V (t, b− s(1 + σb)∆Lt, y + ∆Lt, s).

• Sell: V (t, b, y, s) = V (t, b+ s(1− σs)∆Mt, y −∆Mt, s).

where ∆Lt = L(t)−L(t−) and ∆Mt = M(t)−M(t−) are the number of shares
respectively bought or sold in the trade.
The second and third terms in the HJB equation (20) are the gradient of the
value function along the optimal trading direction from the Buy and Sell regions
to the NT boundaries. In the NT region the portfolio evolves according to the
portfolio equation (11), with dL = dM = 0. The number of shares remains
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constant as long as the portfolio stays in the NT region. By the dynamic
programming principle, we can write the value function as

V (t, b, y, s) = Eb,y,s
[
V (t+ ∆t, b+ ∆B, y, s+ ∆S)

]
where ∆t is a (small) finite interval of time. We indicate with ∆B and ∆S the
change in the cash account and in the stock price during the time interval ∆t.
For ∆t→ 0 we can use Itô’s lemma to obtain the infinitesimal generator of the
process, that corresponds to the first term in Eq. (20).

2.4 Variable reduction

In this model we introduce the possibility of insolvency, which is directly re-
flected in the definition of the set of admissible trading strategies. In the lit-
erature, all the models that consider diffusion processes use to define the set
of admissible trading strategies Π(B0, Y0, S0) as the set of all right-continuous,
measurable processes (Bπ(t), Y π(t), S(t);π(t)) solution of (11) with initial val-
ues (B0, Y0, S0), such that:

Wπ
t ∈ S ∀t ∈ [t0, T ]. (22)

This set is completely determined by the initial values of the portfolio.
In this model, the stock process can jump and the portfolio can go bankruptcy.
This means that the set of admissible strategies Π(Bt, Yt, St) is a dynamic set,
and at every time t ∈ [t0, τS ∧ T ] it depends on the current state.

Assumption: We assume that the portfolio is always solvent. Therefore the
set of trading strategies only depends on the initial wealth of the investor:

Π(Bt, Yt, St) ≈ Π(B0, Y0, S0). (23)

This can be the case of a large investor, with a very small probability of default
that can be ignored. To express this concept we can say that the investor has
infinite initial value in the cash account B0 = ∞. Consequently, the solvency
constraint (14) lose meaning, and we can set for convenience C = 0. The lateral
boundary conditions (21) lose importance as well, and are ignored.

The reason for this strong assumption is that the HJB Eq. (20) is difficult
to solve numerically. With a solvent portfolio we can use the properties of
the exponential utility function to reduce by one the number of variables of
the problem. In the conclusive Section 5 we give a further comment on this
assumption.
The exponential utility is defined as:

U(w) = 1− e−γw. (24)

It has already been used to reduce the number of variables in the work of Hodges
and Neuberger (1989), Davis et al. (1993) and related works. The exponential
utility has the property that the coefficient of risk aversion −U ′′(x)/U ′(x) = γ
is constant, and does not depend on the wealth w. This means that the amount
invested in the risky asset, at time t ∈ [t0, T ], is independent of the total wealth
at time t. This choiche of utility function let us simplify the problem by reducing
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the number of variables from four to three. As long as the amount in the
risky asset is independent of the total wealth, the amount in the cash account
is irrelevant to the trading strategy. We can thus remove Bt from the state
dynamics.
The integral representation of the evolution of the cash account Bt in (11) is:

Bπ(T ) =
B0

δ(t0, T )
−
∫ T

t0

(1 + θb)
S(t)

δ(t, T )
dL(t) +

∫ T

t0

(1− θs)
S(t)

δ(t, T )
dM(t) (25)

where δ(t, T ) = e−r(T−t). The explicit expression of the value function (16) for
the maximization problem without option, using the exponential utility (24) is:

V 0(t0, B0, Y0, S0) = sup
π∈Π(B0,Y0,S0)

EB0,Y0,S0

[ (
1− e−γ

(
Bπ(T )+c(Y π(T ),S(T ))

))
1{τS>T}

]
+ Eb,y,s

[(
1− e−γ(−C)

)
1{τS≤T}

]
= 1− inf

π∈Π(B0,Y0,S0)
EB0,Y0,S0

[
e−γ
(
Bπ(T )+c(Y π(T ),S(T ))

)
1{τS>T}

+ eγC 1{τS≤T}

]
= 1− e−γ

B0
δ(t0,T )Q0(t0, Y0, S0)

where we have used the expression (25). The new minimization problem is:

Q0(t0, Y0, S0) = inf
π∈Π(B0,Y0,S0)

EY0,S0

[
e
−γ
[
−

∫ T
t0

(1+θb)
St

δ(t,T )
dLt+

∫ T
t0

(1−θs) St
δ(t,T )

dMt

]
(26)

e−γc(Y
π(T ),S(T ))

1{τS>T} + e
γ
(
C+

B0
δ(t0,τS )

)
1{τS≤T}

]
.

In order to simplify further the equation, it is convenient to pass to log-
variables: x = log(s). Note that the derivative operators change as:

s
∂

∂s
=

∂

∂x
, s2 ∂

2

∂s2
=

∂2

∂x2
− ∂

∂x
.

The HJB Eq. (20) now becomes:

min

{
∂Qj

∂t
+ (µ− 1

2
σ2)

∂Qj

∂x
+

1

2
σ2 ∂

2Qj

∂x2
(27)

+

∫
R

[
Qj(t, y, x+ z)−Qj(t, y, x)− (ez − 1)

∂Qj

∂x

]
ν(dz) ,

∂Qj

∂y
+ (1 + θb)e

x γ

δ(t, T )
Qj , −

(
∂Qj

∂y
+ (1− θs)ex

γ

δ(t, T )
Qj
)}

= 0

with j = 0, w, b.
For the case of no-option, j = 0, we have:

• Terminal conditions:
Q0(T, y, s) = e−γc(y,s), (28)
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• Lateral conditions:

Q0(t, y, s) = e
γ
(
C+

B0
δ(t0,t)

)
(29)

for all y, s ∈ R × R+ such that c(y, s) ≤ −
(
C + B0

δ(t0,t)

)
. Under the

assumption of infinite initial capital, B0 = ∞, the lateral conditions are
ignored.

Analogous computations can be done for the portfolio of the writer and the
buyer of the option. What changes are the terminal conditions. We obtain the
terminal conditions for the writer and buyer respectively:

Qw(T, y, s) = e−γ
[
c(y,s)1{c(1,s)≤K}+

(
c(y−1,s)+K

)
1{c(1,s)>K}

]
(30)

Qb(T, y, s) = e−γ
[
c(y,s)1{c(1,s)≤K}+

(
c(y+1,s)−K

)
1{c(1,s)>K}

]
(31)

Using conditions (18), (19), we obtain the price of the option as:

pw(t0, y, s) =
δ(t0, T )

γ
log

(
Qw(t0, y, s)

Q0(t0, y, s)

)
(32)

pb(t0, y, s) =
δ(t0, T )

γ
log

(
Q0(t0, y, s)

Qb(t0, y, s)

)
(33)

2.5 The dynamic programming equation

The HJB Eq. (27) has the following integral representation:

Qj(t, y, x) = min

{
Ey,x

[
Qj
(
t+ ∆t, y, x+ ∆X

)]
, (34)

exp

(
γ

δ(t, T )
(1 + σb)e

x∆L∗t

)
Qj
(
t, y + ∆L∗t , x

)
,

exp

(
− γ

δ(t, T )
(1− σs)ex∆M∗t

)
Qj
(
t, y −∆M∗t , x

)}
.

Each term inside the “min” is the integral form of the corresponding term in the
differential equation (27). The values ∆L∗t and ∆M∗t are the optimal number
of shares needed to trade the portfolio to the boundary of the NT region.

3 Markov chain approximation

To solve the variational inequality (27) we use the Markov chain approxima-
tion method developed by Kushner and Dupuis (2001). The numerical tecnique
for singular controls has been developed in the work of Kushner and Martins
(1991). The portfolio dynamics (11) is approximated by a discrete state con-
trolled Markov chain in discrete time. The method consist in creating a back-
ward recursive dynamic programming algorithm, in order to compute the value
function at time t, given its value at time t+ ∆t.
Kushner and Dupuis (2001) proved that the value function obtained from the
discrete dynamic programming algorithm, converges to the value function of
the original continuous time problem as ∆t → 0. Their proof uses a weak
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convergence in probability argument. Another proof of convergence has been
introduced by Barles and Souganidis (1991), where they prove convergence to
the viscosity solution of the original HJB equation. In the work of Davis et al.
(1993), they prove the existence and uniqueness of the viscosity solution of the
HJB Eq. (20) for the diffusion case, and using the method developed by Barles
and Souganidis (1991) proved that the value function obtained with the Markov
chain approximation converges to it.

In this work we model the stock as a general exponential Lévy process. For
practical computations we need to specify which Lévy process we intend to use,
and this is equivalent to specify its Lévy triplet. In this work we consider a Mer-
ton jump diffusion process for the log-prices. The Markov chain approximation
can be applied to all the Lévy processes with finite activity of jumps, following
a similar discretization 1.

3.1 The Merton jump-diffusion model

One of the firsts jump-diffusion models applied to finance is the Merton model,
presented in Merton (1976). In the paper, the author obtained a closed form
solution (as a series expansion) for the price of a European vanilla call option.
The Merton model describes the log-prices evolution as a Lévy process Xt with
a characteristic Lévy triplet (b, σ, ν) with b ∈ R, σ > 0 and Lévy measure (1):

ν(dz) =
λ

ξ
√

2π
e
− (z−α)2

2ξ2 dx. (35)

The process can be represented as the superposition of a drift component, a
diffusion component and a finite number of jumps. The number of jumps is a
Poisson process Nt with intensity λ > 0, and the size of the jumps are normal
distributed ∼ N (α, ξ2). Recall that for processes with finite number of jumps
in a time interval, the Lévy measure is the product of the jump intensity λ with
the density of the jump sizes. Using the Eqs. (4) and (7), we obtain the SDE
for Xt:

dXt =

(
µ− 1

2
σ2 −

∫
R

(
ez − 1− z

)
ν(dz)

)
dt+ σdWt +

∫
R
zÑ(dt, dz) (36)

=

(
µ− 1

2
σ2 −m

)
dt+ σdWt +

∫
R
zN(dt, dz),

where we used (6), and defined:

m =

∫
R

(
ez − 1

)
ν(dz) = λ

(
eα+ ξ2

2 − 1

)
.

For any f ∈ C2(R)
⋂
C2(R), the associated infinitesimal generator is:

LXf(x) =

(
µ− 1

2
σ2 −m

)
∂f(x)

∂x
+

1

2
σ2 ∂

2f(x)

∂x2
(37)

− λf(x) +

∫
R
f(x+ z) ν(dz).

1For Lévy processes with infinite activity, a common procedure is to approximate the small
jumps with a Brownian motion, as explained in Cont and Voltchkova (2005). This helps to
remove the singularity of the Lévy measure near zero.
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3.2 The discrete model

We now discretize the time and space in order to construct a Markov chain
approximation of the log-price dynamics. The desired Markov chain approxi-
mation for a jump-diffusion model has to satisfy two conditions to be admissible:

1. the transition probabilities are represented in a specific form (Eq. (48) in
Appendix B)).

2. the transition probabilities have to be locally consistent with the SDE.

The concept of locally consistence can be thought intuitively as a moment
matching condition between the Markov chain and the continuous process at
each time step. In the Appendix B we breafly describe the two properties and
check that are satisfied by our Markov chain. For the general theory of Markov
chain approximations we refer to Kushner and Dupuis (2001). The authors
prove that under the two conditions, the discrete Markov chain converges in
probability to the corresponding continuous SDE as the time step goes to zero.
For n = 0, 1, ...N ∈ N, define the discrete time step ∆t = T−t0

N such that
tn = t0 + n∆t.
Define the space Σx = {−K1hx, ...−hx, 0, hx, ...+K2hx} where we consider the
discrete space step hx in the x direction, and K1,K2 ∈ N. The values of K1

and K2 can be different to capture the possible asymmetry of the jump sizes.
The discretized version of the SDE (36) is:

∆Xn =

(
µ− 1

2
σ2 −m

)
∆t+ σ∆Wn + ∆Jn, (38)

where ∆Xn = X(tn+∆t)−X(tn) and the term ∆Wn = W (tn+∆t)−W (tn) ∈
Σx assumes only three possible values:

∆Wn =


hx with P(Wn+1 = Wn + hx|Wn)

0 with P(Wn+1 = Wn|Wn)

−hx with P(Wn+1 = Wn − hx|Wn)

and ∆Jn is the compound Poisson jump term, that assumes all the values in
Σx with specific transition probabilities.
In the construction of ∆Xn the transition probabilities and the parameters hx
and ∆t have to be chosen such that the Markov chain is locally consistent with
the first two moments of the SDE (36) :

E
[
∆Xn

]
=
(
µ− 1

2
σ2 −m+ λα

)
∆t, (39)

E
[[

∆Xn − E
[
∆Xn

]]2]
=
(
σ2 + λξ2 + λα2

)
∆t. (40)

(see Appendix B.2).

Define the space Σy = {−K3hy, ...−hy, 0, hy, ...+K4h}, where hy is a discrete
step in y direction and K3,K4 ∈ N. The number of shares y takes values in
Σy. The two increments ∆Ln, ∆Mn which describe the change in the number
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of shares bought or sold are positive multiples of hy. The discretized SDE for
the number of shares is:

∆Yn = ∆Ln −∆Mn (41)

The action of the control is supposed to happen instantaneously: ∆Ln = L(tn)−
L(t−n ) and ∆Mn = M(tn) −M(t−n ) happen at the same time tn. We indicate
with L(t−n ) and M(t−n ) the number of shares just before the transaction.
The backward algorithm for computing the value function using the dynamic
programming equation, considers thus two different steps: a jump-diffusion step
and a control step. However, for the numerical implementation, we cannot use
the equation written as in (34) because the value function at time t on the right
hand side is still unknown. We can represent the value function at time t, as an
expectation of its values at time t+ ∆t. The final equation is therefore:

Q(tn, Yn, Xn) = min

{
E
[
Q
(
tn+1, Yn, Xn + ∆Xn

)]
, (42)

min
∆L

exp

(
γ

δ(tn, T )
(1 + σb)e

Xn∆Ln

)
E
[
Q
(
tn+1, Yn + ∆Ln, Xn + ∆Xn

)]
,

min
∆M

exp

(
− γ

δ(tn, T )
(1− σs)eXn∆Mn

)
E
[
Q
(
tn+1, Yn −∆Mn, Xn + ∆Xn

)]}
.

where all the expectations are conditioned on the current state (Yn, Xn).
The algorithm runs as follows:

1. Create the log-price lattice for the Markov chain (38). This usually has the
shape of a recombining multinomial tree with L̄ = K1 +K2 + 1 branches
and step size (∆t, hx). The transition probabilities are evaluated from
the explicit finite differences discretization of the infinitesimal generator
(see Appendix B). The reason for using a multinomial tree instead of a
rectangular lattice (like the finite differences methods) is that we do not
need to introduce artificial lateral boundary conditions.

2. Create the shares vector y with discretization step hy. Its dimension is
M̄ = K3 +K4 + 1

3. Create the value functions at terminal time using the terminal condi-
tions (28),(30),(31). The result are two-dimensional grids with dimensions(
N(L̄− 1) + 1

)
×M̄ .

4. Create a backward loop over time, with index n that starts at N and
finishes at 1.

5. Given the value functions at time n, compute the value functions at time
n− 1 on a new grid of size

(
(n− 1)(L̄− 1) + 1

)
×M̄ . This is done in two

steps:

• Time step: For each node of the tree at time n − 1 and for each y,
take a weighted average of the value function at time n over all the
possible nodes at time n connected with the starting node. We use
the discretization presented in Appendix B.2. (see Eq. (54))

• Control step: Compute the minimum of the second term in Eq. (42)
for all possible increments of ∆L (of size hy). Do the same for the
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third term for all size ∆M , and then compute the minimum between
the three terms.

6. Use formulas (32) or (33) to find the option price.

4 Numerical results

In this section we implement the algorithm and calculate the price of a European
call option for the writer and the buyer. The fixed parameters of the option and
the Merton model (36) are as follows:

K T r µ σ α ξ λ
15 1 0.1 0.1 0.25 0 0.5 0.8

With these parameters it is possible to compute the option price with no trans-
action costs using the standard martingale pricing theory (see Appendix A). We
computed the price using the series approximation formula of Merton (1976),
using Monte Carlo simulation 2 and solving the Merton PIDE 3 (46).
For S0 = 15, the “at the money” price is:

Merton formula Monte Carlo Merton PIDE
3.4776 3.4779 ± 0.0903 3.4749

The PIDE price is our reference price. Of course, the parameter µ has not been
used to compute these prices. We will see that even in our model the drift
parameter µ does not play an important role.

We used a stock log-price tree with N = 100 time steps, and number of
branches L̄ = 61. These two values are not independent. Every Lévy pro-
cess that satisfies the condition (3), satisfies the square root rule. There-
fore the size of a space step is hx =

√
E[∆X2] which corresponds to hx =√

(σ2 + λξ2 + λα2) ∆t = σX
√

∆t (see Eq. (40)). However, the Poisson jump
sizes do not scale with ∆t. So the number L̄ has to be chosen big enough in
order to cover the domain of the jump sizes with the discrete tree. We consider
the jump domain at least bigger than three standard deviations of the jump
density. This is an indicative value, and a bigger domain gives a more precise
result. But the computational time can increase a lot.
The constraint is L̄ hx ≥ 3ξ. The time increment is defined as ∆t = T/N , so
hx = σX

√
T/N . Using our parameters and putting together the formulas we

obtain the relation L̄ ≥ 5.7
√
N .

The prices are computed with a small risk aversion coefficient γ. We illus-
trate in Figure 1 that our model replicates the Merton model prices in the case
of zero transaction costs, µ = r and γ small close to zero. An intuitive argument
to explain this feature is that for small values of γ, the utility function looks like
a linear utility function U(w) = 1 − e−γw ≈ γw. Therefore the investor profile

2The price is the average of 10000 Monte Carlo runs, each with 10000 paths. The error is
the standard deviation.

3We solved the PIDE (46) with boundary conditions as in Appendix A using the Implicit-
Explicit method proposed in Cont and Voltchkova (2005). We used a discretization as in
Appendix B.2 for the continuous differential and integral operators.
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Figure 1: The model prices correspond to the Merton prices with zero trans-
action costs, µ = r = 0.1 and γ = 0.04. The other paramethers are in the
tables.

is risk neutral. For a formal proof we refer to Carmona (2009) and references
therein.
The following table shows how the writer prices change when introducing the
transaction costs. We consider same transaction costs for buying and selling
σb = σs, and γ = 0.04.

cost = 0 cost = 0.01 cost = 0.02 cost = 0.03 cost = 0.04
3.4771 3.6400 3.8212 4.0054 4.1864

In Figure 2 and 3 we present the option prices for the writer and buyer respec-
tively, with different values of transaction costs. We can see that the prices for
the writer are an increasing function of the transaction costs, while the prices
for the buyer a are decreasing function. This property is verified in Clewlow
and Hodges (1997) for the case of the diffusion process.
In Figure 4 we can see how the price for the writer is affected by the change of

the transaction costs. The picture shows prices for different values of the risk
coefficient.

The risk profile of the investor also plays an important role. As already
shown in Davis et al. (1993), the option price is an increasing function of the
risk aversion. The Figure 5 confirms their results.
In our computations, we always used the drift term µ equal to the risk free in-

terest rate r. This is the same choice of Hodges and Neuberger (1989). They do
not explain the reasons for this choiche, but follow the common knowledge that
the option price is independent of the expected return of the underlying asset.
However, it turns out that this empirical fact is still true in this model, as we
can see in Figure 6. This feature of the model has been analized in Damgaard
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Figure 2: Option prices for the writer with different transaction costs. γ = 0.04,
σb = σs. The other paramethers are in the tables.

Figure 3: Option prices for the buyer with different transaction costs. γ = 0.04,
σb = σs. The other paramethers are in the tables.

(1998) for the diffusion case. This numerical experiment confirm that the option
prices are not very sensitive to the change of the drift µ.
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Figure 4: Option prices for the writer as a function of the transaction costs,
σb = σs. Different values of γ.

Figure 5: Option prices for the writer as a function of γ. Different values of
transaction costs. σb = σs.

5 Conclusions

We presented a model for pricing options in presence of proportional transaction.
This is an extension of the model first introduced by Hodges and Neuberger
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Figure 6: Option prices for the writer as a function of µ. γ = 0.04 Different
values of transaction costs σb = σs.

(1989) and then formalized by Davis et al. (1993). The main difference between
this work and the former works in the literature is that we considered a stock
dynamics that follows a general exponential Lévy process. The presence of
jumps in the stock dynamics is the cause of portfolio bankruptcy. In this model
we consider the theoretical possibility of default. It is thus possible to compute
option prices for investors with different risk profile and different wealth. A small
firm can have a thin solvency region, therefore its set of trading strategies may
be quite smaller than the respective set of a big firm. The option price changes
depending on the size of the company. We can give an intuitive explanation: if
a company with a high default probability wants to sell an option, it has to sell
it at a smaller price respect to a company with smaller default probability, in
order to include a reward for the buyer who is taking a higher risk.
In this paper we don’t consider the possibility of bankruptcy in the numerical
computations. The general equation (20) is a complicate equation with three
state variables and a time variable, so we opted to consider only investors “too
big to fail”. Thanks to this assumption and the choice of an exponential utility,
it was possible to reduce the number of variables of the problem, obtaining the
simpler HJB equation (34). The solution of the general equation (20) and the
numerical investigation of how the option price changes under different initial
wealth, are interesting ideas for a future research project.
The optimization problem has been solved with the Markov chain approximation
method. The same method has been used frequently in the literature in the case
of diffusion processes by Davis et al. (1993), Davis and Panas (1994), Clewlow
and Hodges (1997), Damgaard (1998) and Monoyios (2003).
We considered the case of the Merton jump-diffusion model, although any Lévy
process satisfying the conditions (3) can be used. A future work can be to
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consider a process with infinite activity of jumps (such as a Variance Gamma
or a NIG process).
Using numerical experiment, we confirm some features of the model already
proven for the diffusion case:

1. The writer prices in presence of transaction costs are always greater than
the prices computed with zero transaction costs. The option value is an
increasing function of the transaction cost parameters. Respectively, the
buyer prices are always smaller that the prices with no transaction costs,
and are a decreasing function of the transaction costs.

2. The option price is an increasing function of the risk aversion coefficient.

3. The underlying drift is not a relevant parameter for the computation of
the option.

In this work we concentrated on the evaluation of the option price and do not
consider the problem of hedging. A future improvement can be to find the free
boundaries that divide the No Transaction region from the Buy and Sell regions.
These boudaries serve as an indicator that says when it is optimal to trade, and
are needed in the hedging practice.
Another direction for future improvements, is the development a more efficient
numerical method to solve the HJB equation. There are different approachs in
the literature to solve variational inequalities, such as the penalty method. The
multinomial method we considered corresponds to an explicit scheme. We argue
that an implicit scheme (or implicit/explicit if considering jumps) can strongly
increase the efficiency of the numerical method.
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A Martingale option pricing

Under a risk neutral measure Q, the dynamics of the stock price is described by
the following exponential Lévy model :

St = S0e
rt+Xt (43)

where r is the risk free interest rate, and Xt is a Lévy process with Lévy triplet
(b, σ, ν). Under Q the discounted price is a Q-martingale:

EQ[e−rtSt∣∣S0

]
= EQ[S0e

Xt
∣∣S0

]
= S0, (44)
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such that EQ[eXt |X0 = 0] = 1. This condition is equivalent to the condition for
the triplet:

b = −1

2
σ2 −

∫
R
(ez − 1− z1|y|<1)ν(dz).

Let C(t, St) be the value of a European call option at time t. By the martingale
pricing theory the discounted price of the option is a martingale. It is possible
to derive the partial integro-differential equation (PIDE) for the price of the
option.

EQ
[
d
(
e−rtC(t,Xt)

)]
=
∂C(t, x)

∂t
+ LXtC(t, x)− rC(t, x) = 0 (45)

where LXt is the infinitesimal generator of Xt. For a Merton model, with
generator as in (37), the resulting equation is called Merton PIDE :

∂C(t, x)

∂t
+ (r − 1

2
σ2 −m)

∂C(t, x)

∂x
+

1

2
σ2 ∂

2C(t, x)

∂x2
(46)

+

∫
R
C(t, x+ y)ν(dy) = (r + λ)C(t, x)

The value of the call option is given by the solution of the PIDE (46) with the
usual boundary conditions:

• Payoff:
C(T, x) = max{ex −K, 0}.

• Lateral conditions:

C(t, 0) = 0 and C(t, x)
x→∞

= ex −Ke−r(T−t).

B Properties of the Markov chain

We explained in the Section 3.2 that the Markov chain approximation of a con-
tinuous time jump-diffusion process has to satisfy two properties. This section
makes a summary of the key concepts and refer to Kushner and Dupuis (2001)
for detailed definitions and proofs of convergence.

B.1 Transition probabilities

The random components of the SDE (36) for the log-price are two independent
stochastic processes: a Brownian motion and a compound Poisson process. The
number of jumps is Poisson distributed:

P(Nt = n) = e−λt
(λt)n

n!
(47)

For a small ∆t, we can compute the first order approximated probability jumps:

• P(Nt+∆t −Nt = 0)
d
= P(N∆t = 0) = e−λ∆t ≈ 1− λ∆t,

• P(N∆t = 1) = e−λ∆t(λ∆t) ≈ λ∆t,
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• P(N∆t > 0) = 1− P(N∆t = 0) ≈ λ∆t.

At first order in ∆t the probability of one jump is the same as the probability
of any positive number of jumps.
In the discretized SDE (38), we can assume that in a small time step ∆t the
process or jumps exactly once, or does not jump at all. At every time step ∆t,
there are two possible independent moves:

1. diffusion: with transition probability pD(x, z) with z = x + ZD and the
random variable ZD ∈ {−hx, 0, hx},

2. jumps: with transition probability pJ(x, z) with z = x+ZJ . The random
variable ZJ takes values is Σx.

The total transition probability for the process Xn is

p(x, z) = P(Xn+1 = z|Xn = x).

We can compute by conditioning on the values of the Poisson process:

p(x, z) = pD(x, z)P(N∆t = 0) + pJ(x, z)P(N∆t = 1) (48)

= (1− λ∆t) pD(x, z) + (λ∆t) pJ(x, z)

The first property of the Markov chain approximation of a jump-diffusion pro-
cess is that the one step transition probability can be represented in the form
(48), at first order in ∆t.

B.2 Local consistency

The second property says that the first two moment of the increment ∆Xn of
the Markov chain in a time step ∆t, are the same of corresponding increment
∆Xt of the continuous time process (at first order in ∆t).

In order to check that the Markov chain (38) satisfies this property, together
with the first property, it is necessary to find the explicit form of the transition
probabilities. This is achieved by discretizing the infinitesimal generator of the
uncontrolled process, that corresponds to the first term inside the “max” in the
HJB equation (27), using an explicit finite different scheme. For the Merton
model we derived the form of the infinitesimal generator in Eq. (37).
We use the short notation: Q(tn, yj , xi) = Qni where we drop the variable y,
because we are considering the uncontrolled dynamics. The derivatives are
discretized by the finite differences:

• Backward approximation in time: ∂Q
∂t ≈

Qn+1
i −Qni

∆t .

• Central approximation in space: ∂Q
∂x ≈

Qn+1
i+1 −Q

n+1
i−1

2hx
.

• Second order: ∂2Q
∂x2 ≈

Qn+1
i+1 +Qn+1

i−1 −2Qn+1
i

h2
x

.

The integral term in (37) is truncated and restricted to the domain [B1, B2] =
[(−K1 − 1/2)hx, (K2 + 1/2)hx]. The discretization is obtainded by trapezoidal
quadrature (see Cont and Tankov (2003)):∫ B2

B1

Q(tn+1, yj , xi + z)ν(dz) ≈
K2∑

k=−K1

νkQ
n+1
i+k (49)
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where

νk =

∫ (k+ 1
2 )hx

(k− 1
2 )hx

ν(z)dz, for −K1 < k < K2. (50)

and for k = −K1 and k = K2 :

ν−K1
=

∫ (−K1+ 1
2 )hx

−∞
ν(z)dz, νK2

=

∫ ∞
(K2− 1

2 )hx

ν(z)dz. (51)

As long as λ =
∑K2

k=−K1
νk, the jump transition probabilities can be defined as:

pJ(xi, xi+k) =
νk
λ
. (52)

The discretized equation becomes:

Qn+1
i −Qni

∆t
+ (µ− 1

2
σ2 −m)

Qn+1
i+1 −Q

n+1
i−1

2hx
(53)

+
1

2
σ2Q

n+1
i+1 +Qn+1

i−1 − 2Qn+1
i

h2
x

+

K2∑
k=−K1

νkQ
n+1
i+k − λQ

n
i = 0

Rearranging the terms:(
1 + λ∆t

)
Qni = Qn+1

i

(
1− σ2 ∆t

h2
x

)
+Qn+1

i+1

(
(µ− 1

2
σ2 −m)

∆t

2hx
+

1

2
σ2 ∆t

h2
x

)
+Qn+1

i−1

(
−(µ− 1

2
σ2 −m)

∆t

2hx
+

1

2
σ2 ∆t

h2
x

)
+ (λ∆t)

K2∑
k=−K1

pJ(xi, xi+k)Qn+1
i+k

The diffusion transition probabilities pD(xi, xi+k) are the coefficients of the
terms Qni−1, Qni , Qni+1, for k ∈ {−1, 0, 1} and identically equal to zero for other
values of k.
We bring the term

(
1 + λ∆t

)
on the right hand side and use the first order

Taylor approximation
(
1 + λ∆t

)−1 ≈ 1− λ∆t for small time step ∆t, in order
to obtain:

Qni =

K2∑
k=−K1

p(xi, xi+k) Qn+1
i+k (54)

=
(
1− λ∆t

) 1∑
k=−1

pD(xi, xi+k)Qn+1
i+k +

(
λ∆t

) K2∑
k=−K1

pJ(xi, xi+k)Qn+1
i+k ,

where p(xi, xi+k) = (1−λ∆t)pD(xi, xi+k) + (λ∆t)pJ(xi, xi+k) is the total tran-
sition probability. It is straightforward to check that all the terms sums to one.
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The transition probabilities have the form (48), so this Markov chain approxi-
mation satisfies the first property condition.
Lets check that also the local consistency conditions (39),(40) are satisfied:

E
[
∆Xn

]
=
(
1− λ∆t

) 1∑
k=−1

pD(xi, xi+k) khx +
(
λ∆t

) K2∑
k=−K1

pJ(xi, xi+k) khx

=
(
1− λ∆t

)(
µ− 1

2
σ2 −m

)
∆t+

(
λ∆t

)
α

≈
(
µ− 1

2
σ2 −m+ λα

)
∆t,

where we considered only terms at first order in ∆t. The sum that involves
the jump probabilities converges to the expected value of the size of the jumps
(∼ N (α, ξ)). Use (50),(51),(52) and K1,K2 →∞.
For the second moment:

E
[[

∆Xn

]2]
=
(
1− λ∆t

) 1∑
k=−1

pD(xi, xi+k) (khx)2

+
(
λ∆t

) K2∑
k=−K1

pJ(xi, xi+k) (khx)2

=
(
1− λ∆t

)
σ2 ∆t+

(
λ∆t

) (
ξ2 + α2

)
≈
(
σ2 + λξ2 + λα2

)
∆t.

where again we do not consider any second order term in ∆t. The local consis-
tency property is thus satisfied.
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in jump diffusion and exponential lévy models. SIAM Journal of numerical
analysis, 43(4):1596–1626.

Cox, J., Ross, S., and Rubinstein, M. (1979). Option pricing: A simplified
approach. Journal of financial economics, 7:229–263.

Damgaard, A. (1998). Optimal Portfolio Choice and Utility Based Option Pric-
ing in Markets with Transaction Costs. PhD thesis, School of Business and
Economics, Odense University.

Davis, M. H. A. and Panas, V. G. (1994). The writing price of a european
contingent claim under proportional transaction costs. Computational and
Applied Mathematics, 13(2):0101–8205.

Davis, M. H. A., Panas, V. G., and Zariphopoulou, T. (1993). European option
pricing with transaction costs. SIAM J. Control Optim., 31(2):470–493.

Fleming, W. H. and Soner, M. H. (2005). Controlled Markov Processes and
Viscosity Solutions. Springer; 2nd edition.

Hodges, S. D. and Neuberger, A. (1989). Optimal replication of contingent
claims under transaction costs. The Review of Future Markets, 8(2):222–239.

Kushner, H. and Dupuis, P. G. (2001). Numerical Methods for Stochastic Con-
trol Problems in Continuous Time. Springer; 2nd ed.

Kushner, H. J. and Martins, F. L. (1991). Numerical methods for stochas-
tic singular control problems. SIAM Journal of Control and Optimization,
29(6):1443–1475.

Leland, H. (1985). Option pricing and replication with transaction costs. The
Journal of Finance, 40(5):1283–1301.

Merton, R. (1976). Option pricing when underlying stock returns are discontin-
uous. Journal of Financial Economics, 3:125–144.

Monoyios, M. (2003). Efficient option pricing with transaction costs. Journal
of Computational Finance, 7:107–128.

Monoyios, M. (2004). Option pricing with transaction costs using a markov
chain approximation. Jornal of Economic Dynamics and Control, 28:889–
913.
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