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Abstract. We introduce a new notion of stability for periodic
orbits in polygonal billiards. We say that a periodic orbit of a
polygonal billiard is λ-stable if there is a periodic orbit for the cor-
responding pinball billiard which converges to it as λ→ 1. This no-
tion of stability is unrelated to the notion introduced by Galperin,
Stepin and Vorobets. We give sufficient and necessary conditions
for a periodic orbit to be λ-stable and prove that the set of d-gons
having at most finite number of λ-stable periodic orbits is dense is
the space of d-gons. Moreover, we also determine completely the
λ-stable periodic orbits in integrable polygons.
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1. Introduction

The billiard in a polygon P is the flow on the unit tangent bundle of
P corresponding to the free motion of a point-particle with specular re-
flection at ∂P , i.e., the angle of reflection equals the angle of incidence.
The first return map of the billiard flow to the boundary is called the
billiard map. Polygonal billiards are known to have zero topological
entropy, thus zero Lyapunov exponents [9, 10, 11].

Recently, a new class of billiards with non-standard reflection laws,
known as pinball billiards, has been introduced in which the reflection
law contracts the angle of reflection by a factor λ ∈ (0, 1) towards
the normal of the table [12]. In this case, the billiard map no longer
preserves the Liouville measure and the system may have hyperbolic
attractors [8]. The inverse of the pinball billiard map with contraction
λ is conjugated to a billiard map which expands the angle of reflec-
tion away from the normal of table by a factor λ−1. This means that
the hyperbolic attractors for the billiard which contracts angles by λ
become hyperbolic repellers for the billiard which expands angles by
λ−1. For this reason we also call the billiard expanding angles by λ−1

a pinball billiard.
Perpendicular orbits bouncing between parallel sides are parabolic

and are exactly the periodic orbits of period two for the billiard map. If
the billiard in P has no such orbits, then for any λ ∈ (0, 1), the pinball
billiard in P has a finite number of ergodic Sinai-Ruelle-Bowen (SRB)
measures, each supporting a uniformly hyperbolic attractor. The union
of the basins of attraction of the SRB measures has full Lebesgue mea-
sure [7], and by Pesin theory, the periodic orbits are dense in the sup-
port of the SRB measures.

Therefore, the billiard of any polygon can be embedded in a one-
parameter family, parametrized by λ ∈ (0,+∞), of billiards having
periodic orbits whenever λ 6= 1. In the conservative limit λ → 1
we obtain the billiard with the standard reflection law for which the
existence of periodic orbits is an open problem. Hence, it would be
interesting to characterize the periodic orbits of the billiard in P that
can be approximated by periodic orbits of the corresponding pinball
billiard.

In this paper we introduce a new notion of stability for periodic
orbits. We say that a periodic orbit q of the billiard in P is λ-stable if
there exist a sequence λn → 1 of positive real numbers different from
1 and periodic orbits qλn for the pinball billiard in P hitting the same
sides of P such that qλn converges to q as n→∞. In fact, we define two
notions of stability, which we call λ±-stable, depending if the sequence
λn converges to 1 from above or below. We study these notions of
stability and show that they capture the same periodic orbits, i.e., λ−-
stability and λ+-stability coincide. We also show that λ-stability is
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unrelated to the notion of stability for periodic orbits introduced by
Galperin, Stepin and Vorobets [14]. Moreover, we derive sufficient and
necessary conditions for a periodic orbit to be λ-stable, and using these
conditions we prove that the set of d-gons having at most finite number
of λ-stable periodic orbits is dense is the space of d-gons. Finally, we
determine the λ-stable periodic orbits in integrable polygons, i.e., the
rectangles, equilateral triangle and right triangles 45-45-90 and 30-60-
90 degrees.

The rest of the paper is structured as follows. In section 2 we in-
troduce the pinball billiard and prove some preliminary results on λ-
stability. In section 3 we derive sufficient and necessary conditions for
a periodic orbit to be λ-stable and in section 4 we collect some appli-
cations to rational and integrable polygons. Finally, section 5 contains
the proofs of the results stated in section 4.

2. Preliminaries

2.1. Polygonal billiards. For simplicity we assume that P is a simply
connected d-gon, but our results hold for finitely connected polygons as
well. Give P the anti-clockwise orientation. Let M be the set of unit
tangent vectors (x, v) of P such that x ∈ ∂P and v is pointing inside
P . A vector (x, v) defines an oriented ray and we denote by (x̄, v̄) the
unit tangent vector where x̄ is the first intersection of the ray with ∂P
and v̄ is the vector pointing inside P obtained by reflecting v along the
boundary of P . The part of the ray connecting x to x̄ is called a link of
the trajectory and will be noted ((x, v), x̄). The map Φ : M →M just
defined is called the billiard map. Notice that the billiard map is not
continuous for the vectors (x, v) whose foot point image x̄ is a vertex
of P . So we exclude those vectors from M as well as the vectors of M
sitting at vertices of P . We denote this subset of M by M ′. Labeling
the sides of P from 1 to d, we see that the domain M ′ of the billiard
map is a finite union of connected components Σi,j which correspond
to billiard segments that connect side i to side j.

Consider a billiard trajectory starting at x in the direction v and its
first link ((x, v), x̄). To obtain the direction of the second link we reflect
this link in the boundary of P . Instead we reflect P about the side of P
containing x̄, the reflection of the second link becomes the straightened
continuation of the first link. The iteration of this procedure is called
unfolding or straightening of the billiard trajectory.

A generalized diagonal is a billiard trajectory that connects two cor-
ners of P , more formally it is a finite orbit (Φi(x, v) : i = 0, . . . , n) such
that x is a corner of P and the image of Φn(x, v) is not defined since
the first intersection of the oriented ray in this direction with ∂P is a
corner of P (possibly the same corner).

If we parametrize ∂P by the arc-length parameter s ∈ S1 and de-
noting by x(s) ∈ ∂P the corresponding point in ∂P , then we can give
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coordinates (s, θ) to a point in (x(s), v) ∈ M ′ where θ is the oriented
angle between v and the inward normal at x(s). The angle θ belongs
to the interval (−π/2, π/2). Denote by (s̄, θ̄) the image of (s, θ) under
the billiard map. Let βi,j be equal to π minus the angle formed by the
oriented sides i and j of P . Then the angle θ̄ is given by,

θ̄ = βi,j − θ, (1)

and the derivative of the billiard map is,

DΦ(s, θ) = −

cos θ

cos θ̄

t(s, θ)

cos θ̄

0 1

 , (2)

where t(s, θ) denotes the length of the segment joining x(s) and x(s̄).
For the computation of the derivative, see e.g. [6, Formula (2.26)].

Periodic orbits for the billiard map Φ come in one-parametric fam-
ilies. Indeed, any periodic trajectory of period p can be included in a
cylinder of periodic trajectories having the same period when p is even
or twice the period when p is odd. Moreover, every periodic cylinder
contains a generalized diagonal on its boundary. We will see below that
for pinball billiards the situation is completely different.

2.2. Pinball billiard map. Given λ > 0, let Rλ : M → M be the
map (s, θ) 7→ (s, λθ). Define

Φλ := Rλ ◦ Φ.

If λ 6= 1, then we call Φλ the pinball billiard map. When λ = 1, we
recover the billiard map with the standard (elastic) reflection law. Let
S denote the involution map (s, θ) 7→ (s,−θ). Using Φ−1 ◦ S = S ◦ Φ
we conclude that

Φ−1
λ ◦ S = S ◦ Φλ−1 , (3)

i.e., the billiard map Φλ is conjugated to Φ−1
λ−1 by the involution S.

If (s, θ) ∈ Σi,j and (s′, θ′) = Φλ(s, θ), then we have by (1) and (2)
that

s′ = −Ai,j(θ)s+Bi,j(θ) and θ′ = λ(βi,j − θ), (4)

where

Ai,j(θ) :=
cos θ

cos(βi,j − θ)
,

and Bi,j is an analytic function, in fact rational trigonometric, depend-
ing only on the sides i and j of P . It is not difficult to derive an explicit
expression for Bi,j, but in the following we shall not use it.

An orbit of the pinball billiard map Φλ is a sequence {(sn, θn)}n≥0

in M ′ such that (sn+1, θn+1) = Φλ(sn, θn). Given an orbit {(sn, θn) ∈
M ′ : n ≥ 0}, we denote by in ∈ {1, . . . , d} the corresponding itinerary,
i.e., (sn, θn) ∈ Σin,in+1 for every n ≥ 1.
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2.3. Periodic orbits and λ-stability.

Proposition 1. When λ 6= 1, all periodic orbits for Φλ having period
p > 2 are hyperbolic, isolated and their total number does not exceed
dp.

Proof. By (3) it is sufficient to prove the statement assuming λ < 1.
Being hyperbolic follows from [8], which implies that are isolated. The
number of periodic orbits follows from the fact that for any p > 2
there are at most dp periodic itineraries of length p (see the proof of
Proposition 3). �

Definition 2. We say that a periodic orbit q of Φ is λ±-stable if there
exist a strictly decreasing (increasing) sequence {λn}n≥1 converging to
1 and for each n ∈ N a periodic orbit qn of Φλn such that q and qn have
the same itinerary and qn → q as n→∞. We say that q is λ-stable if
it is both λ+-stable and λ−-stable.

We say that a periodic cylinder of Φ is λ±-stable if there exists a λ±-
stable periodic orbit in the cylinder, and λ-stable if it is both λ+-stable
and λ−-stable.

We call a periodic orbit a ping-pong orbit if it bounces between two
parallel sides. Clearly each ping-pong orbit is λ-stable, and thus the
whole associated cylinder is λ-stable. For all other periodic cylinders
we have a different behavior.

Proposition 3. If a periodic cylinder is λ±-stable and not a ping-pong
cylinder then the associated λ±-stable periodic orbit is unique.

Proof. This follows from the fact that for any given periodic itinerary
there is at most one periodic orbit realizing that itinerary. Indeed, let
n > 2 denote the period of the cylinder. By (4), the second component
of Φn

λ is a composition of affine maps of the form θ 7→ λ(βi,j − θ).
Thus, the angle θλ of the associated λ±-stable periodic orbit is uniquely
determined by its itinerary. Similarly, the first component of Φn

λ is
a composition of affine maps of the form s 7→ −Ai,j(θ)s + Bi,j(θ).
Therefore, it is also affine in s with coefficients depending only on
the itinerary of the cylinder and on θλ. Hence, the position sλ of the
associated λ±-stable periodic orbit is also uniquely determined by the
itinerary. �

Proposition 4. Every periodic orbit with odd period is λ-stable.

Proof. Denote by {i0, i1, . . . , i2n} the itinerary of the periodic orbit. For
(s0, θ0) ∈ Σi0,i1 ∩ Φ−1

λ (Σi1,i2) ∩ · · · ∩ Φ−2n
λ (Σi2n,i0) we have, by (2), that

DΦ2n+1
λ (s0, θ0) = −

(
Ai0,...,i2n+1(θ0) ∗

0 λ2n+1

)
,

where,

Ai0,...,i2n+1(θ0) =
cos θ0

cos θ̄2n

ρλ(θ̄0) · · · ρλ(θ̄2n−1),
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θ̄j = βij ,ij+1
− θj and,

ρλ(θ) :=
cos(λθ)

cos(θ)
.

Notice that ρλ(θ) 6= 1 for every θ ∈
(
−π

2
, π

2

)
\ {0} and ρλ(θ) = 1 if and

only if θ = 0 or λ = 1. Thus, if (ŝ0, θ̂0) is 2n + 1-periodic for Φ, then

Ai0,...,i2n+1(θ̂0) = 1 when λ = 1. This implies that

DΦ2n+1
λ (ŝ0, θ̂0)

∣∣∣
λ=1

=

(
−1 ∗
0 −1

)
.

By the implicit function theorem, there exists δ > 0 and analytic func-
tions s0 : (1− δ, 1 + δ)→ R and θ0 : (1− δ, 1 + δ)→ (−π/2, π/2) such
that (s0(λ), θ0(λ)) is a 2n+1-periodic point for Φλ and (s0(1), θ0(1)) =

(ŝ0, θ̂0). �

Galperin, Stepin and Vorobets have introduced and studied another
notion of stability; a periodic orbit is called stable if it is not destroyed
by any small deformation of the polygon ([14] p.18). They have shown
that a sufficient and necessary condition for a periodic orbit with period
n > 1 to be stable is that the alternating sum of the letters of the
itinerary word W = i0 . . . in−1 is zero, i.e.,

i0 − i1 + i2 − i3 + · · · ≡ 0.

Using this criterion they proved that odd length periodic orbits are
stable ([14] p.28). Thus,

Corollary 5. Odd length periodic orbits are both stable and λ-stable.

Even length periodic orbits, other than ping-pong orbits, behave
quite differently. We will discuss such orbits in Section 4 and will see
that these notions of stability are unrelated. Before closing this section
we see that the notions of λ+ and λ− stability are related as follows.
Given a periodic cylinder C of Φ we denote by C−1 the periodic cylinder
of Φ obtained by reversing C, i.e., by applying the involution S defined
in Subsection 2.2.

Lemma 6. The periodic cylinder C is λ−-stable if and only if the pe-
riodic cylinder C−1 is λ+-stable.

Proof. Suppose that C is λ−-stable. By definition, there exists a peri-
odic orbit qn and a strictly increasing sequence λn ↗ 1 such that qn
converges to a periodic orbit in C and it is a periodic orbit of Φλn . By
(3), Φλ−1

n
is conjugated to Φ−1

λn
by the involution map S. Thus, S(qn)

is a periodic orbit for Φλ−1
n

and converges as n → ∞ to a periodic

orbit in C−1. So, C−1 is λ+-stable. The other direction of the proof is
analogous. �
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3. Characterization of λ-stability

Let C be a periodic cylinder of Φ having even period. Denote by 2n
the period of the cylinder, {i0, . . . , i2n−1} the corresponding itinerary

and θ̂0, . . . , θ̂2n−1 the angles of the cylinder along the itinerary. We call

θ̂0 the angle of departure of C.

3.1. Necessary condition. The following identity is well known as it
is a simple consequence of (1).

Lemma 7. A necessary condition for the existence of an even length
periodic orbit with periodic 2n for Φ with itinerary {i0, . . . , i2n−1} is
that,

2n−1∑
k=0

(−1)kβik,ik+1
= 0. (5)

Using this lemma we obtain the following necessary condition for
λ-stability.

Proposition 8. If the cylinder C is λ−-stable or λ+-stable, then its
angle of departure equals

1

2n

2n−1∑
k=0

(−1)k+1kβik,ik+1
.

Proof. Any periodic point for Φλ having the itinerary {i0, . . . , i2n−1}
has an angle at i0 equal to,

1

λ2n − 1

2n−1∑
k=0

(−λ)2n−kβik,ik+1
.

When λ→ 1, the numerator in the previous fraction is

2n−1∑
k=0

(−1)2n−kβik,ik+1
,

which is zero by Lemma 7. Thus, by L’Hôtipal’s rule,

lim
λ→1

∑2n−1
k=0 (−λ)2n−kβik,ik+1

λ2n − 1
= lim

λ→1

∑2n−1
k=0 (k − 2n)(−λ)2n−k−1βik,ik+1

2nλ2n−1

=
1

2n

2n−1∑
k=0

(−1)k+1kβik,ik+1
.

�



8 GAIVÃO AND TROUBETZKOY

3.2. Sufficient conditions. For each pair of distinct sides i and j of
P let Φi,j be the restriction map of Φ to the domain Σi,j. Since Φi,j is
affine in the first component (see (4)), it can be extended to all (s, θ) ∈
R×(−π/2, π/2) provided |βi,j−θ| < π/2. Denoting by `i the supporting
line of the i-th side σi of P and by xi the arc-length parametrization
of `i obtained by extending the parametrization of σi, then the first
component of Φi,j can be seen as the projection of the point xi(s) ∈ `i
onto the line `j along the angle θ. Let (s′, θ′) = Φi,j(s, θ). Then by (2),

∂s′

∂s
= − cos θ

cos(βi,j − θ)
and

∂s′

∂θ
= − t(s, θ)

cos(βi,j − θ)
, (6)

where t(s, θ) now represents the oriented length of segment joining the
points xi(s) and xj(s

′) that lie on the oriented line defined by (s, θ).

Throughout the rest of this section we suppose that the period of the
periodic cylinder C is greater than two and that its angle of departure
θ̂0 is given by the expression in Proposition 8.

Define the functions,

θ0(λ) :=
1

λ2n − 1

2n−1∑
k=0

(−λ)2n−kβik,ik+1
,

θk(λ) := λ(βik−1,ik − θk−1(λ)), k = 1, . . . , 2n.

(7)

Clearly,

lim
λ→1

θk(λ) = θ̂k and θ2n(λ) = θ0(λ).

Hence, we can find δ > 0 such that θk(λ) ∈ (−π/2, π/2) for every
λ ∈ (1−δ, 1+δ) and every k = 0, . . . , 2n−1. So, for each k = 1, . . . , 2n,
the function FC,k : R× (1−δ, 1+δ)→ R is well defined by the formula,

FC,k(s, λ) := π1 ◦Rλ ◦ Φik−1,ik ◦ · · · ◦Rλ ◦ Φi0,i1(s, θ0(λ)),

where π1 denotes the projection (s, θ) 7→ s and Rλ the map defined in
subsection 2.2. Note that FC,2n(s, 1) = s for every s ∈ R. In order to
simplify the notation we simply write Fk in place of FC,k.

Lemma 9. F2n(·, λ) is an affine map, orientation-preserving and de-
pends analytically on λ. Moreover, it is expanding (contracting) if and
only if λ < 1 (λ > 1).

Proof. The map is affine because it is a composition of maps Rλ ◦ Φi,j

whose first component is affine in the variable s (see (4)). Since θ0(λ)
is analytic for λ > 0 (has a removable singularity at λ = 1), F2n(·, λ)
is also analytic in λ. Moreover, by (6) we have

∂F2n

∂s
(s, λ) = Ai0,i1(θ0(λ)) · · ·Ai2n−1,i2n(θ2n−1(λ))

= ρλ(θ̄0(λ)) · · · ρλ(θ̄2n−1(λ))
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where θ̄j(λ) = βij ,ij+1
− θj(λ) and ρλ is the function defined in the

proof of Proposition 4. Because, all θk(λ) ∈ (−π/2, π/2), we have
ρλ(θ̄k(λ)) > 0 for every k = 0, . . . , 2n−1. Thus, F2n(·, λ) is orientation-
preserving. Clearly, λ < 1 if and only if ρλ(θ) > 1 for every θ ∈(
−π

2
, π

2

)
\ {0}. Since the period of the cylinder is greater than two,

ρλ(θ̄k(λ)) > 1 for some θ̄k. Thus, F2n(·, λ) is expanding whenever
λ < 1. A similar argument shows that F2n(·, λ) is contracting whenever
λ > 1. �

Let IC denote the base of the cylinder C, i.e.,the set of parameters
s ∈ R such that (s, θ̂0) is a periodic point of Φ having the same itinerary
of the cylinder. The elements of IC are called base foot points. Note
that IC is an open interval.

Using the previous lemma we see that λ− and λ+ stability notions
coincide.

Proposition 10. If C is λ−-stable or λ+-stable, then C is λ-stable.

Proof. Suppose that C is λ−-stable. The other case is analogous. Let
s0(λn) ∈ IC denote the base foot point corresponding to a periodic
orbit q(λn) of Φλn which converges to a periodic orbit in C as n→∞.
By Proposition 3, the periodic orbit q(λn) is unique. In fact, s0(λn) =
F2n(s0(λn), λn) for every n ≥ 1. Because F2n(·, λ) is affine and analytic
in λ, we can analytically extend s0 to every λ ∈ (1 − ε, 1 + ε) for
some ε > 0. This extension gives a periodic orbit q(λ) of Φλ for every
λ ∈ (1− ε, 1 + ε). Thus C is λ-stable. �

Remark 11. In fact, in the proof of Proposition 10, we show that a
periodic cylinder C is λ±-stable if and only if there exists ε > 0 such
that for every λ ∈ (1 − ε, 1 + ε) the map Φλ has a periodic orbit qλ
having the same itinerary of C such that limλ→1 qλ is contained in the
cylinder C.

As an immediate consequence of Lemma 6 and Proposition 10 we
obtain the following result.

Corollary 12. C is λ-stable if and only if C−1 is λ-stable.

The following result gives a sufficient and necessary condition for
λ-stability.

Proposition 13. The periodic cylinder C is λ-stable if and only if there
are a, b ∈ IC with a < b and 0 < λ0 < 1 such that

F2n(a, λ) < a and F2n(b, λ) > b, ∀λ ∈ (λ0, 1).

Moreover, if the above condition holds, then the λ-stable periodic orbit
contained in C has base foot point s ∈ (a, b).

Proof. By Lemma 9, F2n(·, λ) is affine, orientation-preserving and ex-
panding for λ < 1. Suppose that the interval [a, b] is strictly con-
tained inside F2n([a, b], λ). So, the map F2n(·, λ) has a fixed point
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s0(λ) for every λ ∈ (λ0, 1). Since s0(λ) ∈ [a, b] for every λ0 ∈ (λ0, 1)
we can take a convergent subsequence s0(λn) with λn ∈ (λ0, 1), n ≥ 1,
strictly increasing and converging to 1 as n → ∞. This shows that
(s0(λn), θ0(λn)) is a periodic orbit for Φλn having the same itinerary
of the cylinder C and converging to a periodic orbit in C. Thus, C
is λ−-stable and by Proposition 10 it is λ-stable. Now we show that
s0(1) ∈ (a, b). By continuity, for every ε > 0 sufficiently small, we can

find λ̂0 ∈ (λ0, 1) such that F2n(a+ε, λ) < a+ε and F2n(b−ε, λ) > b−ε
for every λ ∈ (λ̂0, 1). Therefore, s0(1) ∈ [a+ ε, b− ε] by repeating the
first part of the proof.

To prove the other direction suppose that C is λ-stable. As in the
proof of Proposition 10, let s0(λ) ∈ IC denote the base foot point cor-
responding to a periodic orbit q(λ) of Φλ which converges to a periodic
orbit in C as λ → 1. Since s0(1) ∈ IC, there is ε > 0 small such that
Jε := (s0(1)− ε, s0(1) + ε) ⊂ IC and s0(λ) ∈ Jε for every λ sufficiently
close to 1. Because F2n(·, λ) is affine, orientation-preserving and ex-
panding when λ < 1, we conclude that Jε ( F2n(Jε, λ) for every λ < 1
sufficiently close to 1. This concludes the proof. �

Lemma 14. Let a, b ∈ IC with a < b. If

∂F2n

∂λ
(a, 1) > 0 and

∂F2n

∂λ
(b, 1) < 0,

then the periodic cylinder C is λ-stable. Moreover, the λ-stable periodic
orbit contained in C has base foot point s ∈ (a, b).

Proof. By continuity, there exists λ0 > 0 such that for every λ ∈ (λ0, 1)
we have F2n(a, λ) < a and F2n(b, λ) > b. So, the cylinder C is λ-stable
by Proposition 13. �

Given s ∈ IC, define for each k = 0, . . . , 2n− 1,

sk := Fk(s, 1) and θk := lim
λ→1

θk(λ) = θ̂k.

Recall that t(sk, θk) is the oriented length of the segment joining the
points xik(sk) and xik+1

(sk+1).

Lemma 15. For every s ∈ IC,

∂F2n

∂λ
(s, 1) =

2n−1∑
i=0

t(si, θi)

cos θ0

dθ0

dλ

∣∣∣∣
λ=1

+
2n−1∑
k=1

(−1)kθk

2n−1∑
i=k

t(si, θi)

cos θ0

.

Proof. LetH denote the map (s, θ, λ) 7→ (Rλ◦Φ(s, θ), λ). When instead
of Φ we use the restriction maps Φi,j, then we write Hi,j in place of H.
By (2) we have

DH(s, θ, λ) = −

 cos θ
cos θ̄

t(s,θ)

cos θ̄
0

0 λ −θ̄
0 0 −1

 .
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Define Hk := Hik−1,ik ◦ · · · ◦Hi0,i1 , for k = 1, . . . , 2n. Hence,

DHk(s0, θ0, λ) = (−1)k

αk(θ0) γk(s0, θ0)
∑k−1

j=1(−1)j θ̄j−1γk−j(sj, θj)

0 λk
∑k

j=1(−1)jλk−j θ̄j−1

0 0 (−1)k

 ,

where

αk(θ0) :=
k−1∏
j=0

cos θj
cos θ̄j

,

γk−j(sj, θj) :=
k−1∑
i=j

λi−j
t(si, θi)

cos θ̄i

cos θi+1

cos θ̄i+1

· · · cos θk−1

cos θ̄k−1

, j = 0, . . . , k − 1,

(sj, θj) := Rλ ◦ Φij−1,ij(sj−1, θj−1), j = 1, . . . , k − 1,

θ̄j := βij ,ij+1
− θj, j = 0, . . . , k − 1.

Now define
G(s, θ, λ) := π1 ◦H2n(s, θ, λ),

where π1 is the projection (s, θ, λ) 7→ s. Using the formulas above we
compute,

∂G

∂θ
(s0, θ0, λ) = γ2n(s0, θ0),

∂G

∂λ
(s0, θ0, λ) =

2n−1∑
k=1

(−1)kθ̄k−1γ2n−k(sk, θk),

where

γ2n−k(sk, θk) =
2n−1∑
i=k

λi−k
t(si, θi)

cos θ̄2n−1

ρλ(θ̄i−1) · · · ρλ(θ̄2n−2),

and ρλ is the function defined in Proposition 4. Since F2n(s, λ) =
G(s, θ0(λ), λ), we get

∂F2n

∂λ
(s, λ) =

∂G

∂θ
(s, θ0(λ), λ)

dθ0

dλ
+
∂G

∂λ
(s, θ0(λ), λ)

= γ2n(s, θ0(λ))
dθ0

dλ
+

2n−1∑
k=1

(−1)kθ̄k−1(λ)γ2n−k(Fk(s, λ), θk(λ)).

Setting λ = 1 we obtain,

∂F2n

∂λ
(s, 1) =

2n−1∑
i=0

t(si, θi)

cos θ0

dθ0

dλ

∣∣∣∣
λ=1

+
2n−1∑
k=1

(−1)kθk

2n−1∑
i=k

t(si, θi)

cos θ0

.

�

Let

Lk(s) :=
k−1∑
i=0

t(si, θi).
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For convenience we set L0(s) := 0. Note that L2n(s) = L for every
s ∈ IC where L denotes the length of the periodic cylinder C.

Define,

Ω0 :=
1

4n

2n−1∑
k=0

(−1)k+1k(2n− k)βik,ik+1
.

Theorem 16. If there are a, b ∈ IC with a < b such that,

2n∑
k=1

(−1)kθkLk(a) < Ω0L <
2n∑
k=1

(−1)kθkLk(b), (8)

then the periodic cylinder C is λ-stable. Moreover, the λ-stable periodic
orbit contained in C has base foot point s ∈ (a, b).

Proof. By a simple calculation we obtain,

dθ0

dλ

∣∣∣∣
λ=1

=
1

4n

2n−1∑
k=0

(−1)k+1k(2n− k)βik,ik+1
= Ω0.

Thus we get by Lemma 15,

∂F2n

∂λ
(a, 1) =

1

cos θ0

(
L
dθ0

dλ

∣∣∣∣
λ=1

+
2n−1∑
k=1

(−1)kθk(L− Lk(a))

)

=
1

cos θ0

(
L(Ω0 − θ0) +

2n−1∑
k=0

(−1)kθk(L− Lk(a))

)

=
1

cos θ0

(
L(Ω0 − θ0)−

2n−1∑
k=0

(−1)kθkLk(a)

)

=
1

cos θ0

(
L(Ω0 − θ2n)−

2n−1∑
k=0

(−1)kθkLk(a)

)

=
1

cos θ0

(
LΩ0 −

2n∑
k=1

(−1)kθkLk(a)

)
,

where we have used the fact that

2n−1∑
k=0

(−1)kθk =
2n−1∑
k=0

(−1)k

(
1

2n

2n−1∑
j=0

(−1)j+1jβik+j ,ik+j+1

)

=
1

2n

2n−1∑
j=0

(−1)j+1j

2n−1∑
k=0

(−1)kβik+j ,ik+j+1
= 0,

where the indices k of βik,ik+1
are taken mod 2n and the last equality

follows from Lemma 7. Because cos θ0 > 0, we have ∂F2n

∂λ
(a, 1) > 0 if
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and only if

LΩ0 >
2n∑
k=1

(−1)kθkLk(a).

The computation for ∂F2n

∂λ
(b, 1) is analogous. The theorem now follows

from Lemma 14. �

Remark 17. Denote by l and r the left and right endpoints of the
interval IC. Then l and r are respectively the base foot points of the left
and right generalized diagonals forming the boundary of C. Following
the proof of Theorem 16 it is easy to see that C is λ-stable provided
condition (8) holds with a = l and b = r.

Remark 18. The map F2n(·, λ) is affine and expanding by Lemma 9.
Therefore, if ∂F2n

∂λ
(·, 1) has the same sign at l and r, i.e.,

∂F2n

∂λ
(l, 1)

∂F2n

∂λ
(r, 1) > 0,

then C cannot be λ-stable.

4. Applications

In this section we collect some applications of the results proved in
section 3. We defer the proofs of the following statements to section 5.

A polygon P is called rational if all its angles are rational multiples
of π.

Theorem 19. In any rational polygon with vertices having algebraic
coordinates there are at most finitely many λ-stable periodic cylinders.

The applicability of this theorem is strongly related to the results of
[5], but we give self contained simple proofs. Theorem 19 applies to
regular polygons since we can write the vertices of any regular polygon
as (cos(2πk/d), sin(2πk/d)), with k = 0, . . . , d − 1. Moreover, Theo-
rem 19 does not apply to all rational polygons since not every rational
polygon has algebraic vertices. In fact, there are rational quadrilater-
als having transcendental vertices, e.g., in rectangles of height 1, most
widths are not algebraic. However, as we show in the following corol-
lary, all rational triangles have algebraic vertices.

Corollary 20. In any rational triangle there are at most finitely many
λ-stable periodic cylinders.

Proof. Consider the triangle having vertices (0, 0), (1, 0) and pa :=
(a, a tanα) where a > 0 and 0 < α < π/2. The triangle has angle α at
(0, 0). Denote by β the angle at pa. Then

cos(2β) = 1− 2 sin2 α

(a− 1)2 + a2 tan2 α
. (9)
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So, if both α and β are rational multiple of π, then a is algebraic because
cos(2β), sinα and tanα are algebraic. Thus, all rational triangles have
algebraic vertices and the conclusion follows from Theorem 19. �

Remark 21. Not every triangle with algebraic vertices is rational. In-

deed, let α = π/4 and a =
√
n−1+

√
n−1

2(
√
n−1)

with odd n ≥ 3 , which is the

positive root of the polynomial

q(x) =

(
1− 1√

n

)(
(x− 1)2 + x2

)
− 1.

By (9), and our choice of α and a we get cos(2β) = 1√
n

. However, by

[1, Theorem 3 of Chapter 8], we know that 1
2π

arccos 1√
n

is irrational.

Hence, β is not a rational multiple of π. Thus, the triangle with alge-
braic vertices (0, 0), (1, 0) and (a, a tanα) is not rational.

Is there a polygon with an infinite number of λ-stable periodic cylin-
ders? Having no λ-stable periodic cylinders at all? At the time of
writing, we do not know the answer to these questions.

However, we know from Theorem 19 that a dense set of polygons
have at most a finite number of λ-stable periodic cylinders. The space
of d-gons can be considered as a subset of the Euclidean space R2d,
thus inheriting its topology.

Corollary 22. The set of d-gons having at most finite number of λ-
stable periodic cylinders is dense in the space of d-gons.

Proof. It is well known that rational polygons are dense in the space
of d-gons. By the proof of Corollary 20, we know that rational tri-
angles have algebraic vertices, thus form a dense subset of the set of
all triangles. Now given a polygon P consider any triangulation of it,
i.e., break P into a union of triangles with non-intersecting interior and
vertices belonging to the set of vertices of P . Such triangulation can
be obtained in many ways, e.g., the ear clipping method.

Now pick a triangle ∆0 in the triangulation. We can approximate it
by another triangle ∆′0 having rational angles and algebraic vertices.
Next, pick a triangle ∆1 adjacent to ∆′0 and denote by v1 the vertex of
∆1 which is not a vertex of ∆′0. We can move v1 around and ∆′0 does
not change. Using the construction in the proof of Corollary 20 we can
perturb slightly v1 obtaining a rational triangle ∆′1 with algebraic ver-
tices and adjacent to ∆′0. Now, repeat this procedure until exhausting
the list of triangles forming the triangulation of P . At the end, we have
perturbed the triangulation of P to obtain an arbitrary close polygon
P ′ whose triangulation consists of rational triangles having algebraic
vertices. Thus P ′ is also rational and has algebraic vertices. Using
Theorem 19, this shows that in any neighbourhood of P we can find
P ′ having at most finite number of λ-stable periodic cylinders. �
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A (generalized) Fagnano1 orbit is a periodic orbit with period p of
the billiard in P which has itinerary ik+1 = ik + m (mod d) for k =
0, . . . , p− 1 and some integer 1 ≤ m < d. Every Fagnano orbit extends
to a periodic cylinder called the Fagnano cylinder.

Proposition 23 (Fagnano). If P is a regular polygon, then every Fag-
nano cylinder is λ-stable. Moreover, the periodic orbit in the center of
the cylinder is λ-stable.

In the following we study the λ-stable periodic cylinders in integrable
polygons, i.e., the rectangles, the equilateral triangle and the right
triangles 45-45-90 and 30-60-90 degrees. Except for the rectangle we
determine exactly the number of λ-stable periodic cylinders and show
that in all cases there exists at least one and at most a finite number
of λ-stable periodic cylinders. For integrable triangles the finiteness of
λ-stable periodic cylinders follows from Corollary 20.

Proposition 24 (Rectangle). Every rectangle has two ping-pong cylin-
ders, they are λ-stable. These are the only λ-stable periodic cylinders
unless the aspect ratio w of the rectangle satisfies

w =
p

q
cot

(
πp

2(p+ q)

)
(10)

with p and q positive integers. In addition to the ping-pong cylinders,
when w satisfies (10), there are at most two more λ-stable periodic
cylinders. The slope of the cylinders is ±p/(qw).

This proposition generalizes immediately to polygons which are tiled
by translated copies of a single rectangle. In the case of the square we
get the following result.

Corollary 25 (Square). The only λ-stable periodic cylinders in the
square are the two ping-pond cylinders and the two Fagnano cylinders
(having period four).

The following result shows that λ-stability and the notion of stability
introduced by Galperin, Stepin and Vorobets are unrelated.

Corollary 26. There are cylinders of periodic orbits which are

(1) stable and λ-stable
(2) stable and not λ-stable,
(3) unstable and λ-stable.
(4) unstable and λ-unstable.

Proof. Every odd length periodic orbit is stable ([14, p.28]) and λ-
stable. Every periodic orbit in the square is unstable ([14, Theorem 1])
while only the ping-pong orbits and two period four orbit are λ-stable

1Giovanni Francesco Fagnano, was an italian mathematician that lived between
the years 1715 – 1797.
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(Corollary 25). There are infinitely many stable periodic orbits in the
equilateral triangle ([14, Assertion 9 and Theorem 3]) but only finitely
many λ-stable orbits (Corollary 20).

�

Regarding the first item of the previous corollary, the following natu-
ral question arises: is there an even length periodic orbit which is both
stable and λ-stable?

Now we turn to triangles. The following result concerns the equi-
lateral triangle. A cylinder of periodic orbits is called perpendicular if
the angle of departure of the periodic orbits is zero. Such cylinders of
periodic orbits must have even period.

Proposition 27 (Equilateral triangle). In the equilateral triangle only
the two Fagnano cylinders and the two perpendicular periodic cylinders
of period four are λ-stable.

Using the same ideas as in the proof of Proposition 27 we obtain the
following result.

Proposition 28 (Regular hexagon). In the regular hexagon only the
two Fagnano periodic cylinders of period six, the four Fagnano periodic
cylinders of period three and the three ping-pong cylinders are λ-stable.

Regarding integrable right triangles we have the following results.

Proposition 29 (Right triangle with 30-60-90 degrees). In the right
triangle with 30-60-90 degrees only the following periodic cylinders are
λ-stable:

(1) the two periodic cylinders of period six which are perpendicular
to the shorter leg and the diagonal of the triangle,

(2) the two periodic cylinders of period six which are perpendicular
to the diagonal of the triangle,

(3) the two periodic cylinders of period ten which are perpendicular
to the longer leg of the triangle.

For the isosceles right triangle we have,

Proposition 30 (Right triangle with 45-45-90 degrees). In the right
triangle with 45-45-90 degrees only the two periodic cylinders of period
four which are perpendicular to the legs of the triangle and the two
periodic cylinders of period six which are perpendicular to the diagonal
of the triangle are λ-stable.

5. Proofs

In this section we collect the proofs of the results stated in section 4.
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5.1. Proof of Theorem 19. Let P be a rational polygon whose ver-
tices have algebraic coordinates. Any rational polygon has at most
finitely many odd length periodic orbits ([14, p.30]). These are λ-stable
by Proposition 4. Now we turn to even length periodic cylinders. Let
V = {vi} denote the set of vectors obtained by the action of the finite
group of reflections G(P ) on the set of vertices of P . Clearly, V is
a finite set (orientation is unimportant) and the coordinates of each
vi ∈ V are algebraic. Consider a λ-stable periodic cylinder of even
length 2n, and let v be a generalized diagonal on the boundary of this
cylinder. Any generalized diagonal can be represented as a sum of the
vi, i.e., there exists ji ∈ Z such that

v =
∑

jivi.

Proposition 8 tells us that the slope of v is

tan

(
1

2n

2n−1∑
k=0

(−1)k+1kβik,ik+1

)
.

Since P is rational all the angles βi,j are rational multiples of π, thus
the slope of v equals tan(pπ/q) for some co-prime integers p and q > 0.
Because all vi have algebraic coordinates, there exists an integer N =
N(P ) > 0 such that the algebraic degree of the slope of v is less than N .
However, by Niven’s theorem [13, Theorem 3.11], the algebraic degree
of tan(pπ/q) is ϕ(q)/2 if q is a multiple of 4 and ϕ(q) otherwise, where
ϕ denotes the Euler’s totient function. Thus ϕ(q) ≤ 2N in either case.
This implies that q ∈ ϕ−1({1, . . . , 2N}), which is a finite set. Therefore
there are only finitely many such slopes, which correspond to a finite
collection of directions {θi : i ∈ I} in the billiard. Since our polygon
is rational, the billiard orbits starting in a given direction θ can only
take a finite number of directions, call this set of directions [θ]. Thus
the possible directions of generalized diagonals on the boundary of a
λ-stable cylinder are in the finite set {θ : θ ∈ [θi] for some i ∈ I}. Since
each generalized diagonal starts at a corner of the polygon, i.e., in a
finite collection of points, there are only finitely many such generalized
diagonals, thus only finitely possible many λ-stable cylinders in P . �

5.2. Proof of Proposition 23. Let P be a regular d-gon. Label the
edges of P anticlockwise from 1 to d. If the period p of the cylinder is
odd, then the cylinder is λ-stable by Proposition 4. Otherwise suppose
that p is even, say p = 2n. Also suppose that the Fagnano cylinder
has itinerary {ik}2n−1

k=0 with ik = 1 + km (mod d) for some integer
1 ≤ m ≤ bd/2c. In the case d is even, m = d/2 gives a ping-pong
cylinder which we already know that is λ-stable. So we assume that
m < d/2. Then for every k = 0, . . . , 2n− 1,

βik,ik+1
= π

(
1− 2m

d

)
and θk =

π

2

(
1− 2m

d

)
,
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where the indices k of βik,ik+1
are taken mod 2n. Therefore,

1

2n

2n−1∑
k=0

(−1)k+1kβik,ik+1
=

π

2n

(
1− 2m

d

) 2n−1∑
k=0

(−1)k+1k

=
π

2

(
1− 2m

d

)
.

So the angle of departure of the cylinder satisfies the formula in Propo-
sition 8. Now we verify the condition in Theorem 16 (see also Re-
mark 17). First note that

Ω0 =
1

4n

2n−1∑
k=0

(−1)k+1k(2n− k)βik,ik+1

=
π

4n

(
1− 2m

d

) 2n−1∑
k=0

(−1)k+1k(2n− k)

=
π

4

(
1− 2m

d

)
.

Hence,

Ω0L =
Lπ

4

(
1− 2m

d

)
,

where L denotes the length of the cylinder. Taking into account that,

Lk+1(l)− Lk(l) = L1(r) and Lk+1(r)− Lk(r) = L1(l)

for k = 1, 3, 5, . . . , 2n− 1, we get

2n∑
k=1

(−1)kθkLk(l) =
π

2

(
1− 2m

d

) 2n∑
k=1

(−1)kLk(l)

=
π

2

(
1− 2m

d

)
nL1(r).

Similarly,
2n∑
k=1

(−1)kθkLk(r) =
π

2

(
1− 2m

d

)
nL1(l).

Since 2nL1(r) < L < 2nL1(l), the hypothesis of Theorem 16 holds, and
so the cylinder is λ-stable. To show the last claim let m ∈ IC denote the
midpoint of the interval IC and note that Lk+1(m)− Lk(m) = L/(2n)
for k = 0, . . . , 2n− 1. Thus,

2n∑
k=1

(−1)kθkLk(m) =
π

2

(
1− 2m

d

) 2n∑
k=1

(−1)kLk(m)

=
Lπ

4

(
1− 2m

d

)
= Ω0L.
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Now we can take arbitrarily small ε > 0 and set a = m−ε and b = m+ε
so that the hypothesis of Theorem 16 holds for this choice of a and b.
Hence, the periodic orbit in the center of the cylinder is λ-stable. �

5.3. Proof of Proposition 24. Each rectangle has two ping-pong
cylinders, they are stable.

By rotating and rescaling we can suppose that the rectangle has
vertical and horizontal sides width w and height 1. Then we have a
periodic orbit of period 2(|p|+ |q|) if and only if p and q are relatively
prime and the slope of the orbit is p/(qw). We consider the periodic
cylinder starting on a vertical side with right boundary the origin. See
Figure 1, drawn in the case of aspect ratio 1.

Figure 1. Slope 2/5. (βik,ik+1
)13k=0 =

(0, 0, π
2 ,

π
2 , 0,

π
2 ,

π
2 , 0, 0,

π
2 ,

π
2 , 0,

π
2 ,

π
2 )

Consider the alternating sum of Proposition 8

1

2(p+ q)

2(p+q)−1∑
k=0

(−1)k+1kβik,ik+1
.

We suppose that p and q are strictly positive, and that p ≤ q. We
claim that, other than the vertical and horizontal directions, the other
cases reduce to this case. First of all we can assume p are q are strictly
positive using the symmetries of the rectangle. Furthermore note that
there is a λ-stable periodic orbit with slope p/qw in the rectangle with
aspect ratio w if and only if there there is a λ-stable periodic orbit with
slope q/pw−1 in the rectangle with aspect ratio w−1.

First consider the case p = q, then since p and q are relatively prime
we have p = q = 1 and all the βik,ik+1

equal −π
2
, thus

1

2(p+ q)

2(p+q)−1∑
k=0

(−1)k+1kβik,ik+1
=
−π
8

3∑
k=0

(−1)k+1k = −π
4
.

Now consider the case p < q. Note that the terms coming from hitting
opposite sides do not contribute to the sum since for any i we have
βi,i+2 = 0. The contribution comes from the βik,ik+1

which correspond
to a collision between adjacent sides. In that case βik,ik+1

= ±π/2.
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We can always decompose the sequence of angles (βik,ik+1
)
2(p+q)−1
k=0 in

blocks of the form(
βir,ir+1 , . . . , βis,is+1 , βis+1,is+2 , . . . , βit,it+1

)
with n := s − r + 1 angles βir,ir+1 , . . . , βis,is+1 corresponding to con-
secutive collisions between opposite sides (βi,i+2 = 0), and m := t − s
angles βis+1,is+2 , . . . , βit,it+1 corresponding to consecutive collisions be-
tween adjacent sides (βi,i+1 = −βi+1,i = π/2). Note that m and n are
non-negative integers (might be zero) but m is always even. Let us
suppose that there are N ≥ 1 such blocks. Each block, say the j-th
block, with nj := sj − rj + 1 and mj := tj − sj corresponding to the
number of collisions between opposite and adjacent sides, respectively.
In the example depicted in Figure 1 there are 4 blocks,{

(0, 0,
π

2
,
π

2
), (0,

π

2
,
π

2
), (0, 0,

π

2
,
π

2
), (0,

π

2
,
π

2
)
}
.

Note that

rj = n1 + · · ·+ nj−1 +m1 + · · ·+mj−1 and sj + 1 = rj + nj. (11)

Thus, the contribution of each block is

tj∑
k=rj

(−1)k+1kβik,ik+1
=

sj∑
k=rj

(−1)k+1kβik,ik+1
+

tj∑
k=sj+1

(−1)k+1kβik,ik+1

=

tj∑
k=sj+1

(−1)k+1kβik,ik+1

= βisj+1,isj+2

tj∑
k=sj+1

(−1)k+1k

= βisj+1,isj+2(−1)sj
mj−1∑
k=0

(−1)k(sj + 1 + k).

Clearly,
mj−1∑
k=0

(−1)k(sj + 1 + k) = −mj

2
.

Moreover, βisj+1,isj+2 = ±π
2
. In fact, since βisj+1,isj+2 = (−1)njβisj−1+1,isj−1+2

for every 2 ≤ j ≤ N , and βis1+1,is1+2 = (−1)n1+1 π
2

we have,

βisj+1,isj+2 = (−1)n1+···+nj+1π

2
.

Hence,
tj∑

k=rj

(−1)k+1kβik,ik+1
=
mjπ

4
(−1)n1+···+nj+sj .
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By (11) we have,

n1 + · · ·+ nj + sj + 1 = 2(n1 + · · ·+ nj) +m1 + · · ·+mj−1,

which is an even number since the mi are even. Thus,
tj∑

k=rj

(−1)k+1kβik,ik+1
= −mjπ

4
.

Collecting all the N blocks we obtain,

1

2(p+ q)

2(p+q)−1∑
k=0

(−1)k+1kβik,ik+1
= − π

8(p+ q)

N∑
j=1

mj.

Every time the cylinder crosses a horizontal line it corresponds to two
consecutive collisions between adjacent sides. Since there are 2p such
crossings we have

N∑
j=1

mj = 4p.

This implies that the periodic cylinder with slope p/(qw) is λ-stable in
the rectangle with aspect ratio w only if p and q satisfy the equation

p

qw
= tan

(
πp

2(p+ q)

)
.

This concludes the proof. �

5.4. Proof of Corollary 25. Proposition 24 shows that a periodic
cylinder with slope p/q is λ-stable in the square only if

p

q
= tan

(
πp

2(|p|+ |q|)

)
.

It is known that the only rational values of the tangent function at
rational multiples of π are 0 and ±1 [4]. In particular the only solu-
tions are p = 0 and |p| = |q| = 1. These solutions correspond to the
slope 0 of period 2 ping-pong cylinder and the slope ±1 of period four
cylinders (Fagnano cylinders). The two Fagnano cylinders are λ-stable
by Proposition 23. �

5.5. Proof of Proposition 27. The two Fagnano orbits are the only
orbits primitive orbits of odd period [2] (and thus λ-stable by Propo-
sition 4).

Now consider even length periodic orbits, suppose that one side of
the triangle is horizontal and of length 1. Consider the vectors (1, 0)
and (cosπ/3, sin π/3) as a basis of the plane. Tessellate the plane
with equilateral triangles and express the vertices of these triangles
in this basis. Then the point (p, q) in this basis is the point (p +
q cos(π/3), q sin(π/3)) = (p + q/2, q

√
3/2) in rectangular coordinates.

Thus the slope of a periodic orbit is of the form q
√

3
2p+q

.
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Consider a λ-stable periodic cylinder, it must hit the horizontal side
of the triangle. Consider the angle θ which the cylinder makes with
this side at the time of (some) collision. Proposition 8 tells us that
θ is a rational multiple of π. We conclude that any λ-stable periodic
cylinder must have a slope equal to the tangent of an angle which
is a rational multiple of π. But it is known that the only rational
multiples of π for which the tangent is a rational multiple of

√
3 are

0,±π/6,±π/3,±2π/3,±5π/6 [3]. Since θ ∈ (−π/2, π/2) we have θ ∈
{0,±π/6,±π/3}

The only periodic cylinder with angles in the set {±π/6} are the
two Fagnano cylinders, which we already know are λ-stable. Each of
the three other possibilities {0,±π/3} corresponds to a twice periodic
cylinder C and C−1 of period 4. Now, using Theorem 16 (see also
Remark 17), we show that C is λ-stable (see Figure 2).

Figure 2. The dashed line represents the λ-stable pe-
riodic orbit with itinerary {1, 2, 1, 3} and the solid line
the associated periodic orbit for Φλ with λ = 0.9.

Label the sides of the equilateral triangle anticlockwise from 1 to 3
starting on the horizontal edge. Suppose that C has itinerary {1, 2, 1, 3}.
Note that β1,2 = β3,1 = π/3 and β2,1 = β1,3 = −π/3. Therefore,

θ0 =
1

4

3∑
k=0

(−1)k+1kβik,ik+1
=
π

3
,

Ω0 =
1

8

3∑
k=0

(−1)k+1k(4− k)βik,ik+1
=
π

6
.

The angle sequence {θk}3
k=0 of the periodic cylinder is {π/3, 0,−π/3, 0}.

Moreover, the lengths Lk(s) evaluated at the left and right generalized
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diagonals forming the boundary of the cylinder are

L1(l) =

√
3

2
, L2(l) = L3(l) = L4(l) =

√
3,

L1(r) = L2(r) = 0, L3(r) =

√
3

2
, L4(r) =

√
3.

Using these numbers we compute,

4∑
k=1

(−1)kθkLk(l) = 0 and
4∑

k=1

(−1)kθkLk(r) =
π√
3
.

Since L =
√

3 and 0 < π
2
√

3
< π√

3
, we see that the hypothesis of

Theorem 16 is satisfied. Thus C is λ-stable and by Lemma 6, C−1 is
also λ-stable. �

5.6. Proof of Proposition 28. Consider even length periodic cylin-
ders and suppose that one side of the hexagon is horizontal as in the
proof of Proposition 27. We can apply a hexagonal symmetry to as-
sume that this cylinder hits the horizontal side. The same calculation
as in the equilateral triangle case shows that the possible angles of pe-
riodic orbits starting on this side belong to the set {0,±π/6,±π/3}.
There is one cylinder with angle 0, it is a ping-pong cylinder, thus λ-
stable. There are 2 period 3 Fagnano cylinders (with angles ±π/6) and
two period 6 Fagnano cylinders with angles ±π/3, they are λ-stable by
Proposition 23. �

5.7. Proof of Proposition 29. Similar to Proposition 27, we consider
the vectors (1, tanπ/3) and (1, 0) as generators of the tessellation of
plane by right angles of 30-60-90 degrees. We can always consider
that periodic orbits start on the horizontal edge. We again see that
the slopes of periodic cylinders are rational multiples of

√
3. Thus

again the possible angles belong to the set {0,±π/3,±π/6,±π/2} ∩
(−π, 2, π/2) = {0,±π/3,±π/6}.

According to this set of angles we have the following possibilities:

(1) the angle 0 corresponds to the period 6 periodic cylinder which
is the perpendicular cylinder to the short side and the diagonal
of the triangle,

(2) the angles ±π/6 correspond to the period 10 cylinder which is
perpendicular to the longer leg of the triangle,

(3) the angles ±π/3 correspond to the period 6 cylinder which is
perpendicular to the diagonal of the triangle.

As in the proof of Proposition 27, we show using Theorem 14 that
all these perpendicular cylinders are λ-stable. Label the sides of the
triangle anticlockwise from 1 to 3 starting on the horizontal edge. Note
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that

β1,2 = −β2,1 =
π

2
, β3,1 = −β1,3 =

π

3
and β2,3 = −β3,2 =

π

6
.

Let us consider the three cases separately:

(1) Suppose that C is the perpendicular periodic cylinder with itinerary
{1, 3, 2, 3, 2, 3} (see Figure 3). Then,

θ0 =
1

6

5∑
k=0

(−1)k+1kβik,ik+1
= 0,

Ω0 =
1

12

5∑
k=0

(−1)k+1k(6− k)βik,ik+1
= −5π

18
.

Figure 3. The dashed line represents the λ-stable pe-
riodic orbit with itinerary {1, 3, 2, 3, 2, 3} and the solid
line the associated periodic orbit for Φλ with λ = 0.9.

The angle sequence {θk}5
k=0 of the periodic cylinder is{

0,−π
3
,
π

6
, 0,−π

6
,
π

3

}
.

Moreover, the lengths Lk(s) evaluated at the left and right gen-
eralized diagonals forming the boundary of the cylinder are

{Lk(l)}6
k=1 =

{
0,

2√
3
,
√

3,
4√
3
, 2
√

3, 2
√

3

}
,

{Lk(r)}6
k=1 =

{√
3,
√

3,
√

3,
√

3,
√

3, 2
√

3
}
.
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Using these numbers we compute,

6∑
k=1

(−1)kθkLk(l) = − 7π

3
√

3
and

6∑
k=1

(−1)kθkLk(r) = 0.

Since L = 2
√

3 and − 7π
3
√

3
< − 5π

3
√

3
< 0, we see that the hy-

pothesis of Theorem 16 is satisfied. Thus C is λ-stable and by
Lemma 6, C−1 is also λ-stable.

(2) Now suppose that C is the perpendicular periodic cylinder with
itinerary {1, 2, 3, 2, 3, 2, 1, 3, 2, 3} (see Figure 4). Then,

θ0 =
1

10

9∑
k=0

(−1)k+1kβik,ik+1
=
π

6
,

Ω0 =
1

20

9∑
k=0

(−1)k+1k(10− k)βik,ik+1
=
π

5
.

Figure 4. The dashed line represents the λ-stable pe-
riodic orbit with itinerary {1, 2, 3, 2, 3, 2, 1, 3, 2, 3} and
the solid line the associated periodic orbit for Φλ with
λ = 0.9.

The angle sequence {θk}9
k=0 of the periodic cylinder is{π

6
,
π

3
,−π

6
, 0,

π

6
,−π

3
,−π

6
,−π

6
, 0,

π

6

}
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Moreover, the lengths Lk(s) evaluated at the left and right gen-
eralized diagonals forming the boundary of the cylinder are

{Lk(l)}10
k=1 = {2, 2, 2, 2, 2, 4, 4, 5, 6, 6},

{Lk(r)}10
k=1 =

{
0, 1,

3

2
, 2, 3, 3, 4,

9

2
, 5, 6

}
.

Using these numbers we compute,

10∑
k=1

(−1)kθkLk(l) = 0 and
6∑

k=1

(−1)kθkLk(r) =
3π

2
.

Since L = 6 and 0 < 6π
5
< 3π

2
, we see that the hypothesis of

Theorem 16 is satisfied. Thus C is λ-stable and by Lemma 6,
C−1 is also λ-stable.

(3) Finally, suppose that C is the perpendicular periodic cylinder
with itinerary {1, 2, 3, 2, 1, 3} (see Figure 5). Then,

θ0 =
1

6

5∑
k=0

(−1)k+1kβik,ik+1
=
π

3
,

Ω0 =
1

12

5∑
k=0

(−1)k+1k(6− k)βik,ik+1
=
π

6
.

Figure 5. The dashed line represents the λ-stable pe-
riodic orbit with itinerary {1, 2, 3, 2, 1, 3} and the solid
line the associated periodic orbit for Φλ with λ = 0.9.
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The angle sequence {θk}5
k=0 of the periodic cylinder is{π

3
,
π

6
, 0,−π

6
,−π

3
, 0,

π

3

}
Moreover, the lengths Lk(s) evaluated at the left and right gen-
eralized diagonals forming the boundary of the cylinder are

{Lk(l)}6
k=1 =

{
2√
3
,
√

3,
4√
3
, 2
√

3, 2
√

3, 2
√

3

}
,

{Lk(r)}6
k=1 =

{
0,

√
3

2
,
√

3,
√

3,
3
√

3

2
, 2
√

3

}
.

Using these numbers we compute,

10∑
k=1

(−1)kθkLk(l) =
π

3
√

3
and

6∑
k=1

(−1)kθkLk(r) =

√
3π

2
.

Since L = 2
√

3 and π
3
√

3
< π√

3
<
√

3π
2

, we see that the hypothesis

of Theorem 16 is satisfied. Thus C is λ-stable and by Lemma 6,
C−1 is also λ-stable.

�

5.8. Proof of Proposition 30. Suppose the triangle unfolds to a
square with vertical and horizontal sides. By unfolding we can eas-
ily see that an orbit is periodic if and only if its slope is rational and
that the combinatorial period of a periodic orbit is always even.

We can always consider period orbits starting on the horizontal edge.
As it the case of the square (Proposition 24) the only possible solutions
of the necessary condition for λ-stable periodic cylinders of Proposition
8 are the vertical, horizontal directions as well as ±π/4. These angles
correspond to the following periodic cylinders:

(1) two periodic cylinders of period 4 which are perpendicular to
the legs of the triangle,

(2) two periodic cylinders of period 6 which are perpendicular to
the diagonal of the triangle.

Doing the same computations as in Proposition 27 and Proposi-
tion 29, one directly checks that these periodic cylinders are λ-stable
(See Figure 6).

�
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Hyperbolic polygonal billiards with finitely many ergodic SRB measures, Ergodic
Theory Dynam. Systems, (in press).

8. Gianluigi Del Magno, João Lopes Dias, Pedro Duarte, José Pedro Gaivão, and
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