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Abstract

The purpose of this work is to investigate the pricing of financial options under the 2-hypergeome-

tric stochastic volatility model. This is an analytically tractable model which has recently been

introduced as an attempt to tackle one of the most serious shortcomings of the famous Black and

Scholes option pricing model: the fact that it does not reproduce the volatility smile and skew effects

which are commonly seen in observed price data from option markets.

After a review of the basic theory of option pricing under stochastic volatility, we employ the reg-

ular perturbation method from asymptotic analysis of partial differential equations to derive an ex-

plicit and easily computable approximate formula for the pricing of barrier options under the 2-hyper-

geometric stochastic volatility model. The asymptotic convergence of the method is proved under

appropriate regularity conditions, and a multi-stage method for improving the quality of the approx-

imation is discussed. Numerical examples are also provided.

Keywords: Finance, Option pricing theory, Stochastic volatility, Asymptotic analysis, Regular

perturbation method.

1 Introduction

Barrier options are options whose payoff does not depend only on the value of the underlying asset

at maturity, but also on whether the path of the asset’s price touches a given barrier level during the

lifetime of the option. These options, which constitute one of the oldest types of exotic options, have

become increasingly popular in the financial derivative industry because they allow for more flexible

payoff schemes than plain vanilla options. It is thus important to construct good barrier option pricing

models which are able to reproduce the features observed in real market data.

The simplest model for the pricing of financial derivatives is the Black and Scholes model, in which the

price of all the standard barrier call and put options can be written in closed form. However, it is widely

known that the strong assumptions of this model are unrealistic. In particular, the constant volatility

assumption is clearly incompatible with the so-called smile and skew patterns which are generally present

in empirical option prices.

A natural way to address this issue is to introduce randomness in the volatility. For this reason, option

pricing under stochastic volatility has been the subject of a great deal of research in recent years. Here

we focus on the 2-hypergeometric stochastic volatility model, which was introduced by Da Fonseca and

Martini [2] as a model which ensures that the volatility is strictly positive — this is an important property

which is not present in some other well-established stochastic volatility models. In a very recent paper,
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Privault and She [10] demonstrated that, under this model, a closed-form asymptotic vanilla option

pricing formula can be determined through a regular perturbation method. This is a notable result

because their formulas are analytically very simple, which is rarely the case in models with stochastic

volatility: as discussed by Zhu [14], the higher complexity of these models usually yields the need for

rather sophisticated numerical implementations.

The pricing of exotic options under the 2-hypergeometric model has to our knowledge never been

studied in the literature. Motivated by this, we extend the regular perturbation approach of Privault

and She in order to derive an asymptotic pricing formula for barrier-type options. We show that, for

a given class of nonconstant barrier functions, an explicit asymptotic formula can be obtained and its

convergence can be proved with the help of the Feynman-Kac theorem for Cauchy-Dirichlet problems for

parabolic partial differential equations (PDEs). Given that in general our class of barrier functions does

not include constant functions, the choice of a nonconstant barrier function which approximates a certain

constant barrier level is also discussed.

This paper is organized as follows. In Section 2 we introduce the class of barrier options which we

consider, and we present the formulation of the barrier option pricing problem under a generic stochastic

volatility model. Section 3, the main section of this paper, develops the asymptotic pricing approach for

barrier-type options: the first-order small volatility expansion is carried out in Subsection 3.1, the explicit

expressions for the zero and first-order terms are derived in Subsections 3.2 and 3.3 respectively, the proof

of the convergence of the asymptotic solution is provided in Subsection 3.4, and a generalization of the

method to a wider class of barrier functions is given in Subsection 3.5. In Section 4 we present some

numerical results to corroborate our theoretical findings. Section 5 summarizes the main conclusions.

The appendices contain some auxiliary results.

2 Barrier option pricing under stochastic volatility

This work focuses on the pricing of down-and-out call (DOC) options, which are one of the eight types of

standard barrier options. The techniques used in this paper may also be applied to other types of barrier

options, such as options with up barriers or put payoffs. The payoff of a DOC option with maturity T is

(ST −K)+ 1{St>H for all 0≤t≤T},

i.e, it has the usual vanilla call payoff if the asset price process S does not go below the barrier H during

the lifetime of the option, and it is worthless otherwise. The DOC option is said to be regular if K ≥ H

and reverse if K < H . If a barrier function H(t) is considered instead of a constant barrier H , the DOC

option is called time-dependent.

For the sake of generality, let us begin by assuming that the asset process is governed (under the

physical measure P) by a Markovian stochastic volatility model of the form

dSt = µ(t, St)St dt+ g(Vt)St dW
1
t

dVt = a(t, Vt) dt+ b(t, Vt) dW
2
t

(1)

where S is the asset price process, V is the volatility process, W 1 and W 2 are Brownian motions with

correlation ρ 6= ±1, and g is a smooth, positive and increasing function. This is a general family of models

which includes the 2-hypergeometric model addressed in the main section of this paper, as well as the

Heston model and other popular stochastic volatility models.

It is worth stressing that, unlike the Black and Scholes model, the family of models (1) is able

to reproduce the smile and skew effects in implied volatility structures (see Fouque et al. [4] for an

introduction to these concepts).

Under standard assumptions on the financial market, it is known that stochastic volatility models are

incomplete and, accordingly, there exist infinitely many risk-neutral measures under which arbitrage-free

pricing can be performed. Indeed, if the asset pays no dividends and the riskless (deterministic and

time-dependent) interest rate is r(t), then for any sufficiently regular deterministic function η(t, x, v) the
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formula

f (η)(t, x, v) = e−
∫

T

t
r(u) du EQ(η)

[
Y
∣∣ St = x, Vt = v

]
(2)

allows us to compute the arbitrage-free price at time t of all contingent claims Y with maturity at future

time T . Here Q(η) is a risk-neutral measure equivalent to P under which the dynamics of the process

(S, V ) are given by

dSt = r(t)St dt+ g(Vt)St dŴ
1
t

dVt =
[
a(t, Vt)− b(t, Vt)Λt

]
dt+ b(t, Vt) dŴ

2
t

(3)

where Λt ≡ Λ(t, St, Vt) is defined as

Λ(t, St, Vt) := ρ
µ(t, St)− r(t)

g(Vt)
+
√
1− ρ2 η(t, St, Vt)

and Ŵ 1
t , Ŵ

2
t are Q(η)-Brownian motions with correlation ρ.

The process η(t, St, Vt), which is the so-called market price of volatility risk, cannot be identified

within the stochastic volatility model, so it must be exogenously specified. Unfortunately, there is no

easy criterion for picking the right functional form for η; consequently, a common practice is to judiciously

choose η such that the resulting pricing problem is analytically tractable (see Section 2.7 of Fouque et al.

[4] and Section 10.9 of Lipton [8]).

A DOC option is just a contingent claim Y = (ST −K)+ 1{τH>T} where τH := inf{u ≥ t : Su ≤ H}.
This means that we can use Equation (2) for the pricing of DOC (and other barrier) options under

the stochastic volatility model (3) — this is known as the martingale approach to the pricing problem.

Moreover, the barrier option price f (η)(t, x, v) can also be computed through a PDE approach: by

virtue of the Feynman-Kac theorem for Cauchy-Dirichlet problems for parabolic PDEs (Theorem A.1 in

Appendix A), f (η) is a solution of the two-space-dimensional terminal and boundary value problem

(
∂

∂t
+ L(η)

)
f (η)(t, x, v) = 0, t ∈ [0, T ], x > H

f (η)(T, x, v) = (x−K)+, x > H

f (η)(t,H, v) = 0, t ∈ [0, T ]

(4)

where

L(η) =
1

2
g2(v)x2

∂2

∂x2
+ ρ b(t, v)xg(v)

∂2

∂x∂v
+

1

2
b2(t, v)

∂2

∂v2

+ r(t)x
∂

∂x
+
[
a(t, v)− b(t, v)Λ(t, x, v)

] ∂
∂v

− r(t) Id.

The adaptation of these two pricing approaches to time-dependent barrier options is simple: we just

need to redefine the stopping time as τH := inf{u ≥ t : Su ≤ H(u)} and to replace the boundary condition

of the PDE problem by f (η)(t,H(t), v) = 0. It is also easy to generalize further to the case of options

whose (down) barrier H(t, v) depends both on the time and on the (random) volatility: the stopping time

becomes τH := inf{u ≥ t : Su ≤ H(u, Vu)} and the boundary condition becomes f (η)(t,H(t, v), v) = 0.

We will be dealing with this more general class of barrier options in the next section because time and

volatility-dependent barrier options will turn out to be very useful for the derivation of an approximate

pricing formula for options with constant barriers.

3 An asymptotic expansion approach to barrier option pricing

In this section we will tackle the problem of pricing barrier options under the 2-hypergeometric stochastic

volatility — a particular case of the α-hypergeometric stochastic volatility model which was defined by

Da Fonseca and Martini [2] as follows:
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Definition 3.1. The α-hypergeometric stochastic volatility model is the Markovian diffusion model with

dynamics

dSt = r(t)Stdt+ eVtStdW
1
t

dVt =
(
a− c

2
eαVt

)
dt+ θ dW 2

t

(5)

where W 1 and W 2 are Brownian motions with correlation ρ, and c, α, θ > 0, a ∈ R are constants.

Like Da Fonseca and Martini [2], we assume that the model is given directly under a risk-neutral

measure Q. The deterministic function r(t) represents the (possibly time-dependent) interest rate, while

the parameters a and c can be used to set the market price of volatility risk.

It is important to emphasize that the formulation of the α-hypergeometric stochastic volatility model

given by Da Fonseca and Martini [2] and by Privault and She [10] does not include the drift term r(t)St dt.

If, as in these two papers, the goal is to price vanilla options, then such a zero interest rate assumption

does not entail any loss of generality because the general case of a nonzero interest rate can be reduced to

the case r(t) = 0 by rewriting the pricing equation in forward terms (cf. e.g. Subsection 9.2.1 of Lipton

[8]). However, this argument breaks down when dealing with barrier options, so the model with nonzero

drift must be considered for our barrier option pricing problem.

So as to lighten the notation, we will henceforth assume that the interest rate is constant, i.e, r(t) ≡ r

and therefore
∫ u

t
r(s) ds = r(u − t). We will also assume that the asset pays no dividends; as usual, the

extension to assets with a continuously paid deterministic dividend is straightforward.

3.1 The small vol of vol expansion

Our approach to the barrier option pricing problem is based on a PDE regular perturbation method

— known as the small vol of vol asymptotic expansion — which consists in rewriting the model as a

perturbed Black and Scholes model so as to derive a series expansion of the exact stochastic volatility

price around the Black and Scholes price, which should converge when the perturbation parameter tends

to zero. Our first step is thus to take the 2-hypergeometric model (5) and replace the constant θ by a

small parameter ε > 0:

dSε
t = rSε

t dt+ eV
ε
t Sε

t dW
1
t

dV ε
t =

(
a− c

2
e2V

ε
t

)
dt+ εθdW 2

t .
(6)

We will assume that a > 0 so as to assure that the log-volatility process is mean-reverting.

It is worth pointing out that a somewhat more general approach consists in replacing θ by a generic

function εψ(t, v). The more general case is handled in essentially the same way (cf. [13]).

Let ĥ(t, v) be some generic time and volatility-dependent barrier function, to be specified later. The

(exact) price f̂ ε(t, x, v) of the DOC option with barrier function ĥ(t, v) under the model (6) is defined

(in the PDE approach) as the solution of the terminal and boundary value problem

(
∂

∂t
+ Lε

)
f̂ ε(t, x, v) = 0, t ∈ [0, T ], x > ĥ(t, v)

f̂ ε(T, x, v) = (x−K)+, x > ĥ(T, v)

f̂ ε(t, ĥ(t, v), v) = 0, t ∈ [0, T ]

(7)

where

Lε = L0 + εL1 + ε2L2,

L0 =
(
a− c

2
e2v
) ∂
∂v

+
x2

2
e2v

∂2

∂x2
+ rx

∂

∂x
− r Id, L1 = ρxev

∂2

∂x∂v
, L2 =

1

2

∂2

∂v2
.

(8)

Let us now formally assume that the price f̂ ε(t, x, v) can be asymptotically expanded as

f̂ ε = f̂0 + εf̂1 + ε2f̂2 + . . .. Substituting this expansion into the terminal and boundary value prob-
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lem (7) and equating the terms of order ε0, ε1, ε2, . . ., we obtain the system of PDEs

∂f̂0
∂t

+ L0f̂0 = 0,
∂f̂1
∂t

+ L0f̂1 + L1f̂0 = 0,
∂f̂2
∂t

+ L0f̂2 + L1f̂1 + L2f̂0 = 0, . . . (9)

with terminal conditions f̂0(T, x, v) = (x −K)+ and f̂j(T, x, v) = 0 for j = 1, 2 . . ., and with boundary

conditions f̂j(t, ĥ(t, v), v) = 0 for j = 0, 1, 2, . . ..

We intend to derive the first-order approximation for the option price and to prove that (under suitable

regularity conditions) it converges in the sense that

f̂ ε(t, x, v) = f̂0(t, x, v) + εf̂1(t, x, v) +O(ε2) (10)

when ε goes to zero, uniformly with respect to (t, x, v) on compact subsets of [0, T ]× R+ × R.

3.2 The zero-order term

The zero-order term f̂0(t, x, v) is defined as the solution of the terminal and boundary value problem

(
∂

∂t
+ L0

)
f̂0(t, x, v) = 0, t ∈ [0, T ], x > ĥ(t, v)

f̂0(T, x, v) = (x −K)+, x > ĥ(T, v)

f̂0(t, ĥ(t, v), v) = 0, t ∈ [0, T ]

(11)

In other words, f̂0 is simply the option price corresponding to the limiting case ε = 0. The equivalent

definition of this option price under the martingale pricing framework is

f̂0(t, x, v) = e−r(T−t)E

[
(St,v

T −K)+ 1{τ
ĥ
≥T}

∣∣∣ St,v
t = x

]
(12)

where τ
ĥ
= inf{u ≥ t : St,v

u ≤ ĥ(u, V t,v
u )} and {(St,v

u , V t,v
u )}u∈[t,T ] denotes the diffusion process whose

dynamics are given by the noiseless limit ε = 0 of the model (6). The (degenerate) log-volatility process

V t,v
u is therefore the deterministic function of time which solves the ordinary differential equation dV t,v

u =

(a− c
2e

2V t,v
u ) du with initial condition V t,v

t = v; the explicit solution is

V t,v
u = v + a(u− t)− 1

2
log

(
1 +

c

2a
e2v(e2a(u−t) − 1)

)
. (13)

In turn, {St,v
u }u∈[t,T ] is simply a geometric Brownian motion with constant drift r and time-dependent

deterministic volatility eV
t,v
u .

For a given (fixed) initial time t = t′ and initial log-volatility v = v′, by recalling the obvious semigroup

property V
t,V

t′,v′

t
u = V t′,v′

u (t′ ≤ t ≤ u) we see that

f̂0(t, x, V
t′,v′

t ) = e−r(T−t)E

[
(St′,v′

T −K)+ 1{τ
ĥ
≥T}

∣∣∣ St′,v′

t = x
]

(14)

where τ
ĥ
= inf{u ≥ t : St′,v′

u ≤ ĥ(u, V t′,v′

u )}. The function f̂0(t, x, V
t′,v′

t ), which only depends on the

variables t and x, is clearly the definition of the price of a DOC option under a Black and Scholes model

where the interest rate is r, the time-dependent deterministic volatility is eV
t′,v′

u , u ∈ [t′, T ] and the

time-dependent barrier function is Ĥ(u) ≡ ĥ(u, V t′,v′

u ), u ∈ [t′, T ].

The barrier option pricing problem under the Black and Scholes model dSt = µ(t)St dt+ σ(t)St dWt

has been studied in the literature. Rapisarda [11] and Dorfleitner et al. [3] showed that the conditional

expectation (14) can be written in closed form provided the barrier function is of the form

Ĥ(u) = H1 exp

{
−
∫ T

u

(
µ(s)− 1 + 2β

2
σ2(s)

)
ds

}
, u ∈ [t′, T ]

5



where β ∈ R and H1 > 0 are parameters. In our case, this reduces to

Ĥ(u) = H1 exp

{
−r(T − u) +

1 + 2β

2
γ2(u, T, V t′,v′

u )

}
(15)

where

γ2(t, u, v) :=

∫ u

t

e2V
t,v
s ds =

1

c
log
(
1 +

c

2a
e2v(e2a(u−t) − 1)

)
.

Unfortunately, to the best of our knowledge, an explicit expression for f̂0(t, x, V
t′,v′

t ) cannot be obtained

unless Ĥ(u) has this particular functional form. For this reason, until Subsection 3.4 we will assume that

the barrier function ĥ(t, v) takes the specific form

ĥ(t, v) = H1 exp

{
−r(T − t) +

1 + 2β

2
γ2(t, T, v)

}
(16)

in the domain (t, v) ∈ [0, T ]× R. Given this choice of barrier function, Equation (27) of Rapisarda [11]

yields the following result:

Proposition 3.2. Let f̂0(t, x, v) be the zero-order term in the expansion (10). Then

f̂0(t, x, v) =xN (d1(t, x, v))−Ke−r(T−t)N (d2(t, x, v))

−
(
ĥ(t, v)

x

)2+2β

xN (d3(t, x, v)) +

(
ĥ(t, v)

x

)2β
Ke−r(T−t)N (d4(t, x, v))

(17)

for t ∈ [0, T ] and x > ĥ(t, v), where

d1(t, x, v) =
1

γ(t, T, v)

(
log
( x

K ∨H1

)
+ r(T − t) +

1

2
γ2(t, T, v)

)
,

d2(t, x, v) = d1(t, x, v)− γ(t, T, v),

d3(t, x, v) = d1(t, x, v) +
2

γ(t, T, v)
log

(
ĥ(t, v)

x

)
,

d4(t, x, v) = d2(t, x, v) +
2

γ(t, T, v)
log

(
ĥ(t, v)

x

)

and N (·) is the standard normal cumulative distribution function.

If we take the limit H1 → 0, then the barrier function converges pointwise to zero; consequently,

the zero-order term (17) converges to xN (d1(t, x, v)) − Ke−r(T−t)N (d2(t, x, v)), which is precisely the

zero-order term for the vanilla option price expansion of Privault and She [10].

3.3 The first-order term

The first-order term solves

(
∂

∂t
+ L0

)
f̂1(t, x, v) = −L1f̂0(t, x, v), t ∈ [0, T ], x > ĥ(t, v)

f̂1(T, x, v) = 0, x > ĥ(T, v)

f̂1(t, ĥ(t, v), v) = 0, t ∈ [0, T ]

(18)

where the operators L0 and L1 were defined in (8).

The first step towards the computation of an explicit expression for the first order term is to give a

stochastic representation formula for the solution of this terminal and boundary value problem:
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Lemma 3.3. Assume that K ≥ H1. Then the function

f̃1(t, x, v) = E

[∫ T∧τ
ĥ

t

e−r(u−t)L1f̂0(u, S
t,v
u , V t,v

u ) du

∣∣∣∣ S
t,v
t = x

]
(19)

(where the process (St,v, V t,v) and the stopping time τ
ĥ
are defined as in (12)) is the unique classical

solution of the terminal and boundary value problem (18).

Proof. The proof of this lemma requires a (nontrivial) generalization of the Feynman-Kac theorem for

Cauchy-Dirichlet problems for parabolic PDEs (Theorem A.1 in Appendix A) to a setting where the

ellipticity assumption is not satisfied, as well as other usual assumptions of Feynman-Kac type theorems.

The details are given in [13], pp. 31-34.

In the limit H1 → 0, the dominated convergence theorem assures that (19) converges to

E

[∫ T

t

e−r(u−t)L1f̂0(u, S
t,v
u , V t,v

u ) du

∣∣∣∣ S
t,v
t = x

]
.

Unsurprisingly, this is the definition of the first-order term for vanilla options, cf. Privault and She [10].

Remark 3.4. We proved Lemma 3.3 only for the regular DOC case, that is, the case when K ≥ H1 and

hence the option’s payoff is continuous. The fact that the payoff of a reverse DOC is discontinuous makes

the Lemma harder to prove in that case. However, since the argument for the regular case holds for any

smooth payoff and the reverse DOC’s payoff can be approximated by monotonic sequences of smooth

functions, we are confident that the Lemma holds in the general case. (Such regularization techniques

were introduced in [9].)

Thus, the solutions given in Equation (23) apply to both regular and reverse DOCs, but, for mathe-

matical rigor, all the subsequent results in this paper are formulated only for regular DOCs.

The task is to derive an explicit form for the expected value (19), which we may rewrite as

f̂1(t, x, v) =

∫ T

t

e−r(u−t)ρeV
t,v
u

∫ ∞

ĥ(u,V t,v
u )

w
∂2f̂0
∂x∂v

(u,w, V t,v
u )Q

[
St,v
u ∈ dw, τ

ĥ
> u

∣∣∣ St,v
t = x

]
du. (20)

We claim that the joint law of (St,v
u , τ

ĥ
) is given by

Q

[
St,v
u ∈ dw, τ

ĥ
> u

∣∣∣ St,v
t = x

]
=

=
1{w>Ĥ(u)}

γ(t, u, v)w

[
n

(
1

γ(t, u, v)

(
logw − µ1

))
−
( Ĥ(t)

x

)2β
n

(
1

γ(t, u, v)

(
logw − µ2

))
]
dw.

where Ĥ(u) ≡ ĥ(u, V t,v
u ), µi := log xi + r(u − t)− 1

2γ
2(t, u, v), x1 := x and x2 := Ĥ2(t)

x
. See Appendix B

for the proof of this claim. Consequently, the inside integral in (20) equals

E

[
eW1

∂2f̂0
∂x∂v

(u, eW1 , V t,v
u )1{W1>log Ĥ(u)}

]
−
(Ĥ(t)

x

)2β
E

[
eW2

∂2f̂0
∂x∂v

(u, eW2 , V t,v
u )1{W2>log Ĥ(u)}

]
(21)

where Wi ∼ Normal
(
µi, γ

2(t, u, v)
)
. Now, by differentiation of (17) we have

eW
∂2f̂0
∂x∂v

(u, eW , V t,v
u ) =

3∑

j=1

[
aj e

ηjWN
(
νjW + κj

)
+

2∑

ℓ=0

bj,ℓ(νjW + κj)
ℓ eηjWn

(
νjW + κj

)]
(22)

where aj, ηj , bj,ℓ, νj , κj are the functions given in Table 1.

If we substitute (22) into (21), we obtain a sum of expectations which can be analytically solved with

the help of Lemmas C.1 and C.2 in Appendix C. We have thus proved that the first-order term admits

the following explicit expression:
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Table 1: Parameters in equations (22) and (23). We take A := 1− K
K∨H1

and omit the arguments of the

functions γ(u, T, V t,v
u ) and Ĥ(u).

j aj ηj bj,0

1 0 1 ∂γ
∂v

(
1− A

γ2

)

2 (1 + 2β)∂Ĥ
2+2β

∂v
−(1 + 2β) −A ∂γ

∂v
Ĥ2+2β

γ2 + (1 + 2β) Ĥ2+2β
(

∂γ
∂v

+ 2
γ
∂ log Ĥ

∂v

)
+ A

γ
∂Ĥ2+2β

∂v

3 −2βKe−r(T−u) ∂Ĥ2β

∂v
−2β 2βKe−r(T−u)Ĥ2β

(
∂γ
∂v

− 2
γ
∂ log Ĥ

∂v

)

j bj,1 bj,2 νj κj

1 −∂γ
∂v

1+A
γ

∂γ
∂v

A
γ2

1
γ

1
γ

[
− log(K ∨H1) + r(T − u) + γ2

2

]

2 − Ĥ2+2β

γ

{
A
(

∂γ
∂v

+ 2
γ
∂ log Ĥ

∂v

)
+ (1 + 2β)∂γ

∂v

}
Ĥ2+2β ∂γ

∂v
A
γ2 − 1

γ
1
γ

[
log
(

Ĥ2

K∨H1

)
+ r(T − u) + γ2

2

]

3 2βKe−r(T−u)Ĥ2β ∂γ
∂v

1
γ

0 − 1
γ

1
γ

[
log
(

Ĥ2

K∨H1

)
+ r(T − u)− γ2

2

]

Proposition 3.5. Let f̂1(t, x, v) be the first-order term in the expansion (10), and assume that K ≥ H1.

Then

f̂1(t, x, v) =

∫ T

t

e−r(u−t)ρ eV
t,v
u ×

×
[

3∑

j=1

(
aj Υ

(
νj , κj, ηj ;µ1, γ

2(t, u, v), L̂
)
+

2∑

ℓ=0

bj,ℓΨℓ

(
νj , κj , ηj ;µ1, γ

2(t, u, v), L̂
))

−
(Ĥ(t)

x

)2β 3∑

j=1

(
aj Υ

(
νj , κj , ηj ;µ2, γ

2(t, u, v), L̂
)
+

2∑

ℓ=0

bj,ℓΨℓ

(
νj , κj, ηj ;µ2, γ

2(t, u, v), L̂
))
]
du

(23)

for t ∈ [0, T ] and x > ĥ(t, v). Here L̂ ≡ L̂(u) ≡ log Ĥ(u) with Ĥ(u) ≡ ĥ(u, V t,v
u ); µi := log xi + r(u − t)

− 1
2γ

2(t, u, v) with x1 := x and x2 := Ĥ2(t)
x

; aj , ηj , bj,ℓ, νj , ηj are the functions of u given in Table 1; and

Ψℓ, Υ are the functions defined respectively by equations (C.1), (C.2) in Appendix C.

We observe that the numerical computation of the integral in (23) is much easier than solving numer-

ically the associated PDE problem (18) or computing the expectation (19) via Monte Carlo simulation.

3.4 Convergence of the asymptotic expansion

Now that we derived an explicit expression for our first-order approximation (10), it is time to demonstrate

that it converges in the limit ε→ 0. (The idea of the following proof is similar to that in Appendix B of

Kato et al. [7].)

Let us start by looking into the PDE problem which is satisfied by the remainder term of the first-order

approximation. For ε > 0, we define the remainder term as

f̂ ε
2 (t, x, v) :=

1

ε2

[
f̂ ε(t, x, v) −

(
f̂0(t, x, v) + εf̂1(t, x, v)

)]
. (24)

Then, f̂ ε
2 satisfies the terminal and boundary value problem

(
∂

∂t
+ Lε

)
u(t, x, v) = −gε2(t, x, v), t ∈ [0, T ], x > ĥ(t, v)

u(T, x, v) = 0, x > ĥ(T, v)

u(t, ĥ(t, v), v) = 0, t ∈ [0, T ].

(25)

where Lε is the partial differential operator from (8), and the nonhomogeneity term is

gε2(t, x, v) := L2f̂0(t, x, v) +
(
L1 + εL2

)
f̂1(t, x, v). (26)
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This is easily seen to be true by recalling that the functions f̂ ε, f̂0 and f̂1 are the unique solutions of the

terminal and boundary value problems (7), (11) and (18), respectively.

Next, we use a stochastic representation formula to define a candidate solution f̃ ε
2 for the PDE problem

(25):

f̃ ε
2 (t, x, v) := E

[∫ T∧τε

ĥ

t

e−r(u−t)gε2(u, S
ε
u, V

ε
u ) du

∣∣∣ Sε
t = x, V ε

t = v
]

(27)

where τε
ĥ
:= inf{u ≥ t : Sε

u ≤ ĥ(u, V ε
u )}. We emphasize that the process (Sε, V ε) in (27) follows the

2-hypergeometric model (6) with ε > 0; in particular, here V ε
t is a nondeterministic process.

We intend to establish a growth estimate for our candidate solution f̃ ε
2 . As a preliminary step, let us

first obtain an upper bound for the growth of the function gε2 defined in (26):

Lemma 3.6. Assume that K ≥ H1. Then, the function gε2 satisfies the following growth condition: for

any ε ≥ 0, there exist constants C, k > 0 such that

|gε2(t, x, v)| ≤ C
(
1 + |x|2k + e2kv

)

for all t ∈ [0, T ], v ∈ R and x ≥ ĥ(t, v).

Proof. We can obtain an explicit expression for the function gε2 by differentiating the expressions (17)

and (20) of the zero and first-order terms respectively. After a tedious estimation procedure, the lemma

follows. (See Appendix B in [13].)

The next lemma provides the tool for transforming our growth estimate for gε2 into a growth estimate

for the candidate solution f̃ ε
2 :

Lemma 3.7. Let (Sε, V ε) be the diffusion process with dynamics (6). Then, for any ε ≥ 0, there exist

constants C, m > 0 (which may depend on k) such that

E

[
sup

t≤u≤T

(∣∣Sε
u

∣∣2k + e2kV
ε
u

) ∣∣∣∣ Sε
t = x, V ε

t = v

]
≤ C

(
1 + |x|2m + e2mv

)

for all t ∈ [0, T ], x > 0 and v ∈ R.

Proof. The estimate for supt≤u≤T e
2kV ε

u is obtained by using Itô’s formula to derive the dynamics of

Zε = e2V
ε

and then estimating the moments of the process Zε through a comparison with a geometric

Brownian motion. Then, the estimate for supt≤u≤T

∣∣Sε
u

∣∣2k can be derived from the closed-form expression

Sε
u = x exp

(
r(u − t)− 1

2

∫ u

t

e2V
ε
s ds+

∫ u

t

eV
ε
s dW 1

s

)
.

(The full proof is in [13], pp. 36-37).

Let us now use the results from Lemmas 3.6 and 3.7 to derive the desired upper bound on the growth

of the function f̃ ε
2 defined in (27): for any ε ≥ 0, there exist constants C, m > 0 which do not depend on

(t, x, v) such that

|f̃ ε
2 (t, x, v)| ≤

∫ T

t

e−r(u−t)E

[
|gε2(u, Sε

u, V
ε
u )|1{Sε

u≥ĥ(u,V ε
u )}

∣∣∣ Sε
t = x, V ε

t = v
]
du

≤ C1

∫ T

t

(
1 + E

[
(Sε

u)
2k + e2kV

ε
u

∣∣∣ Sε
t = x, V ε

t = v
])
du

≤ C
(
1 + |x|2m + e2mv

)

(28)

for all t ∈ [0, T ], x > 0, v ∈ R.

The only thing that remains to be proved is that the function f̃ ε
2 , which we defined as a candidate

solution for the PDE problem (25), is indeed its unique solution. In fact, if we prove this, then it will follow

that f̃ ε
2 equals the remainder term f̂ ε

2 defined in (24), and the estimate (28) will assure the convergence

of the first-order expansion.
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Lemma 3.8. Assume that K ≥ H1 and fix ε > 0. Then, the function f̃ ε
2 (t, x, v) defined in (27) is the

unique solution of the terminal and boundary value problem (25).

Proof. The key ingredient of the proof is to perform the change of variables z = e2v and y = x− ĥ(t, v).

It is then straightforward to show that the restated version of the problem is a consequence of the

Feynman-Kac theorem for Cauchy-Dirichlet problems for parabolic PDEs. (See [13], pp. 38-41.)

Summarizing, we have established the following convergence theorem:

Theorem 3.9. Let f̂0(t, x, v) and f̂1(t, x, v) be, respectively, the zero and first-order term in the expansion

(10) for the price f̂ ε(t, x, v) of a DOC option with barrier function ĥ(t, v) under the model (6). Assume

that K ≥ H1. Then, there exist positive constants C and m which are independent of ε ∈ [0, 1] such that
∣∣∣f̂ ε(t, x, v) −

(
f̂0(t, x, v) + εf̂1(t, x, v)

)∣∣∣ ≤ C
(
1 + |x|2m + e2mv

)
ε2

for all t ∈ [0, T ], v ∈ R and x ≥ ĥ(t, v).

3.5 Single and multi-stage approximations to constant barriers

Recall that we have been assuming that the nonconstant barrier function is of the form (16). For this

reason, we have (in general) not been covering the case with greater practical interest, which is that of a

barrier option with constant barrier H . Notwithstanding, an approximate pricing formula for an option

with constant barrier can be obtained if the parameters of (16) are chosen in order that the time and

volatility-dependent barrier function is as constant as possible.

Such choice of parameters should take into account the fact that our pricing strategy is based on a

small vol of vol expansion which is performed around the noiseless limit V t′,v′

t of the log-volatility process

V ε
t . Therefore, if one wishes to compute the price of the option at time t′ ∈ [0, T ] and the initial log-

volatility is equal to v′, then the parameters H1 and β should be chosen such that ĥ(t, V t′,v′

t ) is as close

to the constant function H as possible. The simplest choice is H1 = H and β such that ĥ(t′, v′) = H ,

i.e. β = r(T−t′)
γ2(t′,T,v′) − 1

2 , but this choice can be improved by choosing the parameters in some optimal way

(see e.g. page 3 of Rapisarda [11]).

It should be noted that the two cases where the barrier function (16) can be chosen to be constant are

the zero interest rate case (i.e, r = 0) and the case where the initial volatility equals its invariant value

(i.e, v′ = 1
2 log

(
2a
c

)
). Otherwise, the choice β = r(T−t′)

γ2(t′,T,v′) − 1
2 yields an approximation which is quite

good for small maturities. For large maturities it is possible to improve the quality of the approximation

through the multi-stage procedure which we describe next.

The idea of the multi-stage method is to resort to a stepwise procedure so as to generalize our pricing

technique to the case of a piecewise-smooth barrier function which is of the form (16) in each subinterval

of time. Specifically, inspired by the approach proposed in Section 3 of Dorfleitner et al. [3], we now

subdivide the interval [t′, T ] into n subintervals defined by t′ = T0 < T1 < . . . < Tn = T and consider the

continuous barrier function defined by

ĥ(n)(t, v) := H1 exp

{
−r(T − t) +

n∑

i=1

1 + 2βi
2

1{t<Ti}γ
2
(
t ∨ Ti−1, Ti, V

t,v
t∨Ti−1

)}
(29)

which is piecewise of the form (16) in the sense that

ĥ(n)(t, v) = ĥ(n)(Ti, V
t,v
Ti

) exp

{
−r(Ti − t) +

1 + 2βi
2

γ2(t, Ti, v)

}
, (t, v) ∈ [Ti−1, Ti]× R.

Notice that if we set βi = β for all i = 1, . . . , n we obtain (16). But the idea here is to pick β1, . . . , βn so

that ĥ(n)(t, v) is closer to H than the single-stage barrier function ĥ(t, v): our choice of βi should ensure

that the barrier function is as constant as possible in the interval [Ti−1, Ti]. Much like in the single-stage

approximation, the simplest choice is H1 = H and βi =
r(Ti−Ti−1)

γ2(Ti−1,Ti,V
t′,v′

Ti−1
)
− 1

2 .

10



In order to derive an explicit asymptotic pricing formula for the option with barrier function (29),

we take the exact price f̂ (n)(t, x, v), i.e. the solution of the PDE problem (7) with ĥ(t, v) replaced by

ĥ(n)(t, v), and formally expand it as

f̂ (n)(t, x, v) = f̂
(n)
0 (t, x, v) + εf̂

(n)
1 (t, x, v) +O(ε2)

where the functions f̂
(n)
0 and f̂

(n)
1 satisfy (9). (Naturally, the nonconstant boundary conditions are now

f̂
(n)
j (t, ĥ(n)(t, v), v) = 0 for j = 0, 1.)

The same argument from the single-stage framework shows that for our fixed initial time t′ and initial

log-volatility v′, the zero-order term is again the price, under the same Black and Scholes model, of a

DOC option with barrier Ĥ(n)(t) ≡ ĥ(n)(t, Vt), i.e,

f̂
(n)
0 (t, x) ≡ f̂

(n)
0 (t, x, Vt) = e−r(T−t)E

[
(ST −K)+ 1{m[t,T ]>1}

∣∣∣∣ St = x

]
(30)

where m[t1,t2] := minu∈[t1,t2]
Su

Ĥ(n)(u)
. (For simplicity, we are now writing St, Vt instead of St′,v′

t , V t′,v′

t .)

The key observation here is that, by virtue of the tower property, the function defined in (30) satisfies

f̂
(n)
0 (t, x) = e−r(u−t)E

[
f̂
(n)
0 (u, Su)1{m[t,u]>1}

∣∣∣∣ St = x

]
, t′ ≤ t ≤ u ≤ T.

But the barrier function Ĥ(n)(t) is of the form (15) in each subinterval [Ti−1, Ti]; therefore, we can obtain

an explicit expression for the zero-order term f̂
(n)
0 (t′, x) as follows:

1. We represent f̂
(n)
0 (Tn−1, x) via the closed-form expression (17), where ĥ(t, v) becomes Ĥ(n)(Tn−1),

β is replaced by βn and γ(t, T, v) is replaced by γ(Tn−1, T, VTn−1).

2. For i = n− 2, . . . , 0, we explicitly write

f̂
(n)
0 (Ti, x) = e−r(Ti+1−Ti)

∫ ∞

Ĥ(n)(Ti+1)

f̂
(n)
0 (Ti+1, w)Q

[
STi+1 ∈ dw, m[Ti,Ti+1] < 1

∣∣∣ STi
= x

]
(31)

where, as shown in Appendix B,

Q

[
STi+1 ∈ dw, m[Ti,Ti+1] < 1

∣∣∣ STi
= x

]
=

1{w>Ĥ(n)(Ti+1)}

γ(Ti, Ti+1, VTi
)w

×

×
[
n

(
1

γ(Ti, Ti+1, VTi
)

(
logw − µ1

))
−
(Ĥ(n)(Ti)

x

)2βi+1

n

(
1

γ(Ti, Ti+1, VTi
)

(
logw − µ2

))
]
dw

(32)

with µi := log xi + r(Ti+1 − Ti)− 1
2γ

2(Ti, Ti+1, VTi
), x1 := x and x2 := (Ĥ(n))2(Ti)

x
.

Eventually, we obtain a representation for f̂
(n)
0 (t′, x) as a multiple integral of an explicit function.

Moreover, this integral representation formula for f̂
(n)
0 (t′, x) can be written in closed form in terms of the

cumulative distribution function of the n-dimensional normal distribution — see Appendix D.

As for the first-order term, in analogy with Lemma 3.3, we invoke the Feynman-Kac theorem and

write it as

f̂
(n)
1 (t, x) ≡ f̂

(n)
1 (t, x, Vt) =

∫ T

t

E

[
e−r(u−t)L1f̂

(n)
0 (u, Su)1{m[t,u]>1}

∣∣∣∣ St= x

]
du.

Note that the tower property now gives

f̂
(n)
1 (t, x) = e−r(u−t)E

[
f̂
(n)
1 (u, Su)1{m[t,u]>1}

∣∣∣ St = x
]

+

∫ u

t

E

[
e−r(ℓ−t)L1f̂

(n)
0 (ℓ, Sℓ)1{m[t,ℓ]>1}

∣∣∣∣ St= x

]
dℓ, t′ ≤ t ≤ u ≤ T.
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We can obtain an explicit expression for f̂
(n)
1 (t′, x) through a stepwise procedure:

1. f̂
(n)
0 (Tn−1, x) is obtained through the closed-form expression (23), where ĥ(t, v) becomes Ĥ(n)(Tn−1),

β is replaced by βn and γ(t, T, v) is replaced by γ(Tn−1, T, VTn−1).

2. For i = n− 2, . . . , 0, we get

f̂
(n)
1 (Ti, x) = e−r(Ti+1−Ti)

∫ ∞

Ĥ(n)(Ti+1)

f̂
(n)
1 (Ti+1, w)Q

[
STi+1 ∈ dw, m[Ti,Ti+1] < 1

∣∣∣ STi
= x

]

+

∫ Ti+1

Ti

e−r(u−Ti)

∫ ∞

Ĥ(n)(u)

L1f̂
(n)
0 (u,w)Q

[
Su ∈ dw,m[Ti,u] < 1

∣∣∣ STi
= x

]
du.

where the joint laws are again of the form (32). The integrands are known from the previous steps,

so this is an explicit integral representation formula which is amenable to numerical integration.

It is worth pointing out that the justification of the validity of the Feynman-Kac theorem is somewhat

more delicate in this multi-stage setting. We will not deal with the technicalities here, but we do note that

the natural strategy to deal with the lack of global smoothness consists in applying the Feynman-Kac

theorem sequentially in each interval [Tn−1, T ], . . . , [t
′, T1].

As a final remark, let us mention that the choice of n— and in particular the choice between the single

and the multi-stage methods — should be a compromise between computational speed and numerical

accuracy, depending on the practical problem at hand.

4 Numerical examples

To demonstrate the validity and the practical usefulness of the barrier option pricing technique pro-

posed in this paper, we shall now compare the numerical values of the exact option price under the

2-hypergeometric model with the approximate prices obtained through the first-order approximation

derived in Sections 3.2 and 3.3.

Table 2 shows the values of the exact and approximate prices for various cases, corresponding to

different combinations of the model parameters. The exact prices (in the “Benchmark” column) were

obtained via Monte Carlo simulation of the exact solution of the PDE problem (7) with constant barrier

H . The Brownian bridge technique was used to assure the unbiasedness of the estimator (cf. Section 1.1 of

Gobet [5]). Two different schemes were used for the discretization of the stochastic differential equation:

the usual Euler-Maruyama discretization of the process (log Sε
t , V

ε
t ), and an alternative scheme based on

the fact that, as shown in page 3 of Da Fonseca and Martini [2], the explicit closed-form expression for

the process e2V
ε
u is given by

e2V
ε
u =

e2vAε
u

1 + c e2v
∫ u

t
Aε

s ds
, u ≥ t,

where Aε
u = exp{2a(u− t) + 2ε(W 2

u −W 2
t )} is a geometric Brownian motion. (In the alternative scheme,

the Euler-Maruyama method is instead used to simulate the process Aε
u and the discretized values of

V ε
u are then obtained in the natural way.) The results obtained through the two discretization schemes

were verified to be consistent, the difference being less than two standard errors. Our benchmarks were

calculated as an average of these values, and the corresponding Monte Carlo standard error is shown in

parentheses. In turn, the first-order approximate solutions (in the “f̂0 + εf̂1” column) were computed

via the explicit expressions (17) and (23), with H1 = H and β = r(T−t)
γ2(t,T,v) − 1

2 as proposed in Subsection

3.5. For comparative purposes, the associated zero-order approximation f̂0 is also shown, as well as the

Black and Scholes barrier option price fBS with constant volatility σ = ev. In the case e2v = 0.04 the

latter two coincide, as the log-volatility function (13) and the barrier function (15) become constant.

The results in Table 2 indicate that the first-order asymptotic formula consistently yields accurate

estimates of the true price of the DOC option under the 2-hypergeometric model. In particular, the first-

order expansion correctly captures the fact that the barrier option price decreases when the parameter
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Table 2: Comparison between the approximate option prices and the Monte Carlo benchmarks with
10 000 000 sample paths and 100 000 time discretization steps. The errors are relative errors with respect
to the benchmark. (ε = 0.1; c = 10; a = 0.2; r = 0.01; K = 104; T = 1; t = 0; x = 100.)

ρ H e2v Benchmark f̂0 + εf̂1 Error f̂0 Error fBS Error

−0.5 90 0.02 4.2850 (0.0026) 4.2711 −0.3247% 4.3272 0.9852% 4.1220 −3.8046%

−0.5 90 0.04 5.5611 (0.0037) 5.5456 −0.2781% 5.6098 0.8758% 5.6098 0.8758%

−0.5 90 0.08 6.5967 (0.0049) 6.5956 −0.016% 6.6539 0.8676% 6.9259 4.9902%

−0.5 85 0.02 4.5671 (0.0026) 4.5502 −0.3685% 4.5946 0.6024% 4.3356 −5.0674%

−0.5 85 0.04 6.3506 (0.0038) 6.3391 −0.1817% 6.4010 0.7938% 6.4010 0.7938%

−0.5 85 0.08 8.0577 (0.0052) 8.0563 −0.0179% 8.1268 0.8565% 8.6135 6.8973%

−0.7 90 0.02 4.2604 (0.0026) 4.2486 −0.276% 4.3272 1.5684% 4.1220 −3.2490%

−0.7 90 0.04 5.5378 (0.0036) 5.5199 −0.3223% 5.6098 1.2998% 5.6098 1.2998%

−0.7 90 0.08 6.5799 (0.0048) 6.5723 −0.1146% 6.6539 1.1257% 6.9259 5.2588%

−0.7 85 0.02 4.5475 (0.0026) 4.5325 −0.3302% 4.5946 1.0347% 4.3356 −4.6594%

−0.7 85 0.04 6.3309 (0.0037) 6.3142 −0.2632% 6.4010 1.1068% 6.4010 1.1068%

−0.7 85 0.08 8.0341 (0.0051) 8.0281 −0.0752% 8.1268 1.1526% 8.6135 7.2112%

ρ, i.e. the correlation between the asset price and the volatility shocks, becomes more negative. The

zero-order approximation, which is insensitive to the value of ρ, produces larger errors, especially when

the asset and volatility processes have stronger negative correlation. As for the plain Black and Scholes

pricing formula, it leads to substantial errors, namely when the value of the initial squared volatility e2v

is “unusual”, i.e, differs significantly from its long-term mean value 2a
c
= 0.04.

The huge computational burden of the Monte Carlo algorithm used to obtain the benchmarks makes it

infeasible for practical applications. In contrast, the evaluation of the first-order approximation takes less

than half of a second when the Mathematica function NIntegrate is used to compute the integral in (23).

The first-order asymptotic expansion proposed in this paper therefore provides a fast way of obtaining

barrier option prices which capture the common financial market phenomena of volatility randomness

and mean reversion.

We note that there is room for further improving the performance of the first-order option prices.

Indeed, the slight negative bias of the first-order approximations may be corrected through a more optimal

choice of the parameter β in the approximating barrier function (16), or by switching to a suitable multi-

stage barrier function.

5 Conclusions

In this article we established an asymptotic pricing formula for barrier options under the 2-hypergeometric

stochastic volatility model. Moreover, we showed that our asymptotic technique is not just formal, as it

converges when the perturbation parameter tends to zero.

An important feature of our method is that our explicit pricing formula only requires the numerical

evaluation of a definite integral whose integrand is known in closed form. This calculation is fast and

suitable for practical uses, unlike the computationally intensive methods which are commonly used for

numerically computing option prices under stochastic volatility.

Even though our barrier option pricing technique requires two approximation steps, our numerical

examples indicate that the resulting error is quite small. We also proposed a multi-stage method which

can be employed to improve the quality of the approximation.

It would be interesting to investigate whether the price of other exotic options (including American-

type options) under the 2-hypergeometric stochastic volatility model can also be computed via the small

vol of vol expansion method proposed in this work. We leave this task for future research.
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Appendix A The Feynman-Kac theorem for Cauchy-Dirichlet problems for

parabolic PDEs

In this appendix we state a version of the Feynman-Kac theorem whose proof was given by Rubio in [12].

Theorem A.1. Let D ⊂ Rd be an open, connected and possibly unbounded set whose boundary ∂D has

the outside strong sphere property, and let λ ∈ (0, 1). Assume that:

(i) For all n > 1, the functions σij(t, x) and bi(t, x) are λ-Hölder continuous in t and Lipschitz con-

tinuous in x in the domain {(t, x) : 0 ≤ t ≤ T, |x| ≤ n};

(ii) There exists K1 such that
∑d

i,j=1 |σij(t, x)|2 +∑d
i=1 |bi(t, x)|2≤ K1

(
1+ |x|2

)
for all (t, x) ∈ [0, T ]×

Rd;

(iii) Let B ⊂ D be any bounded, open, connected set. There exists θ(B) > 0 such that

d∑

i,j=1

aij(t, x)ξiξj ≥ θ(B) |ξ|2 for all (t, x) ∈ [0, T ]×B, ξ ∈ Rd,

where a(t, x) =
[
aij(t, x)

]
i,j=1,...,n

:= σσ′(t, x);

(iv) The functions c(t, x) and g(t, x) are λ-Hölder continuous in t and Lipschitz continuous in x in the

domain {(t, x) : 0 ≤ t ≤ T, x ∈ D, |x| ≤ n};

(v) There exists c0 ≥ 0 such that c(t, x) ≤ c0 for all (t, x) ∈ [0, T ]×D;

(vi) There exist constants K2, k > 0 such that |g(t, x)| ≤ K2

(
1 + |x|k

)
for all (t, x) ∈ [0, T ]×D;

(vii) The functions φ(x) and ϕ(t, x) are continuous and satisfy the consistency condition φ(x) = ϕ(T, x),

x ∈ ∂D;

(viii) There exist constants K3, k > 0 such that |φ(x)|+ |ϕ(t, x)| ≤ K3

(
1+ |x|k

)
for all (t, x) ∈ [0, T ]×D.

Then, the unique solution u ∈ C([0, T ]×D) ∩C1,2,λ
loc ((0, T )×D) of the Cauchy-Dirichlet problem

∂u

∂t
+

1

2

d∑

i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂u

∂xi
+ c(t, x)u = g(t, x) (t, x) ∈ [0, T ]×D

u(T, x) = φ(x) x ∈ D

u(t, x) = ϕ(t, x) (t, x) ∈ [0, T ]× ∂D

is given by

u(t, x) =E

[
e
∫

τ

t
c(u,Xu) duϕ(τ,Xτ )1{τ<T}

∣∣∣ Xt = x
]

+ E

[
e
∫

T

t
c(u,Xu) duφ(XT )1{τ≥T}

∣∣∣ Xt = x
]

− E

[∫ τ

t

e
∫

u

t
c(s,Xs) dsg(u,Xu) du

∣∣∣∣ Xt = x

]
.

Here τ = inf{u ≥ t : Xu /∈ D}, X is the d-dimensional Markovian diffusion process with dynamics

dX i
t = bi(t,Xt) dt+

d∑

j=1

σij(t,Xt) dW
j
t , i = 1, . . . , d

and C1,2,λ
loc ((0, T )×D) is the space of all functions such that they and all their derivatives up to the second

order in x and first order in t are λ-Hölder continuous. Furthermore, u satisfies the growth estimate

sup
t∈[0,T ]

|u(t, x)| ≤ C(c0,K1,K2,K3, k)
(
1 + |x|k

)
, x ∈ D.
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Appendix B The joint law of a geometric Brownian motion with

time-dependent volatility and the hitting time of a suitable barrier

Let V (u) be some deterministic function defined for all u ∈ [t′, T ], where t′ is the initial time and T is

the final time. Let γ2(u) =
∫ u

t′
e2V (ℓ)dℓ.

Here we shall deduce the joint law of (Su, τ), where {Su}u∈[t′,T ] is a geometric Brownian motion with

constant drift r and time-dependent deterministic volatility eV (u), i.e,

Su = x exp

{
r(u − t′)− 1

2
γ2(u) +

∫ u

t′
eV (ℓ)dWℓ

}
, u ∈ [t′, T ]

and τ = inf{u ∈ [t′, T ] : Su ≤ Ĥ(u)} where

Ĥ(u) = H1 exp

{
−r(T − u) +

1 + 2β

2

(
γ2(T )− γ2(u)

)}
.

Define

Zu :=
Su

Ĥ(u)
= z exp

{
βγ2(u) +

∫ u

t′
eV (ℓ)dWℓ

}
, u ∈ [t′, T ]

where z := x

Ĥ(t′)
. Moreover, let

As := Zϑ(s) where ϑ(s) := inf{u ≥ t′ : γ2(u) ≥ s} and s ∈ [0, γ2(T )].

Since γ2(u) is a continuous and strictly increasing function, we have γ2(ϑ(s)) = s and ϑ(γ2(u)) = u;

therefore

As = z exp
{
βs+W s

}
, s ∈ [0, γ2(T )]

whereW s :=
∫ ϑ(s)

t′
eV (ℓ)dWℓ is (up to indistinguishability) a Q-Brownian motion. The latter claim follows

from the change of time theorem (e.g. Theorem 9.3 of Chung and Williams [1]); note that γ2(u) is the

quadratic variation of the local martingale
∫ u

t′
eV (ℓ)dWℓ.

Observe also that {τ > u} = {minℓ∈[t′,u] Zℓ > 1} = {mins∈[0,γ2(u)]As > 1}. So we can compute, for

u ∈ [t′, T ] and c > Ĥ(u),

Q
[
Su > c, τ > u

]
= Q

[
Aγ2(u) >

c

Ĥ(u)
, min

s∈[0,γ2(u)]
As > 1

]

= N
(

1

γ(u)

(
log
(zĤ(u)

c

)
+ βγ2(u)

))
− z−2βN

(
1

γ(u)

(
log
( Ĥ(u)

cz

)
+ βγ2(u)

))

= N
(
− 1

γ(u)

(
log c− µ1

))
−
( Ĥ(t′)

x

)2β
N
(
− 1

γ(u)

(
log c− µ2

))
.

where µi := log xi + r(u− t)− 1
2γ

2(u), x1 := x and x2 := Ĥ2(t)
x

. In the second equality we have used the

known law of a geometric Brownian motion and its running minimum, which can be found in Subsection

3.3.1 of Jeanblanc et al. [6]. Differentiating, we conclude that

Q
[
Su ∈ dc, τ > u

]
=

1{c>Ĥ(u)}

γ(u) c

[
n

(
1

γ(u)

(
log c− µ1

))
−
( Ĥ(t′)

x

)2β
n

(
1

γ(u)

(
log c− µ2

))
]
dc.

where n(·) is the standard normal probability density function.

Appendix C Closed-form expressions for the expectation of functions of a

Normal random variable

Lemma C.1. Define, for ℓ = 0, 1, 2,

Ψℓ(ν, κ, η;µ, σ
2, L) := E

[
(νW + κ)ℓ eηWn(νW + κ)1{W>L}

∣∣∣W ∼ Normal(µ, σ2)
]
.
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Then,

Ψℓ(ν, κ, η;µ, σ
2, L) = ζ

s2

σ
c1,ℓ

[
sN

(
m− L

s

)
+ (L −m)n

(
m− L

s

)]

+ ζ
s2

σ

(
c2,ℓ + 2c1,ℓm

)
n

(
m− L

s

)
+ ζ

s

σ

(
c3,ℓ + c2,ℓm+ c1,ℓm

2
)
N
(
m− L

s

) (C.1)

where

ζ =
1√
2π

exp
{
−1

2

(µ2

σ2
− (µ− σ2(νκ− η))2

σ2(1 + σ2ν2)
+ κ2

)}
,

m =
µ− σ2(νκ− η)

1 + σ2ν2
, s2 =

σ2

1 + σ2ν2
,

c1,0 = c1,1 = c2,0 = 0, c1,2 = ν2, c2,1 = ν, c2,2 = 2νκ, c3,0 = 1, c3,1 = κ, c3,2 = κ2.

Proof. See Appendix A.1 of [13].

Lemma C.2. Define

Υ(ν, κ, η;µ, σ2, L) := E

[
eηWN (νW + κ)1{W>L}

∣∣∣W ∼ Normal(µ, σ2)
]
.

Then

Υ(ν, κ, η;µ, σ2, L) = exp

{
q22
4q1

− q3

}
N2

(
q2√
2q1

,
2q1q5 − q2q4√
2q1(2q1 + q24)

; − q4√
2q1 + q24

)
(C.2)

where

q1 =
1

2(1 + σ2ν2)
, q2 =

κ+ ν(µ+ σ2η)

1 + σ2ν2
,

q3 =
(κ+ µν)2 − 2η(µ− κνσ2)− η2σ2

2(1 + σ2ν2)
,

q4 = − σν√
1 + σ2ν2

, q5 =
µ+ σ2(η − κν)− L(1 + σ2ν2)√

σ2(1 + σ2ν2)

and N2( · , · ; ρ) denotes the cumulative distribution function of a bivariate normal random variable with

zero means, unit variances and correlation ρ.

Proof.

E

[
eηWN (νW + κ)1{W>L}

∣∣∣W ∼ Normal(µ, σ2)
]

=

∫ 0

−∞

E

[
eηWn(νW + κ+ z)1{W>L}

∣∣∣W ∼ Normal(µ, σ2)
]
dz

=
1√

2π(1 + σ2ν2)

∫ 0

−∞

exp{q1z2 + q2z + q3}N (q5z + q6) dz

= exp

{
q22
4q1

− q3

}
N2

(
q2√
2q1

,
2q1q5 − q2q4√
2q1(2q1 + q24)

; − q4√
2q1 + q24

)
.

The second equality follows from Lemma C.1, and the last equality follows from Appendix A.3 in [13].
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Appendix D A closed-form two-stage formula for the zero-order term

In order to illustrate that the integrals in the representation formula (31) for f̂
(n)
0 (t′, x) ≡ f̂

(n)
0 (t′, x, v′)

can be computed in closed form, here we focus on the case n = 2, where (31) gives

f̂
(2)
0 (t′, x) = e−r(T1−t′)

∫ ∞

Ĥ(2)(T1)

1

γ(t′, T1, v′)w
×

×
[
n

(
1

γ(t′, T1, v′)

(
logw − µ1

))
−
(Ĥ(2)(t′)

x

)2β1

n

(
1

γ(t′, T1, v′)

(
logw − µ2

))
]
×

×
[
wN (d1(T1, w, VT1 ))−Ke−r(T−T1)N (d2(T1, w, VT1 ))

−
(
Ĥ(2)(T1)

w

)2+2β2

wN (d3(T1, w, VT1 )) +

(
Ĥ(2)(T1)

w

)2β2

Ke−r(T−T1)N (d4(T1, w, VT1))

]
dw.

Like in Subsection 3.3, let us rewrite this as

f̂
(2)
0 (t′, x) = e−r(T1−t′)

(
E

[
F (W1)1{W1>log Ĥ(2)(T1)}

]
−
( Ĥ(2)(t′)

x

)2β1

E

[
F (W2)1{W2>log Ĥ(2)(T1)}

])

with Wi ∼ Normal
(
µi, γ

2(t′, T1, v
′)
)
and

F (W ) =

4∑

j=1

aj e
ηjWN

(
νjW + κj

)
(D.1)

where aj , ηj , νj , κj are the functions given in Table 3. Combining this with Lemma C.2, we obtain a

closed-form expression for f̂
(2)
0 (t′, x) in terms of the bivariate normal cumulative distribution function:

f̂
(2)
0 (t′, x) = e−r(T1−t′)

[
4∑

j=1

aj Υ
(
νj , κj , ηj ;µ1, γ

2(t′, T1, v
′), L̂

)

−
( Ĥ(2)(t′)

x

)2β1
4∑

j=1

aj Υ
(
νj , κj , ηj ;µ2, γ

2(t′, T1, v
′), L̂

)
] (D.2)

where L̂ ≡ log Ĥ(2)(T1). (It can be verified numerically that this formula coincides with (17) in the

particular case β1 = β2 = β, and also that it satisfies the standard monotonicity properties with respect

to the barrier function.)

For higher n, it is straightforwardly seen that, as a result of the successive n − 1 integrations (31),

the n-stage zero-order term f̂
(n)
0 (t′, x) can be written in terms of the cumulative distribution function of

the n-dimensional normal distribution.

Table 3: Parameters in equations (D.1) and (D.2). The arguments of the functions γ(T1, T, VT1) and
Ĥ(2)(T1) are omitted.

j aj ηj νj κj

1 1 1 1
γ

1
γ

[
− log(K ∨H1) + r(T − T1) +

γ2

2

]

2 −Ke−r(T−T1) 0 1
γ

1
γ

[
− log(K ∨H1) + r(T − T1)− γ2

2

]

3 −(Ĥ(2))2+2β2 −(1 + 2β2) − 1
γ

1
γ

[
log
( (Ĥ(2))2

K∨H1

)
+ r(T − T1) +

γ2

2

]

4 (Ĥ(2))2β2Ke−r(T−T1) −2β2 − 1
γ

1
γ

[
log
( (Ĥ(2))2

K∨H1

)
+ r(T − T1)− γ2

2

]
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