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Abstract

Motor insurance is a very competitive business where insurers operate with quite
large portfolios, often decisions must be taken under short horizons and therefore ruin
probabilities should be calculated in finite time. The probability of ruin, in continuous
and finite time, is numerically evaluated under the classical Cramér-Lundberg risk process
framework for a large motor insurance portfolio, where we allow for a posteriori premium
adjustments, according to the claim record of each individual policyholder.

Focusing on the classical model for bonus-malus systems we propose that the probabil-
ity of ruin can be interpreted as a measure to decide between different bonus-malus scales
or even between different bonus-malus rules. In our work the required initial surplus can
also be evaluated.

We consider an application of a bonus-malus system for motor insurance to study the
impact of experience rating in ruin probabilities. For that we used a real commercial scale
of an insurer operating in the portuguese market, and we also work various well known
optimal bonus-malus scales estimated with real data from that insurer. Results involving
these scales are discussed.

Keywords: Ruin probability; finite time ruin probability; bonus-malus; Markov
chain; experience rating.
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1 Introduction

Ruin probability, either finite or infinite, is often computed using the classical Cramér-
Lundberg model, where the premium is paid continuously at a constant rate. See for in-
stance Asmussen and Albrecher (2010) for comprehensive references. Extensions to that
model where premia are variable and adjusted according to the past experience are known
as well as extensions with particular bonus-malus applications for motor insurance [see re-
cent paper by Li et al. (2015) and, in particular, Chapter VIII of Asmussen and Albrecher
(2010)]. As far as models with varying premia and ruin probabilities are concerned, most
known works consider ultimate ruin probabilities. Relevant of these works are addressed, and
listed, below at the end of this section. Motor insurance is a very competitive business where
insurers operate with large portfolios, often decisions must be taken under short horizons,
so ruin probabilities should be calculated for shorter term periods, i.e., in finite time. With
these features we particularly highlight the model developed by Afonso et al. (2009). This
work is going to be the basis to our work, where a generic varying premium is considered, it
is applicable to large portfolios and allows to compute finite-time ruin probabilities. There,
a mix of calculation and simulation procedure is used. The same authors adapted the same
model for the calculation of ruin probabilities where premia are updated using credibility
estimation [see Afonso et al. (2010)]. In this manuscript, we adapt it for portfolios with
bonus-malus updated premia, it allows to get fast results for a finite horizon and continuous
time framework.

For application into motor insurance the model by Afonso et al. (2009) needs some adapta-
tion. In Afonso et al. (2009) each year premium is depending on the surplus at the end of the
previous year, calculated so that the ultimate ruin probability is given by a pre-determined
value. Obviously, insurers benefit from a good global, portfolio behavior, or are penalized
otherwise. In Afonso et al. (2010) it assumed a credibility theory approach, where premia
can be different, and so individualized, according to each risk characteristic, assigned by a
risk parameter, so that the portfolio is not completely homogeneous and we have a collection
of different risk types. We can consider that the parameter is known or unknown. In the
latter case we have to estimate each annual risk premium, based on past experience. It is
quite different when we introduce a classical bonus-malus system (shortly BMS) into a motor
portfolio. Like in the previous models, premia are variable on an annual basis, charged at
the beginning, however, the next year premium for each risk is commonly depending on the
current bonus-malus class, where the class in determined by the number of claims within the
year. In this manuscript, we adopted classical or standard models only consider the class
determination depending on the claim counts and not on the claim amounts. Models that
consider claim amounts (e.g. see Ni et al. (2014) and references therein) must have a different
build and are out of scope in this work. Technically, in the classical models the dynamics
are estimated through Markov chain procedures. This procedure brings a higher variation in
the premia during the lifetime of the portfolio [see e.g. Lemaire (1995)], when compared to
a standard procedure. The model in Afonso et al. (2009), that we retrieve, is built under the
assumption of an homogeneous classical compound Poisson process, with Afonso et al. (2010)
we bring some sort of heterogeneity to the portfolio. Under a BMS we often work under a
mixed Poisson framework and premium varying on claim counts only.

To be more precise, past annual claim counts allow for determining incoming year rating
class of each individual policyholder and calculate the appropriate risk premium. In a port-
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folio perspective, the claim number distribution is essential to estimate the future allocation
of policyholders among bonus-malus levels and, therefore, the aggregate risk premium of the
portfolio. That together with aggregate claims, is necessary to compute ruin probabilities.
The claim severity does not matter for the premium allocation in the BMS perspective, but
it does for computing ruin probabilities.

To ease the reading we shorten common vocabulary in BMS (bonus-malus system or
systems), so that a bonus scale means a particular BMS with a particular collection of premia,
bonus level or class means a particular bonus-malus level in the bonus scale.

At the end of this paper, we will be contributing to answering questions like:

- How big is the impact of an evolving premium, along the years, in the portfolio ruin
probability for a particular BMS, when compared with a fixed premium?

- For a given set of bonus scales, which scale provides a lower ruin probability for a given
time span?

- For a given set of transition rules and claim frequency distribution, which combination of
initial surplus, bonus scale and ruin probability obtained is acceptable for the manager?

Regarding the a posteriori ratemaking, we limit our study to the classical model for
BMS [see Lemaire (1995), p. 6]. In order to evaluate the impact of a BMS in the ruin
probabilities, we will compare the performance of several well known optimal bonus scales,
estimated with real data from an automobile third-party liability portfolio of an insurer
operating in the portuguese market, as well as his actual commercial scale. Those optimal
scales are the ones proposed by Norberg (1976), Borgan et al. (1981), Gilde and Sundt (1989)
and Andrade e Silva and Centeno (2005). This analysis may be used as a measure to help
the insurer on the decision about which bonus scale should be implemented for the portfolio.

Different authors have addressed models with a varying premium based on claim counts.
In Dubey (1977) the premium is also a function of the number of claims, but it does not
consider a BMS. Dufresne (1988) also studies the ruin probability using simulation techniques,
but in a stationary distribution environment. Wagner (2001) and then Wu et al. (2008) derive
recursion formulae for the ruin probability in a two state Markov model but in an infinite
time approach. Recently, Li et al. (2015) considered computing ruin probabilities where the
Poisson parameter is a continuous random variable and use credibility theory arguments to
adjust the premium rate a posteriori. Even more recently, Constantinescu et al. (2016)
discusses ruin probabilities in a model with dependence on the number of claims that can be
viewed as an application to a “no claims discount” system (where only bonuses are allowed,
not malus). Again, in both cases, only ruin probabilities in an infinite time horizon are
considered. With the method proposed in this paper we can compute ruin probabilities in a
portfolio with a BMS at any time (year) moment.

The work in this paper evolves as follows. Section 2 introduces the basic framework, the
model, reviews the classical BMS in the framework of an homogeneous Markov chain, and
summarises the simulation and calculation procedure. Section 3 presents an illustration with
data of a motor portfolio supplied by a Portuguese insurer, the model results on the effects
of a BMS on the probability of ruin followed by a discussion. Some concluding remarks are
written in the last section.
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2 Basic framework

2.1 Modelling the ruin probability

We introduce our base model, main definitions and notation, retrieved from Afonso et al.
(2009). We may define and introduce locally some other definitions and notation. Consider
a risk process over an n-year period. We denote by S(t) the aggregate claims up to time t, so
that S(0) = 0 and by Yi the aggregate claims in year i, so that Yi = S(i)−S(i−1). {Yi}ni=1 is
a sequence of independent and identically distributed (shortly i.i.d.) random variables with
common compound Poisson distribution, whose first three moments exist. Poisson parameter
is denoted as λ, i.e., λ (> 0) is the mean of the annual number of claims. Let us also set
f(·, s) as the probability density function (p.d.f.) of S(s) for 0 < s ≤ 1.

Let Pi denote the total amount of premium charged in the portfolio in year i, which
depends on the distribution of policies through the bonus levels. Let U(t) denote the insurer’s
surplus at time t, 0 ≤ t ≤ n. It is assumed that premia are received continuously at a constant
rate throughout each year. The initial surplus, u (= U(0)), and the initial premium, P1, are
known. For each year i, i ≥ 2, the premium Pi and surplus level U(i) are random variables
since they both depend on the claims experience in previous years. We note that, as usual,
whenever we wish to refer to a particular realization of these variables, we will use the lower
case letters pi and u(i), respectively.

The evolution of the surplus of an insurance company or portfolio, U(t), for any time t,
0 ≤ t ≤ n, as defined in Afonso et al. (2009), is driven by equation:

U(t) = u+

i−1∑
j=1

Pj + (t− i+ 1)Pi − S(t) , (2.1)

where i is the positive integer such that t ∈ [i− 1, i) and
∑0

j=1 Pj = 0, by convention. For a
better perception of the following results, let us state basic assumptions for the portfolio:

- The portfolio is homogeneous with respect to claim severities;

- The portfolio is heterogeneous with respect to claim frequencies, following a mixed
Poisson distribution;

- We consider a homogeneous claim frequency in each bonus level or class, in class j the
number of claims in one year follows a Poisson distribution with parameter λj ;

- The portfolio is closed for ingoing and outgoing policyholders.

Let ψ(u, n) denote the probability of ruin in continuous time within a period of n years
and ψ(u(i− 1), 1, u(i)) the approximation to the probability of ruin within year i, given the
surplus u(i − 1) at the start of the year, u(i) ≥ 0 the surplus at the end of the year and a
rate of premium income pi during the year. For details see Afonso et al. (2009).

Let H(s) + κ s be a random variable with a translated Gamma distribution whose first
three moments match those of S(s). We denote the parameters of the translated Gamma
as α, β and κ, respectively the shape, scale and translation parameters, α, β > 0 and κ ∈
R. Denoting FG(·, s) the cumulative distribution function and fG(·, s) the p.d.f. of H(s),
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Afonso et al. (2009) show how the approximation to the ruin probability in year i is defined
and how to calculate the parameters α, β and κ. They obtained:

ψ(u(i− 1), 1, u(i)) =

∫ 1−u(i)/pi

s=0
fG(u(i− 1) + (pi − κ)s, s) u(i)

(1−s)fG((pi − κ)(1− s)− u(i), 1− s)ds
fG(u(i− 1) + pi − κ− u(i), 1)

+
fG(u(i− 1) + (pi − κ)(1− u(i)

pi
), 1− u(i)

pi
)FG(−κu(i)/pi, u(i)/pi)

fG(u(i− 1) + pi − κ− u(i), 1)
. (2.2)

The estimated probability of ruin for a finite time, say n, will be obtained using this
formula inserted in a simulation procedure that is described in Subsection 2.3.

2.2 BMS for homogeneous Markov chains

In this subsection we introduce main definitions and quantities from the classical BMS as
known from the literature. Following Lemaire (1995), see also Denuit et al. (2007), for a BMS
with transition rules based only on claim frequency we consider that the level/class, for each
policyholder, in a given annual period is determined uniquely by the class of the preceding
year and by the number of claims reported during that time period. The classical model for
BMS is defined by the triplet ∆ = (T,b, i0), where b = (b1, . . . , bL)′ is the bonus scale, i0
identifies the initial class and T denotes the (L× L) transition rules matrix for a BMS with
L classes.

The probability of moving from class l to class j in one year, for a policyholder with
annual claim frequency mean λ, denoted as pT,λ(l, j), is given by

pT,λ(l, j) =
∞∑
k=0

pk(λ) tlj(k) , l, j = 1, . . . , L , (2.3)

where pk(λ) is the probability that an insured, with mean claim frequency λ, reports k claims
in one year, tlj(k) = 1 if k claims reported lead a policy to move from class l to class j and
tlj(k) = 0 otherwise.

Considering a given λ, a BMS can be modeled by a finite homogeneous Markov chain
with state space E = {1, 2, . . . , L} and one step transition probability matrix

PT,λ =
[
pT,λ(l, j)

]
L×L =

∞∑
k=0

pk(λ)Tk .

with Tk = [tlj(k)] , l, j = 1, . . . , L , k ∈ N0.

For the BMS defined above by ∆, let π
(i)
∆,λ(j) be the conditional probability of an insured,

for a given λ, belonging to class j after i steps. This probability is easily obtained from
the i-step transition matrix and initial distribution. Assume that Tk is a set of transition
rules that define an irreducible and aperiodic Markov chain in a classical BMS portfolio. It
is known, see Parzen (1965), that the stationary distribution, denoting the probability of a
policyholder belonging to class j in the long run, is given by the limiting distribution of the
Markov chain:

πT,λ = [πT,λ(j)]1×L =

[
lim

i→+∞
π

(i)
∆,λ(j)

]
1×L

.

5



To express the heterogeneity of the portfolio with respect to the claim frequency, it is
common to consider λ as an outcome of a positive random variable, say Λ, with distribution
function denoted as VΛ(·). As widely set in the BMS literature, the unconditional probability
of an insured belonging to class j, after i steps, and the long run distribution, for a policy-
holder chosen at random from the portfolio, is expressed as the expectation with respect to
Λ, respectively

π
(i)
∆ (j) =

∫ ∞
0

π
(i)
∆,λ(j) dV (λ) , j = 1, . . . , L (2.4)

and

πT (j) =

∫ ∞
0

πT,λ(j) dV (λ) , j = 1, . . . , L . (2.5)

The total amount of premia to be charged annually for the set of policyholders in the
portfolio, is not constant over time since it depends on the distribution of policyholders
among the bonus levels and is the sum of total premia in each class. For a given year i and
known involved quantities, total premium in the presence of a BMS can be computed using
the formula,

Pi = (1 + θ)NPol
L∑
j=1

E [S(1)]π
(i)
∆ (j) bj , i = 1, . . . , n , (2.6)

where θ > 0 is the safety loading parameter, NPol the total number of policies in the
portfolio. Note that we consider E [S(1)] to be dependent on j. For BMS based only on
claim frequency, there is an implicit assumption that average claim size is constant across
BMS classes. We consider that assumption in our developments. For a more detailed view
over BMS please consider Lemaire (1995) or Denuit et al. (2007).

In our application quantities E [S(1)] and π
(i)
∆ (j) have to be estimated with historical

data, annual number of claims in class j will be considered Poisson distributed with mean
λj , j = 1, 2, . . . , L (λj is going to be estimated as well). As said above mean claim size is
constant across BMS classes. Also, starting premium, in year i = 1, is fixed and is given.

2.3 Simulation and calculation procedure

In this section we summarize the steps of the simulation (and calculation) procedure. Again,
this is taken, with adaptations, from Afonso et al. (2009). This model is targeted for large
portfolios, we need to calculate annual aggregate claims, the authors suggest the approx-
imation by a translated gamma with parameters α, β and κ as introduced at the end of
Subsection 2.1.

1. Estimation of λj , j = 1, . . . , L.

From historical data, estimate the mean claim frequency of bonus class j , j = 1, . . . , L.
Recall that, for class j, the number of claims is Poisson distributed with parameter λj .

2. Estimation of the expected number of claims for the portfolio, in year i , i = 1, . . . , n.

The expected number of claims in the portfolio, for year i, is given by

E[Ni] = NPol
L∑
j=1

λj π
(i)
∆ (j) , i = 1, . . . , n (2.7)

6



estimated according to the Markov chain underlying the BMS, see (2.4).

3. For a given value of initial surplus, u, simulation of the aggregate claim amount for
each year i, {Yi}ni=1.

Let Yi be the aggregated claim amount in a given year i, assumed to have (approxi-
mately) a translated Gamma distribution. Calculate the parameters of the translated
Gamma distribution, αi, βi, κi, for each year i , : i = . . . , n, that match the first three
moments of Yi, considering the results obtained in step 2 and historical data for claim
amounts, see Afonso et al. (2009).

4. Estimation of the premium collected in each year i, Pi , i = 1, . . . , n.

Estimate the total amount of premium collected in year i, using (2.6), for a given bonus
scale b = (b1, . . . , bL)′.

5. Estimation of the ruin probability in year n, ψ(u, n).

This step is performed as follows:

(a) From the simulated values of {Yi}ni=1, say {yi}ni=1, calculate successively the surplus
at the end of each year: u(1) (= u+ p1 − y1), and u(i) (= u(i − 1) + pi − yi) for
i = 2, . . . , n.

(b) Denote as ψm(u, n) the ruin probability in simulation, or run, number m. In run
m, if u(i) < 0 for any i, i = 1, 2, . . . , n, we set ψm(u, n) = 1 and start simulation
m+ 1, m = 1, . . . ,M − 1, where M is the number of runs for each path set.

(c) If u(i) ≥ 0 for all i, i = 1, 2, . . . , n, we calculate the approximation for run m
ψm(u(i− 1), 1, u(i)) using (2.2).

We calculate the finite time ruin probability in run m, ψm(u, n), as follows:

ψm(u, n) = 1−
n∏
i=1

[1− ψm(u(i− 1), 1, u(i))] .

(d) The estimate for the continuous and finite time n ruin probability, ψ̂(u, n), is set
by the mean of the estimates obtained from each simulation, {ψ̂m(u, n)}Mm=1.

We note that this procedure also allow us to calculate the standard error of the obtained
estimate.

In our model we introduce the simulation procedure as flexible as possible to be applied
for different sorts of data.

3 Ruin probabilities in a portfolio with a BMS

In this section we discuss the effect of a BMS in the probability of ruin of a motor portfolio.
We illustrate our model using a numerical example based on data from the automobile third-
party liability portfolio of an insurer operating in Portugal, who wishes to remain anonymous.
The portfolio and the BMS is specified in Section 3.1. The numerical results are discussed in
Section 3.2.
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3.1 Data and distribution fitting

The insurer’s commercial scale has 18 premium entries, see column labeled “C” in Table 3.3
and the (18 × 18) transition rules matrix in Table 3.1. Here, entry (l, j) represents the
number of claims reported by a policyholder, that origins a transition from class l to class j,
l, j = 1, . . . , 18.

In Table 3.2 we summarise data for the number of annual claims reported in the insurer
portfolio, corresponding to a stable year of operation, we mean it can be considered to be
under in stationarity. From that data we estimated a mixed Poisson distribution, where the
parameter follows an inverse Gaussian distribution, whose maximum likelihood estimates for
the mean and the shape parameter of this distribution, say µ and η, are µ̂ = 0.082401 and
η̂ = 0.130271, respectively. We performed an appropriate goodness-of-fit test. See Lemaire
(1995) for details. In the table we considered all full year contracts, the insurer did not
provide detailed information. We fit the data into the model explained in Subsection 2.1 by
considering that in class j (j = 1, . . . , 18) number of annual claims follow a Poisson with
parameter λj), parameter to be estimated from the data.

In Table 3.3 we show the seven bonus scales considered in Item 2 of Subsection 2.3, the
actual number of policies in each level of the portfolio under study and the estimates for the
claim frequency of each class, λ̂j , j = 1, . . . , 18. Following the methods proposed by those
scales we estimated the optimal value levels considering our commercial scale.

From the history of the insurer’s portfolio claim amounts, we estimated a mean value
of 1, 766.31, a variance of 71, 097, 953.5 and a third central moment of 21, 068, 298, 856, 615.
They were then used to get estimates for the parameters α, β and κ of the translated Gamma
approximation.

In the simulation procedure, summarised in Subsection 2.3, for the calculation of the ruin
probability ψ(u, n), we used M = 50, 000 runs.
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T =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 {0} − − {1} − − {2} − − {3} − − {4} − − {5} − {6, 7, . . .}
2 {0} − − − {1} − − {2} − − {3} − − {4} − − {5} {6, 7, . . .}
3 − {0} − − − {1} − − {2} − − {3} − − {4} − − {5, 6, . . .}
4 − − {0} − − − {1} − − {2} − − {3} − − {4} − {5, 6, . . .}
5 − − − {0} − − − {1} − − {2} − − {3} − − {4} {5, 6, . . .}
6 − − − − {0} − − − {1} − − {2} − − {3} − − {4, 5, . . .}
7 − − − − − {0} − − − {1} − − {2} − − {3} − {4, 5, . . .}
8 − − − − − − {0} − − − {1} − − {2} − − {3} {4, 5, . . .}
9 − − − − − − − {0} − − − {1} − − {2} − − {3, 4, . . .}
10 − − − − − − − − {0} − − − {1} − − {2} − {3, 4, . . .}
11 − − − − − − − − − {0} − − − {1} − − {2} {3, 4, . . .}
12 − − − − − − − − − − {0} − − − {1} − − {2, 3, . . .}
13 − − − − − − − − − − − {0} − − − {1} − {2, 3, . . .}
14 − − − − − − − − − − − − {0} − − − {1} {2, 3, . . .}
15 − − − − − − − − − − − − − {0} − − − {1, 2, . . .}
16 − − − − − − − − − − − − − − {0} − − {1, 2, . . .}
17 − − − − − − − − − − − − − − − {0} − {1, 2, . . .}
18 − − − − − − − − − − − − − − − − {0} {1, 2, . . .}



.

Table 3.1: Transition matrix of the BMS
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No. Claims No. Policies

0 408,348
1 31,993
2 2,010
3 133
4 6

Total 442,490

Table 3.2: Number of Reported Claims in the Portfolio

(%)

j C N LN GN B LB GB No. Policies λ̂j j

1 45 33.4 32.4 41.0 48.8 46.0 45.7 174,173 0.034516 1
2 45 48.0 39.9 45.3 58.0 52.0 49.8 109,113 0.072883 2
3 50 49.5 47.4 50.0 60.1 58.0 54.4 42,736 0.076425 3
4 55 51.1 54.9 55.2 62.3 64.0 59.3 29,134 0.080265 4
5 60 66.5 62.4 61.0 63.7 70.0 64.7 23,730 0.126855 5
6 65 69.9 69.9 67.3 66.2 76.0 70.6 4,241 0.135954 6
7 70 74.6 77.5 74.3 68.1 82.0 77.0 2,759 0.148393 7
8 80 87.3 85.0 82.0 69.9 88.0 84.0 24,829 0.181802 8
9 90 92.9 92.5 90.6 72.3 94.0 91.7 11,747 0.195919 9
10 100 100.0 100.0 100.0 100.0 100.0 100.0 166 0.213730 10
11 110 109.8 107.5 110.4 105.6 106.0 109.1 2,882 0.237433 11
12 120 117.0 115.0 121.9 113.0 112.0 119.0 7,632 0.255984 12
13 130 125.3 122.5 134.6 124.3 118.0 129.9 250 0.277505 13
14 150 134.5 130.1 148.6 148.8 124.0 141.7 710 0.301956 14
15 180 143.4 137.6 164.0 162.6 130.0 154.6 2,256 0.327931 15
16 250 153.3 145.1 181.1 181.9 136.0 168.6 2,643 0.358676 16
17 325 164.1 152.6 199.9 209.1 142.0 184.0 1,304 0.395719 17
18 400 176.0 160.1 220.7 235.0 148.0 200.7 2,183 0.441571 18

442,490

Table 3.3: Number of policies, Poisson parameter and bonus scales by class

3.2 Results and comments

From the actual data, say “year 0”, we used the figures in column 9 (No. Policies) of Table 3.3
to estimate the starting distribution of the policyholders among the bonus levels, column “0”
of Table 3.4, so that we find the premium for the first period in our model. The premium
indices (in percentage) for the different scales are shown in Table 3.3 as well as the estimated
λ̂j ’s for the starting simulations as referred in Item 1.

For comparing performances we consider seven different bonus scales as well as the risk
premium, as follows.

P0 = E(Yi) is denoted as the risk premium for each year for the portfolio when no SBM is
considered. It is taken constant all along the years. For the premium calculation we used the

10



expected value principle with a loading θ = 0.8 (i.e., (1 + 0.8)E(S(1)) so that the calculated
total premium without BMS for the portfolio with 442, 490 policies is P0 = 115, 838, 792.

C is denoted as the premium obtained with the insurer commercial scale, a real scale.
We further estimate six different optimal bonus scales: the scale proposed by Norberg (1976)
(denoted N), the one proposed by Borgan et al. (1981) (denoted B) as well as Linear Norberg
(denoted LN), Geometric Norberg (denoted GN), Linear Borgan (denoted LB) and Geometric
Borgan (denoted GB). Linear Norberg and Linear Borgan are the application of Gilde and
Sundt (1989) to the optimal scale of Norberg and Borgan, respectively. Geometric Norberg
and Geometric Borgan are the application of Andrade e Silva and Centeno (2005) to the
same scales.

The total amount of premium for each year, for each bonus scale shown in Table 3.3, is
calculated using (2.6) according to the expected number of polices in each class in each year.

Yet, a note related with the choice of an 80% loading coefficient. We were never told
about the loading used by the insurer or the capital requirements for this portfolio, we chose
a loading so that a ten year ruin probability for a fixed initial surplus would be around 1%,
roughly, if no BMS system were considered. In our illustration we got an estimated ruin
probability of 0.01246 for an initial surplus of 350,000 monetary units, see column for P0 in
Table 3.5. Then, with the application of a BMS we could compare ruin probability figures in
two ways:

1. For each different BMS scale we could see the effect on ruin probabilities for a given
initial surplus, when compared to the no BMS situation and between each other. And,

2. For a fixed finite time ruin probability of around 1%, see the initial surplus needed (we
use round figures).

Table 3.4 shows the distribution of the policies through the s = 18 classes of the portfolio

under study for years “0”, 2, 5, 10 and in stationarity situation, i.e., estimates for π
(0)
∆ (j),

π
(2)
∆ (j), π

(5)
∆ (j), π∆(j) and πT (j), j = 1, 2, . . . , 18. In year 0, the time of the data collection,

we see that around 64% of the policies belong to the two classes with higher discount. Ten
years later we would expect about 78% of the policies in the same two classes.

In Figure 1 we represent the evolution of the premia according to the different bonus
scales for the portfolio. The straight line corresponds to the estimate for the expected value
of aggregate claims (E(S(1))). The premium P0 = 115, 838, 792 is not shown for scale matter
reasons. The other premia were obtained applying the bonus scales shown in Table 3.3 to
premium P0, as referred in (2.6). The dashed line, labeled S∗, is the claims estimated mean
according to their class placement or evolution along time, calculated with estimated class
claim frequency λ̂j from Table 3.3, j = 1, . . . , 18 (we stopped that calculation at year 10).

Analysing the figures we see that P0 (the premium calculated if no BMS is applied) is
extremely high when compared to the premium obtained by application of a bonus scale, any
scale. We note that premia obtained with scales N , LN and GN are always below than the
estimated expected value of one year aggregate claims, line E(S). We emphasise that with
these optimal scales, in order not to be ruined with high probability, either the initial surplus
has to be very high or the loading in practice needs to be very high, as we will show later.
At the beginning of our timeline the premia obtained with scales B, LB, GB are above the
expected value of aggregate claims, but after some years all of them will be below. Indeed, we
figure that in the long run the BMS set in practice will put most policyholders in the classes
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j\ Year 0 2 5 10 Stationarity

1 0.39362 0.63576 0.67436 0.71953 0.73121
2 0.24659 0.05681 0.04089 0.05678 0.04913
3 0.09658 0.06896 0.08045 0.04929 0.05394
4 0.06584 0.05938 0.06980 0.04927 0.05941
5 0.05363 0.01651 0.01678 0.01904 0.01871
6 0.00958 0.05774 0.01747 0.02528 0.01678
7 0.00623 0.03644 0.03326 0.01645 0.01411
8 0.05611 0.00444 0.01265 0.01037 0.00837
9 0.02655 0.00793 0.00659 0.00840 0.00725
10 0.00037 0.02375 0.00878 0.00977 0.00612
11 0.00651 0.00480 0.01277 0.00576 0.00495
12 0.01725 0.00188 0.00596 0.00451 0.00453
13 0.00056 0.00620 0.00541 0.00407 0.00419
14 0.00160 0.00818 0.00344 0.00435 0.00398
15 0.00510 0.00294 0.00403 0.00332 0.00398
16 0.00597 0.00468 0.00208 0.00326 0.00410
17 0.00295 0.00195 0.00210 0.00429 0.00438
18 0.00493 0.00164 0.00317 0.00629 0.00488

Table 3.4: Portfolio distribution over time and classes

with higher bonuses. It may be good for attracting customers for other lines of business of
the same company but not so good for this particular portfolio.

We analise now the ruin probabilities for years 2, 5 and 10, ψ(u, 2), ψ(u, 5), ψ(u, 10)
respectively, given a known initial surplus u. Based on the first choice for premium P0,
for each premium scale we chose u in order to obtain roughly ψ̂(u, 10) = 1%. Figures are
shown in Table 3.5 and we highlight in bold the ruin probability numbers in each scale for
situations around 1%, roughly. We can see how different is the need for initial capital u for
each premium scale in order to get an estimate ψ̂(u, 10) ' 1%, in all cases it is much higher
than the no BMS situation. In particular, scales N and LN show a need for very high initial
surplus. In our calculations we experienced that if ruin is going to occur it will in the first
2 years. In most cases results for t = 5 and t = 10 are very stable and very close (in many
cases equal) to the results for t = 2. Although we don’t show, standard deviations of our
estimates are all quite small, ranging from 3.3× 10−40 to 3.92× 10−6 (zero in the case where
ψ̂(u, t) = 1, t = 1, 2, · · · ). The introduction of this BMS results in a significant increase in
the ruin probabilities, the best premium scale is the Borgan et al. (1981). Note that this
scale is the one that offers less discount for lower classes that contain a high proportion of
policies, as shown in Tables 3.3 and 3.4.

Table 3.6 shows figures for the average of the within the year ruin probability for each
bonus scale and a particular collection of initial surpluses (denoted ψ̄(·) in the table). The
surplus choice corresponds to those initial surpluses with “boldface figures” in Table 3.5.
Analysing the table we can gain some insight into the results and look to what happens, on
average, for the within the year ruin probabilities. With the exception of scales N and LN , if
ruin occurs it does in the first year. This highlights the need for having a control on a short
term basis.
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Figure 1: Evolution of the different premiums over time

In Figure 2 we present some graphs with paths of the surplus U(t), for each bonus scale
and respective initial capital u. The scale range in figures “Norberg” and “Linear Norberg”
are very small when compared with the others. For this reason more paths appear more
visible.
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ψ̂(u, t) (%)

u t P0 C N LN GN B LB GB

350,000 2 1.246 60.502 99.999 100 96.129 25.665 38.028 50.392
5 1.246 60.502 99.999 100 96.129 25.665 38.028 50.392
10 1.246 60.502 99.999 100 96.129 25.665 38.028 50.392

1,500,000 2 0 14.807 99.954 100 75.749 0.953 3.407 8.374
5 0 14.807 99.969 100 75.749 0.953 3.407 8.374
10 0 14.807 99.969 100 75.749 0.953 3.407 8.374

2,000,000 2 0 7.569 99.854 100 63.277 0.233 1.186 3.716
5 0 7.569 99.902 100 63.277 0.233 1.186 3.716
10 0 7.569 99.902 100 63.277 0.233 1.186 3.716

2,550,000 2 0 3.495 99.601 100 48.724 0.052 0.369 1.463
5 0 3.495 99.716 100 48.724 0.052 0.369 1.463
10 0 3.495 99.717 100 48.724 0.052 0.369 1.463

3,250,000 2 0 1.206 98.790 100 31.551 0.009 0.083 0.426
5 0 1.206 99.150 100 31.551 0.009 0.083 0.426
10 0 1.206 99.154 100 31.551 0.009 0.083 0.426

6,400,000 2 0 0.008 74.639 99.923 1.245 0 0 0.003
5 0 0.008 81.050 99.986 1.245 0 0 0.003
10 0 0.008 81.163 99.989 1.245 0 0 0.003

15,000,000 2 0 0 0.360 31.246 0 0 0 0
5 0 0 1.580 70.362 0 0 0 0
10 0 0 1.623 74.868 0 0 0 0

25,000,000 2 0 0 0 0.002 0 0 0 0
5 0 0 0 0.879 0 0 0 0
10 0 0 0 2.037 0 0 0 0

Table 3.5: Estimates for the probability of ruin for different u’s and t = 2, 5, 10 years for each
BMS.
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u 350,000 3,250,000 15,000,000 25,000,000 6,400,000 1,500,000 2,000,000 2,550,000

Scales P0 C N LN GN B LB GB
i \ ψ̄(u(i− 1), 1, u(i))

1 0.012455245 0.011341473 2.028E-11 1.18E-132 0.00862 0.0095224 0.0117586 0.0142202
2 0 0.0054895 0.0003543 2.958E-09 0.0109755 0.0001391 0.0014271 0.0043680
3 0 7.113E-06 0.0035845 1.728E-05 0.0002886 3.707E-30 1.211E-14 1.447E-08
4 0 3.073E-47 0.0095027 0.0012845 9.317E-11 0 5.55E-105 9.214E-65
5 0 1.73E-170 0.0113343 0.0048442 8.457E-27 0 0 0
6 0 0 0.0080704 0.0080609 1.054E-68 0 0 0
7 0 0 0.0042740 0.0112567 0 0 0 0
8 0 0 0.0021026 0.0136769 0 0 0 0
9 0 0 0.0006633 0.0114318 0 0 0 0
10 0 0 0.0001815 0.0070086 0 0 0 0

Table 3.6: Average of the within the year ruin probabilities for each BMS and different initial surpluses
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Figure 2: Some paths for the reserve over time for each bonus scale and respective u.
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4 Final remarks

Throughout this paper we used the method proposed in Afonso et al. (2009) to evaluate,
in a motor insurance portfolio, the impact in the ruin probability of the introduction of a
BMS in the portfolio, when compared to the “em classical no BMS situation”. The proposed
model is applicable to large portfolios and the SBM does not necessarily assume a system at
a stability stage as most literature do.

We could compute the within one year ruin probability. Here, analysing the average ruin
probability, the insurer may foresee the time where the ruin probability is reaching an intol-
erable level and start prepare either a tariff revision or an increase in the capital requirement,
or reserve amounts, or both. In a very competitive business it is importatnt to have a model
prepared to adapt quickly to market changes, we mean, in shorter term situations. Like other
existing BMS, this BMS is going to put a high proportion of policyholders in the classes with
higher bonuses in the long run. This results into an increase in the ruin probabilities, and
we can estimate the magnitude of that increase. Having high discounts can attract new (su-
posedly “good”) customers however, that, together with high penalties, may lead to a bonus
hunger situation. If the first may increase the premium receipts, the latter certainly lead to
an artificial decrease in those receipts. This is not an easy issue and certainly has an effect
on ruin probabilities.

The estimation of ruin probabilities in the presence of a BMS may also outcome as a
means to decide among a set of optimal and/or commercial scales. We realized that small
changes in the scales, even almost no perceptible, may lead to a big impact on initial surplus
u required to meet a given level in the ruin probability.

This model provides a simple and effective methodology for assessing scales and bonus
malus schemes. It is quite flexible, it can be applied to other BMS providing decision makers
to choose a suitable BMS concerning the ruin probabilities. It can be applied also for the
Solvency II purposes to obtain the estimates of ruin probabilities in one year period.
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