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Abstract. We study billiards on polytopes in Rd with contract-
ing reflection laws, i.e. non-standard reflection laws that contract
the reflection angle towards the normal. We prove that billiards on
generic polytopes are uniformly hyperbolic provided there exists a
positive integer k such that for any k consecutive collisions, the
corresponding normals of the faces of the polytope where the colli-
sions took place generate Rd. As an application of our main result
we prove that billiards on generic polytopes are uniformly hyper-
bolic if either the contracting reflection law is sufficiently close to
the specular or the polytope is obtuse. Finally, we study in detail
the billiard on a family of 3-dimensional simplexes.
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1. Introduction

Given a d-dimensional polytope P , a billiard trajectory inside P is
a polygonal path described by a point particle moving with uniform
motion in the interior of P . When the particle hits the interior of the
faces of P , it bounces back according to a reflection law. Therefore,
a billiard trajectory is determined by a sequence of reflections on the
faces of P . Any reflection can be represented by a pair x = (p, v)
where p is a point belonging to a face of P and v is a unit velocity
vector pointing inside P . The map Φ : x 7→ x′ that takes a reflection
x to the next reflection x′ is called the billiard map. The dynamics of
billiards on polytopes has been mostly studied considering the specular
reflection law. More recently, in the case of polygonal billiards, a new
class of reflection laws has been introduced that contract the reflection
angle towards the normal of the faces of the polygon [1, 6, 2, 3]. These
are called contracting reflection laws. A billiard map with a contract-
ing reflection law is called a contracting billiard map. It is known that
strongly contracting billiard maps on generic convex polygons are uni-
formly hyperbolic and have finite number of ergodic SRB measures [4].
Recently, it has been proved that the same conclusion hods for con-
tracting billiard maps on polygons with no parallel sides facing each
other (even for contracting reflection laws close to the specular and for
non-convex polygons) [5].

In this paper we extend some of the previous results to contracting
billiard maps on polytopes.

In order to state our results we need to introduce the concept of
escaping time. A precise definition can be found in section 2. Given
a polytope P in Rd and a contracting reflection law, the escaping time
of a reflection x is the number T = T (x) ∈ N ∪ {∞} which is the
least positive integer k ∈ N such that for any sequence of k consecutive
reflections, the corresponding normals of the faces of P where the k
reflections took place generate Rd.

Theorem 1.1. If the contracting billiard map Φ of a generic polytope
has an ergodic invariant probability measure µ such that T is integrable
with respect to µ, then Φ is hyperbolic.

Theorem 1.2. If the contracting billiard map Φ of a generic polytope
has an invariant set Λ such that T is bounded on Λ, then Φ|Λ is uni-
formly hyperbolic.

In section 4 we show that contracting billiards on polytopes have
finite escaping time if either the contracting law is close to the specular
or the polytope is obtuse. This together with Theorem 1.2 prove the
following corollaries.
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Corollary 1.3. The contractive billiard map of a generic polytope with
a contracting reflection law sufficiently close to the specular one is uni-
formly hyperbolic.

Corollary 1.4. The contracting billiard map of a generic obtuse poly-
tope is uniformly hyperbolic.

The paper is organized as follows. In section 2 we introduce some
notation and define the contracting billiard on a polytope. We also
derive several properties of contracting billiards maps and rigorously
state our main result. In section 3 we show that polytopes on general
position are generic and in section 4 we study the escaping time on
polyhedral cones. Our main result is proved in section 5. Finally,
in section 6 we study in detail the contracting billiard of a family of
3-dimensional simplexes.

2. Definitions and Statements

A half-space in Rd is any set of the form {x ∈ Rd : 〈x, v〉 ≤ c },
for some non-zero vector v ∈ Rd and some real number c ∈ R. A
polyhedron is any finite intersection of half-spaces in Rd. A polytope
is a compact polyhedron. We call dimension of a polyhedron to the
dimension of the affine subspace that it spans. Let P ⊂ Rd be a d-
dimensional polytope.

The billiard on P is a dynamical system describing the linear motion
of a point particle inside P . When the particle hits the boundary of
P , it gets reflected according to a reflection law, usually the specular
reflection law. In the following we rigorously define the billiard map
ΦP with the specular reflection law. But first, let us introduce some
notation.

2.1. Basic Linear Algebra. Given vectors v1, . . . , vn ∈ Rd, the linear
subspace spanned by the vectors v1, . . . , vn is denoted by 〈〈v1, . . . , vn〉〉.
Let S denote the unit sphere in Rd, i.e. S = { v ∈ Rd : ‖v‖ = 1 }. Let
v, η ∈ S be unit vectors and u ∈ Rd. We denote by S+

η the hemisphere
associated with η,

S+
η = { v ∈ S : 〈v, η〉 > 0 } .

Let η⊥ denote the orthogonal hyperplane to η. The orthogonal projec-
tion of u onto the hyperplane η⊥ is,

Pη⊥(u) = u− 〈u, η〉 η = u− Pη(u) ,

where Pη(u) = 〈u, η〉 η, is the orthogonal projection of u onto the line
spanned by η. The reflection of u about the hyperplane η⊥ is defined
by,

Rη(u) = u− 2 〈u, η〉 η.
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Finally, the parallel projection of u along v onto the hyperplane η⊥ is

Pv,η⊥(u) = u− 〈u, η〉〈v, η〉 v .

Denote by ∠(v, w) the angle between two non-zero vectors in Rd,
defined as

∠(v, w) := arccos

( 〈v, w〉
‖v‖ ‖w‖

)
.

The angle between a non-zero vector v ∈ Rd and a linear subspace
E ⊆ Rd is defined to be

∠(v, E) := min
u∈E\{0}

∠(v, u) .

The angle between two linear subspaces E and E ′ of Rd of the same
dimension is defined as

∠(E,E ′) := max{ max
u∈E\{0}

∠(u,E ′), max
u′∈E′\{0}

∠(u′, E) } .

Denoting by πE,E′ : E → E ′ and πE′,E : E ′ → E the orthogonal
projections from each of these subspaces onto the other we have

(1) ‖πE,E′‖ = maxu∈E\{0}
d(u,E′)
‖u‖ = sin

(
maxu∈E\{0}∠(u,E ′)

)
,

(2) ‖πE′,E‖ = maxu′∈E′\{0}
d(u,E)
‖u‖ = sin

(
maxu′∈E′\{0}∠(u,E)

)
.

For all v ∈ E and v′ ∈ E ′,

〈πE,E′(v), v′〉 = 〈v, v′〉 = 〈v, πE′,E(v′)〉 .

This shows that each of the projections πE,E′ and πE′,E is adjoint of
the other. Therefore the maxima in the definition of ∠(E,E ′) coincide
with ‖πE,E′‖ = ‖πE′,E‖.

Lemma 2.1. Let E,E ′ and H be linear subspaces of Rd such that

(1) dim(E) = dim(E ′),
(2) ∠(h,E) ≥ ε, for all h ∈ H \ {0}.

Then

sin (∠(E +H,E ′ +H)) ≤ sin (∠(E,E ′))

sin ε

Proof. First notice that

∠(E +H,E ′ +H) = ∠((E +H) ∩H⊥, (E ′ +H) ∩H⊥) .
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Given u ∈ (E + H) ∩ H⊥ we can write u = v − h with v ∈ E and
h ∈ H. Hence, since u ∈ H⊥,

d(u, (E ′ +H) ∩H⊥)

‖u‖ =
d(u,E ′ +H)

‖u‖ =
d(v, E ′ +H)

‖u‖

≤ d(v, E ′)

‖u‖ =
‖v‖
‖u‖

d(v, E ′)

‖v‖ ≤ ‖v‖‖u‖ sin (∠(E,E ′))

=
sin (∠(E,E ′))

sin (∠(v, h))
≤ sin (∠(E,E ′))

sin ε
.

On the last equality we use that v = h + u is an orthogonal de-
composition with h ∈ H and u ∈ H⊥. Thus taking the sup in
u ∈ (E +H) ∩H⊥ \ {0} we get

sin
(
∠((E +H) ∩H⊥, (E ′ +H) ∩H⊥)

)
≤ sin (∠(E,E ′))

sin ε
.

�

2.2. Billiard map. Suppose that P has N faces (of dimension d− 1)
which we denote by F1, . . . , FN . For each i = 1, . . . , N , denote by ηi
the interior unit normal vector to the face Fi. Also denote by Πi the
hyperplane that supports the face Fi. We write the interior of Fi as
F ◦i , and its (d−2)-dimensional boundary as ∂Fi. Define ∂P =

⋃N
i=1 Fi,

and the (d− 2)-skeleton ΣP =
⋃N
i=1 ∂Fi. Finally define

M :=
N⋃
i=1

F ◦i × S+
ηi
.

The domain of the billiard map ΦP is the set of points (p, v) ∈M such
that the half-line { p + t v : t ≥ 0} does not intersect the skeleton
ΣP . We denote this set by M ′. Clearly, M ′ is the complement of a
co-dimension two subset of M .

Now the billiard map ΦP : M ′ → M is defined as follows. Given
x = (p, v) ∈ M ′, let τ = τ(p, v) > 0 be minimum t > 0 such that
p + t v ∈ F ′j for some j = 1, . . . , N . The real number τ is called the
flight time of (p, v). Then the billiard map is defined by

ΦP (x) = (p+ τ v, Rηj(v)).

Note that the billiard map ΦP is a piecewise smooth map and it
has finitely many domains of continuity. The number of domains of
continuity is at most N(N−1), which is the number of 2-permutations
of N faces. If P is convex, then all permutations define a branch map.

Let (p′, v′) = ΦP (p, v) for (p, v) ∈M ′. It is easy to obtain a formula
for the branch maps and its derivatives.

Proposition 2.2. Suppose that (p′i, v
′
i) = ΦP (pi, vi) for some pi ∈ F ◦i

such that p′i ∈ F ′j with i 6= j. For every x = (p, v) ∈ F ◦i × S+
ηi

such that
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p′ ∈ F ′j we have

ΦP (x) =
(
pj + Pv,η⊥j (p− pj), Rηj(v)

)
.

Moreover

DΦP (x)(u,w) =
(
Pv,η⊥j (u+ γ(x)w), Rηj(w)

)
,

where

γ(x) =
〈p− pj, ηj〉
〈v, ηj〉

.

Proof. Recall that p′ = p + τ(p, v)v where τ(p, v) is the length of the
vector p′ − p. Taking the inner product with ηj in both sides of the
equation and noting that 〈p′ − pj, ηj〉 = 0, we get

τ(p, v) =
〈p′ − p, ηj〉
〈v, ηj〉

=
〈pj − p, ηj〉
〈v, ηj〉

.

So

p′ = pj +

(
(p− pj)−

〈p− pj, ηj〉
〈v, ηj〉

v

)
= pj + Pv,η⊥j (p− pj) .

To prove the formula for the derivative, define the map Ψη : (p, v) 7→
Pv,η⊥(p) for any given η ∈ S. The claim follows from the formula

DΨη(x)(u,w) = Pv,η⊥(u) +
〈p, η〉
〈v, η〉Pv,η⊥(w).

�

2.3. Contracting reflection laws. A contracting law is any family
{Cη : S+

η → S+
η }η∈S of class C2 mappings that satisfies for every η ∈ S,

(a) Cη(η) = η,
(b) there are non-negative C2 functions aη, bη : S+

η → [0,+∞) such
that,

Cη(v) = aη(v)Pη(v) + bη(v)Pη⊥(v), ∀ v ∈ S+
η .

(c) 0 < sup{ ‖DCη(x)‖ : x ∈ S+
η } < 1,

(d) O ◦ Cη = CO(η) ◦O, for every rotation O ∈ O(n,R).

A contracting law can be uniquely characterized by a single C2 map
of the interval

[
0, π

2

)
as the following proposition shows.

Proposition 2.3. Given a contracting law {Cη : S+
η → S+

η }η∈S, there

is a class C2 mapping f :
[
0, π

2

)
→
[
0, π

2

)
such that

(a) f(0) = 0,
(b) 0 < sup{ |f ′(θ)| : 0 ≤ θ < π

2
} < 1,
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(c) for every η ∈ S, and v ∈ S+
η ,

Cη(v) =
cos f(θ)

cos θ
Pη(v) +

sin f(θ)

sin θ
Pη⊥(v) ,

where θ = arccos〈v, η〉 is the angle between η and v,
(d) for every η ∈ S,

sup
x∈S+η
‖DCη(x)‖ = sup

0≤θ<π/2
|f ′(θ)| .

Proof. Let η ∈ S and v ∈ S+
η . By item (b) of the definition of a

contracting law we can write

Cη(v) = aη(v)Pη(v) + bη(v)Pη⊥(v)

where aη and bη are non-negative C2 functions. Taking the inner prod-
uct with η on both sides of the previous equation we get,

aη(v) =
〈Cηv, η〉

cos θ
,

where θ = arccos〈v, η〉 ∈ [0, π
2
) is the angle formed by the vectors v and

η. By item (d) we conclude that 〈Cη(v), η〉 = 〈CO(η)(O(v)), O(η)〉, thus
its value depends only on the angle θ. So, there is a C2 function f :
[0, π

2
) → [0, π

2
) such that 〈Cη(v), η〉 = cos f(θ). Similarly, we conclude

that

bη(v) =
sin f(θ)

sin θ
.

This shows (c). The remaining properties follow immediately. �

A C2 mapping f :
[
0, π

2

)
→
[
0, π

2

)
satisfying (a)-(d) above is called

a contracting reflection law. We also define

λ(f) := sup
0≤θ<π/2

|f ′(θ)|.

2.4. Contracting billiard map. Given a contracting law {Cη} with
contracting reflection law f , define the map χf : M →M by χf (p, v) =
(p, Cη(p)(v)) where η(p) denotes the interior unit normal of the face of
the polytope where p lies. The contracting billiard map Φf,P : M ′ →M
is

Φf,P = χf ◦ ΦP .

There is a system of coordinates which is convenient to represent the
derivative of the contracting billiard map. For each x = (p, v) ∈ M
define Ψx : TxM → v⊥ × v⊥ by

Ψx(u,w) = (Pv⊥(u), w) .

The previous linear isomorphism will be referred as Jacobi coordinates
on the tangent space TxM . We shall use the notation (J, J ′) to denote
an element in v⊥ × v⊥. The following proposition gives a formula for
the derivative of the contracting billiard map in terms of Jacobi co-
ordinates.
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Proposition 2.4. Let x = (p, v) ∈M ′ and suppose that x′ = (p′, v′) =
Φf,P (x) with p′ ∈ F ′j. Then Ψx′ ◦DΦf,P (x) ◦Ψ−1

x is given by

(J, J ′) 7→
(
Pv′⊥ ◦ Pv,η⊥j (J + τ(p, v) J ′), (DCηj)Rηj (v)Rηj(J

′)
)
.

Moreover, if θ = arccos |〈v, ηj〉|, then∣∣∣∣〈v′, ηj〉〈v, ηj〉

∣∣∣∣ =
cos f(θ)

cos θ
> 1 .

Proof. Immediate from Propositions 2.2 and 2.3. �

2.5. Orbits, invariant sets and hyperbolicity. Denote by M+ the
subset of points in M that can be iterated forward, i.e.

M+ = {x ∈M : Φn
f,P (x) ∈M ′ ∀n ≥ 0}.

A billiard orbit is a sequence {xn}n≥0 in M ′ such that xn+1 = Φf,P (xn)
for every n ≥ 0. A billiard path or trajectory is the polygonal path
formed by segments of consecutive points of a billiard orbit.

Define

D :=
⋂
n≥0

Φn
f,P (M+).

It is easy to see that D is an invariant set and Φf,P and its inverse are
defined on D. Following Pesin we call the closure of D the attractor of
Φf,P . We say that Λ ⊂M is an invariant set if Λ ⊂ D and Φ−1

f,P (Λ) = Λ.

Definition 2.1. Given an invariant set Λ, we say that Φf,P is uniformly
partially hyperbolic on Λ if there exists a continuous splitting TΛM =
Es ⊕ Eu and constants λ < 1, σ > λ and C > 0 such that for every
n ≥ 1 we have

‖DΦn
f,P |Es‖ ≤ Cλn and ‖DΦ−nf,P |Eu‖ ≤ Cσ−n.

If σ > 1, then Φf,P is called uniformly hyperbolic on Λ. If Λ = D, then
we simply say that Φf,P is uniformly (partially) hyperbolic.

We also say that a Φf,P -invariant Borel probability measure µ is
called hyperbolic if

lim
n→∞

1

n

∫
log ‖DΦ−nf,P |Eu‖ dµ < 0.

The proof of the following result is an adaptation of [4, Proposition
3.1].

Proposition 2.5. Φf,P is uniformly partially hyperbolic.

Proof. To simplify the notation let us write Φ = Φf,P and λ = λ(f).
Given x = (p, v), x′ = (p′, v′) ∈ M such that x′ = Φ(x) we denote by
L(x, x′) the map from v⊥×v⊥ to v′⊥×v′⊥ that represents the derivative
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DΦx in the Jacobi coordinates (see proposition 2.4). This linear map
is represented by a block upper triangular matrix of the form

L(x, x′) =

(
A(x, x′) B(x, x′)

0 C(x, x′)

)
where ‖A(x, x′)−1‖ ≤ 1 and ‖C(x, x′)‖ ≤ λ < 1, whose inverse is

L(x, x′)−1 =

(
A−1 −A−1BC−1

0 C−1

)
where A = A(x, x′), etc. Given a linear map H ′ : v′⊥ → v′⊥ the pre-
image of its graph by L(x, x′) is the graph of another linear function
H : v⊥ → v⊥ called the backward graph transform of H ′ and denoted by
H =: Γ(x, x′)H ′. The operator Γ(x, x′) is hence defined by the relation

L(x, x′)−1Graph(H ′) = Graph (Γ(x, x′)H ′) .

A simple computation shows that

Γ(x, x′)H ′ = A(x, x′)−1B(x, x′)− A(x, x′)−1H ′C(x, x′).

We claim that writing xn = (pn, vn) = Φnx and denoting by Zn the
zero endomorphism on v⊥n , the following limit exists

Hs(x) := lim
n→+∞

Γ(x,Φx) . . .Γ(Φn−1x,Φnx)Zn.

A recursive computation allows to explicit the right hand side com-
position Γ(x,Φx) . . .Γ(Φn−1x,Φnx)Zn, which is a partial sum of the
following series

Hs(x) =
∞∑
j=0

(−1)jA−1
0 · · ·A−1

j BjCj−1 · · ·C0

where Aj = A(Φjx,Φj+1x), etc. This series converges because
∥∥A−1

j

∥∥ ≤
1 and ‖Cj‖ ≤ λ < 1 for all j ≥ 0.

By construction, the subspaces Es(x) := Ψ−1
x Graph(Hs(x)) deter-

mine a DΦ-invariant sub-bundle of TM satisfying
∥∥DΦx|Es(x)

∥∥ ≤ λ for

all x ∈ D. Given x = (p, v) ∈ D, define Eu(x) := Ψ−1
x {(J, 0) : J ∈ v⊥}.

Clearly, Eu is invariant. Moreover,
∥∥DΦ−1|Eu(x)

∥∥ ≤ 1 for all x ∈ D.
Finally, since TxM = Es(x)⊕Eu(x) the previous facts show that Φ

is partially hyperbolic. �

2.6. Main results.

Definition 2.2. Given k ∈ N, we say that x ∈ M+ is k-generating if
the face normals along any orbit segment of length k of the orbit of x
generate the Euclidean space Rd.

Definition 2.3. Given ε > 0, the polytope P is called ε-spanning if for
any d distinct faces F1, . . . , Fd of P with interior normals η1, . . . , ηd, the
angle between η1 and E := 〈〈η2, . . . , ηd〉〉 is at least ε, i.e. ∠(η1, E) ≥ ε.
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We also say that P is a spanning polytope if it is ε-spanning for some
ε > 0.

The following theorem is the main result of this paper. It shows that
the contracting billiard map uniformly expands the unstable direction
along the orbit of any k-generating point. Moreover, the expanding
rate only depends on the polytope and contracting reflection law.

Theorem 2.6. Suppose P is a spanning polytope. There exists σ > 1
depending only on the polytope P and contracting reflection law f such
that for every k-generating x ∈ D,

‖DΦ−2k
f,P |Eu(x)‖ ≤ 1/σ

We prove this theorem and the following results in section 6.

Definition 2.4. Given x ∈ M+, the escaping time of x, denoted by
T (x), is the least positive integer k ∈ N such that x is k-generating.
If x is not k-generating for any k ∈ N, then we set T (x) = ∞. We
also call the function T : M+ → N ∪ {∞} the escaping time of P with
respect to f .

Theorem 2.7. Suppose P is a spanning polytope and µ is an ergodic
Φf,P -invariant Borel probability measure. If T is µ-integrable, then µ
is hyperbolic.

Theorem 2.8. Suppose P is a spanning polytope and Λ an invariant
set of Φf,P . If T is bounded on Λ, then Φf,P is uniformly hyperbolic on
Λ.

The concept of polytope in general position, mentioned in the fol-
lowing corollaries, is defined below (see definition 3.1).

Corollary 2.9. Suppose P is a polytope in general position. There
exists λ0 = λ0(P ) > 0 such that for every contracting reflection law f
satisfying λ(f) > λ0 the billiard map Φf,P is uniformly hyperbolic.

A polytope P in general position is called obtuse if the barycentric
angle at every vertex of P is greater than π/4 (see section 4 for a precise
definition).

Corollary 2.10. Suppose P is a polytope in general position and f
any contracting reflection law. If P is obtuse, the Φf,P is uniformly
hyperbolic.

3. Generic Polytopes

Definition 3.1. A d-dimensional polytope P is said to be in general
position if

(1) for any set of d faces of P , (d − 1)-dimensional faces, their
normals are linearly independent,
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(2) the normals to the (d − 1)-faces of P incident with any given
vertex are linearly independent.

Proposition 3.1. Given some d-dimensional polytope P ⊂ Rd in gen-
eral position, each vertex has exactly d faces and d edges incident with
it.

Proof. Follows from condition (2). �

Consider the class PN of d-dimensional polyhedra P ⊂ Rd that con-
tain the origin, i.e., 0 ∈ int(P ), with exactly N faces. Given N points
(p1, . . . , pN) ∈ (Rd \ {0})N , define the polytope Q(p1, . . . , pN) ⊂ Rd,

Q(p1, . . . , pN) := ∩Nj=1{x ∈ Rb : 〈x, pj〉 ≤ 〈pj, pj〉 } .
The set

U := { (p1, . . . , pN) ∈ (Rd\{0})N : Q(p1, . . . , pN) has exactly N -faces }
is open in (Rd \ {0})N , and the range of Q : U → · coincides with PN .
Locally the map Q : U → PN is one-to-one, and determines an atlas
for a smooth structure on PN . We will consider on this manifold the
Lebesgue measure obtained as push-forward of the Lebesgue measure
on (Rd \ {0})N by the map Q.

Let PN denote the subset of polytopes in PN .

Proposition 3.2. The subset of polytopes in general position is is open
and dense, and has full Lebesgue measure in PN .

Proof. Consider the subsets N1 ⊂ PN , resp. N2 ⊂ PN , of polytopes
where condition (1), resp. (2), of definition 3.1 is violated. It is enough
to observe that the setsN1 andN2 are finite unions of algebraic varieties
of co-dimension one.

For any vector v = (v1, . . . , vd) ∈ Rd, let v̂ := (v1, . . . , vd, 〈v, v〉) ∈
Rd+1. Then N2 is covered by the union over all 1 ≤ i1 < i2 < . . . <
id+1 ≤ N of the hypersurfaces defined by the algebraic equation

det[ p̂i1 , p̂i2 , . . . , p̂id+1
] = 0 . (3.1)

In fact, if there is a point x0 ∈ Rd in the intersection of d + 1 distinct
hyperplanes

〈pik , x〉 = 〈pik , pik〉 k = 1, . . . , d+ 1

then the matrix with rows p̂i1 , p̂i2 , . . . , p̂id+1
contains the vector (x0,−1) ∈

Rd+1 in its kernel, which implies (3.1).
Analogously, N1 is contained in the union over all 1 ≤ i1 < i2 <

. . . < id ≤ N of the hypersurfaces defined by the algebraic equation

det[ pi1 , pi2 , . . . , pid ] = 0 .

�
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4. Escaping Times

In this section we study the escaping times of billiards on polyhedral
cones with contracting reflection laws.

Let Π1, . . . ,Πs be s hyperplanes in Rd passing through the origin. For
each hyperplane Πi we take a unit normal vector ηi and we suppose
that the set of hyperplanes are in general position, i.e. the normal
vectors η1, . . . , ηs are linearly independent. A set of s hyperplanes in
general position define a convex polyhedral cone

Q = {x ∈ Rd : 〈x, ηi〉 ≥ 0 , i = 1, . . . , s} .

For polyhedral billiard with the specular reflection law, Sinai proved
that there exists a constant K > 0, depending only on Q, such that
every billiard trajectory in Q has at most K reflections [7]. In this case
we say that Q has finite escaping time.

By projecting the billiard dynamics to the orthogonal complement
of
⋂s
i=1 Πi, we may assume that the normal vectors η1, . . . , ηs defining

the polyhedral cone Q span Rd. Thus, from now on we set s = d. Asso-
ciated with a convex polyhedral cone Q there is a constant measuring
the aperture of Q. It is defined as follows.

Definition 4.1. The normal vectors η1, . . . , ηd determine a hyperplane
H and a unit normal vector e such that

〈ηi, e〉 = ` , i = 1, . . . , d ,

where ` is the distance of H to the origin. The barycentric angle φ of
Q is defined by sinφ = ` (see Figure 1). Note that 0 < φ < π/2. We
say that a convex polyhedral cone Q is obtuse if φ > π/4.

Figure 1. Barycentric angle φ.
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4.1. Zigzag reflections. According to Proposition 2.3, given any bil-
liard orbit {(pk, vk)}k≥0, the sequence of reflection velocities satisfies

vk+1 =
cos f(θk)

cos θk
Pηik (uk) +

sin f(θk)

sin θk
Pη⊥ik

(uk) , k ≥ 0, (4.1)

where uk = Rηik
(vk), θk = arccos 〈uk, ηik〉 and ηik is the inward normal

of P where the k + 1-th collision took place.

Lemma 4.1. ‖vk+1 − vk‖ = 2 cos
(
f(θk)+θk

2

)
for every k ≥ 0.

Proof. Simple computation using (4.1). �

Given a sequence of consecutive reflection velocities v0, . . . , vn we
denote by L the length of the zigzag path formed by the reflections,
i.e.

L(v0, . . . , vn) =
n−1∑
k=0

‖vk+1 − vk‖ .

We say that Q has bounded zigzag reflections if there exists a constant
C > 0 such that L(v0, . . . , vn) ≤ C for every sequence of consecutive
reflection velocities v0, . . . , vn and any n ≥ 0.

Lemma 4.2. A convex polyhedral cone has finite escaping time if and
only if it has bounded zigzag reflections.

Proof. If Q has finite escaping time, then there exists an integer K > 0
such that every billiard trajectory has at most K reflections. Since the
zigzag length L :

∏K
i=1 Sm → R is a continuous function with compact

domain, it has a maximum. Thus, Q has bounded zigzag reflections.
Now suppose that Q has not finite escaping time. This means that

for every K > 0 there exists a billiard trajectory in Q that has at least
K reflections with the faces of Q. By Lemma 4.1 we have ‖vk+1 −
vk‖ ≥ δ > 0 where δ := 2 cos

(
f(π/2)+π/2

2

)
> 0. This means that for

every K > 0 there exists a sequence of consecutive reflection velocities
v0, . . . , vn such that L(v0, . . . , vn) ≥ δK. So Q cannot have bounded
zigzag reflections. �

Next we provide a sufficient condition on the contracting reflection
law that guarantees boundedness of zigzag reflections. Thus finite es-
caping time.

Lemma 4.3. For every sequence of consecutive reflection velocities
v0, . . . , vn we have

〈vk+1 − vk, e〉 = ‖vk+1 − vk‖γk , k = 0, . . . , n

where

γk = cos

(
f(θk)− θk

2

)
sinφ+ sin

(
f(θk)− θk

2

)
hk
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and hk =
〈
Pη⊥ik

(uk)/ sin θk, e
〉

.

Proof. Follows from (4.1) that

vk+1 − vk =
cos f(θk) + cos θk

cos θk
Pηik (uk) +

sin f(θk)− sin θk
sin θk

Pη⊥ik
(uk) .

Taking into account that Pηik (uk)/ cos θk = ηik and 〈ηik , e〉 = sinφ we
get

〈vk+1 − vk, e〉 = (cos f(θk) + cos θk) sinφ+ (sin f(θk)− sin θk)hk ,

where hk =
〈
Pη⊥ik

(uk)/ sin θk, e
〉

. Using classical trigonometric identi-

ties we can write

〈vk+1 − vk, e〉 = 2 cos

(
f(θk) + θk

2

)
γk,

where

γk = cos

(
f(θk)− θk

2

)
sinφ+ sin

(
f(θk)− θk

2

)
hk.

To conclude the proof apply Lemma 4.1. �

Theorem 4.4. If 2φ > π/2− f(π/2) then Q has finite escaping time.

Proof. Let v0, . . . , vn be any sequence of consecutive reflection veloci-
ties. By Lemma 4.3,

2 ≥ 〈vn − v0, e〉 =
n−1∑
k=0

‖vk+1 − vk‖γk , (4.2)

where

γk = cos

(
f(θk)− θk

2

)
sinφ+ sin

(
f(θk)− θk

2

)
hk

and hk =
〈
Pη⊥ik

(uk)/ sin θk, e
〉

. To estimate γk from below note that

hk ≤ cosφ. Thus

γk ≥ sin

(
φ+

f(θk)− θk
2

)
≥ sin

(
φ+

f(π/2)− π/2
2

)
.

By assumption µ := φ+ f(π/2)−π/2
2

> 0. Then, it follows from (4.2) that

L(v0, . . . , vn) <
2

sinµ
,

for every sequence of consecutive reflection velocities v0, . . . , vn. This
proves that Q has bounded zigzag reflections. Thus, by Lemma 4.2, Q
has finite escaping time. �

This theorem yields the following corollaries.

Corollary 4.5. Any polyhedral cone Q with contracting reflection law
f sufficiently close to the specular one has finite escaping time.
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Figure 2. Composition of the projections Pv′⊥ ◦ Pv,η⊥

Proof. It is clear that 2φ > π/2 − f(π/2) for every contraction f suf-
ficiently close to the identity. Thus, Q has finite escaping time, by
Theorem 4.4. �

Recall that a convex polyhedral cone Q is obtuse if φ > π/4.

Corollary 4.6. Any obtuse polyhedral cone Q has finite escaping time
for every contracting reflection law f .

Proof. If the polyhedral cone is obtuse then φ > π/4. Thus, 2φ >
π/2 > π/2−f(π/2) for every contraction f . Thus, Q has finite escaping
time, by Theorem 4.4. �

5. Uniform Expansion

By Proposition 2.4, the first component of the derivative DΦf,P (p, v)
of the billiard map is represented in Jacobi coordinates by the map

Lv,η = Pv′⊥ ◦ Pv,η⊥ : Rd → Rd

where v′, v, η ∈ Rd are three coplanar unit vectors, v′ = Cη(Rη(v)).
In this section we give conditions that ensure the uniform expansion

of compositions of such maps. Since the second component of the
billiard map is contractive (see Proposition 2.5), these conditions will
imply the uniform hyperbolicity of the billiard map.

5.1. Expansivity lemmas. The first lemma says that Lv,η has two
singular values: λ = 1 with multiplicity d − 1, and λ = |〈v′, η〉/〈v, η〉|
multiplicity 1. See Figure 2.

Lemma 5.1. Given coplanar unit vectors v′, v, η ∈ Rd, the composition
Pv′⊥ ◦ Pv,η⊥ : Rd → Rd satisfies:

(a) Pv′⊥ ◦ Pv,η⊥(v) = 0,
(b) Pv′⊥ ◦ Pv,η⊥(x) = x, for every x ∈ η⊥ ∩ v⊥,
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(c) Pv′⊥ ◦Pv,η⊥ maps the line v⊥ ∩W onto the line v′⊥ ∩W , where
W = 〈〈v, η〉〉, multiplying the vector’s norms by the factor |〈v′, η〉/〈v, η〉|.

Proof. Straightforward computation. �

The second lemma is abstract. Let V , V ′, V ′′ be Euclidean spaces
of the same dimension, and L : V → V ′, L′ : V ′ → V ′′ be linear
isomorphisms.

Given σ ≥ 1 and a subspace E ⊂ V , we say that L is a σ-expansion
on E if and only if ‖Lv‖ ≥ σ ‖v‖ for all v ∈ E. Given another linear
subspace H ⊆ V such that E ⊆ H we say that L is a relative σ-
expansion on H w.r.t. E if and only if the quotient map L : V/E →
V ′/L(E) is a σ-expansion on H/E. Note that the quotient space V/E is
an Euclidean space which can naturally be identified with E⊥. Finally,
we say that L is a σ-expansion to mean that L is a σ-expansion on its
domain V .

If we do not need to specify the minimal rate of expansion we shall
simply say that L is a uniform expansion on E, or that L is a relative
uniform expansion on H w.r.t. E.

Lemma 5.2. Given a linear subspace H ⊆ V , if

(1) L is a σ-expansion on H, and
(2) L is a relative σ-expansion on V w.r.t. H

then L is a σ-expansion on V .

Proof. Follows immediately from the definition of σ-expansion and rel-
ative σ-expansion. �

5.2. Trajectories. Let P be a d-dimensional polytope in Rd, and NP

be the set of its unit inward normals. Denote by N0 the set of natural
numbers N including 0.

Definition 5.1. A sequence {(vj, ηj)}j≥0 ∈ (S × NP )N0 is called a
trajectory if for all j ∈ N

(1) 〈vj−1, ηj〉 ≤ 0,
(2) vj = Cηj ◦Rηj(vj−1),

where Rη is the reflection introduced in section 2, and Cη is the con-
tracting reflection law defined in subsection 2.3.

Trajectories relate with the billiard map orbits in the following way.
Given a billiard orbit {(pj, vj)}j≥0 of the contracting billiard map Φf,P ,
denoting by ηj the inward unit normal of P at pj, the sequence {(vj, ηj)}j≥0

is a trajectory.

Lemma 5.3. Given any trajectory {(vj, ηj)}j≥0 there exist scalars αj, βj ∈
R such that for any j ≥ 1,

vj = αjηj + βjvj−1
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where

cos
(π

2
λ(f)

)
< αj < 2 and 0 ≤ βj < 1.

Moreover,∣∣∣∣ 〈vj, ηj〉〈vj−1, ηj〉

∣∣∣∣ =
cos f(θj)

cos θj
where θj = arccos |〈vj−1, ηj〉|.

Proof. According to Proposition 2.3,

vj = (aj + bj) cos θj ηj + bjvj−1

where

aj =
cos f(θj)

cos θj
, bj =

sin f(θj)

sin θj
and θj = arccos |〈vj−1, ηj〉|.

Since λ(f) < 1, we have 1 ≤ aj + bj < 2 and 0 ≤ bj < 1. Moreover,
cos θj > cos(π

2
λ(f)). The last claim is a simple computation. �

The following result says that the trajectory space T = Tf,P of all
trajectories is a compact space.

Proposition 5.4. The space T is a closed subspace of the product space
(S × NP )N0. In particular, with the induced topology T is a compact
space.

Proof. The trajectory space T is closed in the product space because
conditions (1) and (2) in Definition 5.1 are closed conditions. By Thy-
chonoff’s theorem (S × NP )N0 is compact, and hence T is compact
too. �

Given i < j in N0, we denote by [i, j] := {i, i+1, . . . , j} ⊆ N0 the time
interval between the instants i and j. Given a trajectory {(vj, ηj)}j≥0

and a time interval [i, j], the linear span V[i,j] := 〈〈vi, vi+1, . . . , vj〉〉 is
called the velocity front of the trajectory along the time interval [i, j].
The linear span N[i,j] := 〈〈ηi, ηi+1, . . . , ηj〉〉 is called the normal front of
the trajectory along the time interval [i, j]. Given i ∈ N, let Li : v⊥i−1 →
v⊥i be the linear map defined by

Li = Pvi⊥ ◦ Pvi−1,η⊥i
.

Finally we define the velocity tangent flow along [i, j] to be the linear
map L[i,j] : v⊥i → v⊥j defined by

L[i,j] = Lj ◦ . . . ◦ Li+1.

When the trajectory is associated to a billiard orbit {(pl, vl)}l≥0 of
Φf,P , the linear map L[i,j] represents, in Jacobi coordinates, the first

component of the derivative DΦj−i
f,P at (pi, vi). By definition, given

i < j < k,
L[i,k] = L[j,k] ◦ L[i,j] .

Lemma 5.5. Given a trajectory {(vl, ηl)}l≥0, for all intervals [i, j],
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(1) V[i,j] = 〈〈vi〉〉+N[i+1,j] and V[i,j]
⊥ ⊆ v⊥i ∩ v⊥j .

(2) L[i,j] : v⊥i → v⊥j is the identity on V[i,j]
⊥.

(3) L[i,j] is a 1-expansion on V[i,j].

Proof. Straightforward computation. �

Definition 5.2. We say that the trajectory {(vl, ηl)}l≥0 is generating
on [i, j] if N[i,j] = Rd. Given k ∈ N, we say that the trajectory is
k-generating if it is generating on any interval [i, j] with j − i ≥ k.

We can now state this section’s main result.

Theorem 5.6. Given ε > 0, d-dimensional polytope P and contracting
reflection law f , there exists a constant σ = σ(ε, d, f) > 1 such that for
any trajectory {(vj, ηj)}j≥0 in Tf,P the following holds. If

(1) P is ε-spanning,
(2) {(vj, ηj)}j≥0 is k-generating, with k ∈ N,

then the velocity tangent flow L[0,2k] : v⊥0 → v⊥2k is a σ-expansion.

The proof of this theorem is done at the end of the section.

Remark 5.7. From the previous theorem’s conclusion, for any n ≥ 0,∥∥L[0,n](v)
∥∥ ≥ σ

n
2k
−1 ‖v‖ all v ∈ v⊥0 .

This means, minimum growth expansion rate ≥ σ
1
2k > 1.

5.3. Collinearities. Throughout the rest of this section, we assume
that ε > 0 is fixed and that P is ε-spanning.

Consider a trajectory {(vl, ηl)}l≥0 in T.

Definition 5.3. A time interval [i, j] is called a collinearity of the
trajectory {(vl, ηl)}l≥0 if its velocity and the normal fronts along the
time interval [i, j] coincide, i.e. V[i,j] = N[i,j]. The number j − i will be
referred as the length of the collinearity [i, j].

Definition 5.4. A collinearity is called minimal if it contains no smaller
subinterval which is itself a collinearity.

For instance, if vi ∈ 〈〈ηi〉〉 then {i} is a minimal collinearity of length
0.

Proposition 5.8. Given a trajectory {(vl, ηl)}l≥0, assume vi ∈ N[i,j]

with i ≤ j. Then there is some i′ ∈ [i, j] such that the time interval
[i′, j] is a collinearity.

Proof. The proof goes by induction on the length r = j − i. If the
length is 0 then i = j and we have necessarily vi ∈ 〈〈ηi〉〉, in which
case it is obvious that [i, i] = {i} is collinearity. Assume now that
the statement holds for all time intervals of length less than r, and let
vi = λiηi + · · ·+ λjηj with j − i = r. We consider two cases:
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First suppose that λi 6= 0. By item (1) of Lemma 5.5,

V[i,j] = 〈〈vi〉〉+N[i+1,j] ⊆ N[i,j].

Conversely, because λi 6= 0 we have ηi ∈ 〈〈vi〉〉 + N[i+1,j] which proves
that

N[i,j] ⊆ 〈〈vi〉〉+N[i+1,j] = V[i,j],

where in the last equality we have used again item (1) of Lemma 5.5.
Therefore, [i, j] is a collinearity in this case.

Assume next that λi = 0. By Lemma 5.3, there are scalars αi+1 and
βi+1 such that vi+1 = αi+1ηi+1 +βi+1vi. We may assume that βi+1 6= 0.
Otherwise vi+1 ∈ 〈〈ηi+1〉〉 and [i+ 1, j] is a collinearity. Thus

λi+1ηi+1 + . . .+ λjηj = vi =
1

βi+1

(vi+1 − αi+1ηi+1) .

In this case

vi+1 = βi+1

[(
λi+1 −

αi+1

βi+1

)
ηi+1 + λi+2ηi+2 + . . .+ λjηj

]
.

and the conclusion follows by the induction hypothesis applied to the
time interval [i+ 1, j] of length p− 1. �

Proposition 5.9. Given a trajectory {(vl, ηl)}l≥0 and i < j ≤ j′ the
following holds.

(1) If [i, j] is a collinearity then [i, j′] is also a collinearity.
(2) If vj ∈ V[i,j−1] and ηj /∈ N[i,j−1], then there is some i < i′ ≤ j

such that [i′, j] is a collinearity.

Proof. Let i < j ≤ j′.

(1) Assume V[i,j] = N[i,j]. Then by Lemma 5.5,

V[i,j′] = 〈〈vi〉〉+N[i+1,j] +N[j+1,j′] = N[i,j] +N[j+1,j′] = N[i,j′].

(2) Assume now vj ∈ V[i,j−1]. By Lemma 5.3,

ηj =
1

αj
(vj − βjvj−1) ,

where αj 6= 0. Thus ηj ∈ V[i,j−1]. By Lemma 5.5 we can write
ηj = λivi + u for some u ∈ N[i+1,j−1]. By assumption, λi 6= 0.
Thus vi ∈ N[i+1,j]. Again by Lemma 5.3, we conclude that
vi+1 ∈ N[i+1,j]. Now the claim follows by Proposition 5.8.

�

Corollary 5.10. Given a trajectory {(vl, ηl)}l≥0, let [i, k] be a time
segment that contains no subinterval which is a collinearity. Then for
every j ∈ [i, k] either

(1) ηj ∈ {ηi+1, . . . , ηj−1}, or else
(2) vj /∈ V[i,j−1].

Proof. This corollary is a reformulation of item (2) of Proposition 5.9.
�
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5.4. Quantifying collinearities. We are now going to prove quanti-
fied versions of Propositions 5.8, 5.9 and Corollary 5.10. The following
abstract continuity lemma will be useful.

Lemma 5.11. Let X be a compact topological space and f, g : X → R
be continuous functions such that g(x) = 0 for all x ∈ X with f(x) = 0.
Given δ > 0 there is δ′ > 0 such that for all x ∈ X, if f(x) < δ′ then
g(x) < δ.

Proof. Assume, to get a contradiction, that the claimed statement does
not hold. Then there is δ > 0 such that for all n ∈ N there is a point
xn ∈ X with f(xn) < 1

n
and g(xn) ≥ δ. Since X is compact, by taking

a subsequence we can assume xn → x in X. By continuity of f and g,
f(x) = 0 and g(x) ≥ δ, which contradicts the lemma hypothesis. �

Definition 5.5. Given δ > 0, we call δ-collinearity of a trajectory
{(vl, ηl)}l to any time interval [i, j] such that dimV[i,j] = dimN[i,j] and

∠
(
V[i,j], N[i,j]

)
< δ .

Proposition 5.12. Given δ > 0 there exists δ′ > 0 such that for any
trajectory {(vl, ηl)}l the following holds. If

∠
(
vi, N[i,j]

)
< δ′

for some 0 ≤ i ≤ j, then there exists i′ ∈ [i, j] for which the time
interval [i′, j] is a δ-collinearity of the given trajectory.

Proof. Notice that, because the space of trajectories T is shift invariant,
there is no loss of generality in assuming that [i, j] = [0, p]. Define the
functions fk, gk : T → R by

fk ({(vl, ηl)}l) = ∠
(
v0, N[0,k]

)
,

gk ({(vl, ηl)}l) = min
0≤i≤k

∠
(
V[i,k], N[i,k]

)
.

These functions are clearly continuous.
Proposition 5.8 shows that for all x ∈ T and 0 ≤ k ≤ p, fk (x) = 0

implies gk (x) = 0. Thus, given δ > 0, by Lemma 5.11, there exists
δ′ > 0 such that for any 0 ≤ k ≤ p and x ∈ T,

fk (x) < δ′ ⇒ gk (x) < δ .

�

Proposition 5.13. Given any trajectory {(vl, ηl)}l, i < j ≤ j′ and
δ > 0 the following holds.

(1) If [i, j] is a δ-collinearity, then [i, j′] is a δ′-collinearity, where
δ′ = arcsin( sin δ

sin ε
).

(2) There exists δ′ > 0 such that, if

∠(vj, V[i,j−1]) < δ′

and ηj /∈ N[i,j−1], then there is some i < i′ ≤ j such that [i′, j]
is a δ-collinearity.
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Proof. (1) Denote by H the linear space spanned by the ‘new’ nor-
mals ηl in the range j < l ≤ j′, i.e., normals which are not in
{ηi, . . . , ηj}. By definition of H we have,

V[i,j′] = V[i,j] +H ,

N[i,j′] = N[i,j] +H .

Hence by Lemma 2.1, if [i, j] is a δ-collinearity,

sin∠
(
V[i,j′], N[i,j′]

)
≤ 1

sin ε
sin∠

(
V[i,j], N[i,j]

)
≤ sin δ

sin ε
= sin δ′,

which proves that [i, j′] is a δ′-collinearity.
(2) As in the proof of Proposition 5.12, there is no loss of generality

in assuming that [i, j] = [0, p]. Define the functions fk, gk : T →
R by

fk ({(vl, ηl)}l) = ∠
(
vk, V[0,k−1]

)
,

gk ({(vl, ηl)}l) = min
1≤i≤k

∠
(
V[i,k], N[i,k]

)
.

These functions are clearly continuous.
Item (2) of Proposition 5.9 shows that for every x = {(vl, ηl)l} ∈

T and for every 1 ≤ k ≤ p for which ηk /∈ N[0,k−1], fk (x) = 0
implies gk (x) = 0. Thus, given δ > 0, by Lemma 5.11, there
exists δ′ > 0 such that for every x = {(vl, ηl)l} ∈ T and for
every 1 ≤ k ≤ p for which ηk /∈ N[0,k−1],

fk (x) < δ′ ⇒ gk (x) < δ .

�

Corollary 5.14. Given δ > 0 there is δ′ > 0 such that the following
dichotomy holds. Let [i + 1, j] be a time segment of a trajectory that
contains no subinterval which is a δ-collinearity of that trajectory. Then
for every l ∈ [i+ 1, j] either

(1) ηl ∈ {ηi+1, . . . , ηl−1}, or else
(2) ∠(vl, V[i,l−1]) ≥ δ′.

Proof. This corollary is a reformulation of Proposition 5.13 (2). �

5.5. The expansivity argument. In this subsection we relate collinear-
ities with expansion of the velocity tangent flow, and then prove The-
orem 5.6.

Recall that we are assuming that P is ε-spanning.

Proposition 5.15. There exists σ > 1, depending only on d, f and ε,
such that given a collinearity [i, j0] of some trajectory, for all j > j0, the
velocity flow L[i,j] is a relative σ-expansion on v⊥i ∩V[i,j] w.r.t. v⊥i ∩V[i,j0].
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Proof. Assume {(vl, ηl)}l is a trajectory with collinearity [i, j0]. Be-
cause P is ε-spanning, for all j > j0 such that ηj /∈ N[i,j−1] we have
∠(ηj, N[i,j−1]) ≥ ε.

Notice that V[i,j−1] = N[i,j−1], for all j > j0, and by Lemma 5.3,
we have vj = αjηj + βjvj−1 with αj ≥ cos(π

2
λ(f)) > 0. Hence, by

Lemma 2.1 there is some 0 < ε′ < ε depending on ε and on λ(f), such
that for all j > j0 with ηj /∈ N[i,j−1],

∠(vj, V[i,j−1]) ≥ ε′ .

By Lemma 5.1, the linear map Lvj−1,ηj : v⊥j−1 → v⊥j adds expansion
in some new direction. Two features are important to retain here:

(1) By Lemmas 5.1 and 5.3, the expansion rate in this new direction
is given by ∣∣∣∣ 〈vj, ηj〉〈vj−1, ηj〉

∣∣∣∣ =
cos f(θ)

cos θ

where the angle θ = ∠(vj−1, ηj) is at least ε. This shows that
this expansion rate is bounded away from 1.

(2) The new expanding direction makes an angle bounded away
from 0 (at least ε′) with previous velocity front V[i,j−1].

Together these two facts show that Lvj−1,ηj : v⊥j−1 → v⊥j is a relative uni-

form expansion of v⊥i ∩V[i,j] w.r.t. v⊥i ∩V[i,j−1]. The general conclusion
for the composite map L[i,j] follows easily by induction. �

Corollary 5.16. Given the constant σ > 1 in Proposition 5.15, and
1 < σ′ < σ, there is δ > 0 such that for every trajectory {(vl, ηl)}l, if
[i, j0] is a δ-collinearity then for all j > j0, the velocity flow L[i,j] is a
relative σ′-expansion on v⊥i ∩ V[i,j] w.r.t. v⊥i ∩ V[i,j0].

Proof. This follows from Proposition 5.15 with a continuity argument
like the one used in the proof of Proposition 5.12. �

Proposition 5.17. Given δ > 0 there exists σ > 1, depending on
depending on d, f , ε and δ, such that if a time interval [i + 1, j] of
some trajectory contains no subinterval which is a δ-collinearity then
L[i,j] is a σ-expansion on v⊥i ∩ V[i,j].

Proof. Let [i, j] be a time interval such that [i+1, j] contains no subin-
terval which is itself a δ-collinearity. By Corollary 5.14, there is δ′ > 0
such that for every l ∈ [i+ 1, j] either ηl ∈ {ηi+1, . . . , ηl−1}, or else

∠(vl, V[i,l−1]) ≥ δ′ .

Therefore, using Lemma 5.1, we see by induction that L[i,j] is a uniform
expansion on v⊥i ∩ V[i,j]. �
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Proof of Theorem 5.6. Take the constant σ > 1 given in Proposition 5.15.
Set σ′ = 1

2
+ 1

2
σ ∈]1, σ[, and pick δ = δ(σ′) > 0 as provided by Corol-

lary 5.16. Fix the constant σ′′ = σ(δ) > 1 given by Proposition 5.17
and set σ0 = min{σ′, σ′′}.

Let {(vj, ηj)}j∈Z be a trajectory. We consider three cases:

If [0, k] contains no δ-collinearity, by Proposition 5.17 L[0,k] is a σ′′-
expansion on v⊥0 ∩V[0,k]. But since any trajectory is generating on [0, k],
we have v⊥0 = v⊥0 ∩ V[0,k], which proves that L[0,k] is a σ′′-expansion.
Finally, because L[k,2k] is non contracting, L[0,2k] = L[k,2k] ◦L[0,k] is also
a σ′′-expansion.

If [0, k] contains a δ-collinearity [i, j] ⊆ [0, k], we can assume it is min-
imal, in the sense that [i, j] contains no proper subinterval which is itself
a δ-collinearity. Consider first the case j ≥ i+ 1. By Proposition 5.17,
L[i,j] is a σ′′-expansion on v⊥i ∩ V[i,j]. Because L[i,2k] = L[j,2k] ◦ L[i,j],
and L[j,2k] is non contracting, the map L[i,2k] is also a σ′′-expansion on
v⊥i ∩ V[i,j]. Remark that since i ≤ k, the trajectory is generating on
[i, 2k], and hence v⊥i = v⊥i ∩ V[i,2k]. Hence by Proposition 5.16, L[i,2k]

is a relative σ′-expansion on v⊥i w.r.t. v⊥i ∩ V[i,j]. Thus by Lemma 5.2,
L[i,2k] is a σ0-expansion, which implies so is L[0,2k].

Finally we consider the case [0, k] contains δ-collinearities, but the
minimal ones have length zero, say {i} ⊂ [0, k] is a δ-collinearity. In
this case we have ∠(vi, ηi) < δ, and the proof is somehow simpler. By
Lemma 2.1

∠(V[i,j−1], N[i,j−1]) = ∠(〈〈vi〉〉+N[i+1,j−1], 〈〈ηi〉〉+N[i+1,j−1])

≤ arcsin

(
sin δ

sin ε

)
=: δ̂ .

On the other hand, because vj = αj ηj + βj vj−1 with αj ≥ c and
c = cos(π

2
λ(f)), whenever ηj /∈ {ηi, . . . , ηj−1} we have

∠(vj, V[i,j−1]) ≥
c

2
∠(ηj, V[i,j−1])

≥ c

2
∠(ηj, N[i,j−1])−

c δ̂

2

≥ c

2
(ε− δ̂) ≥ c ε

4
,

provided δ is small enough. Thus, using Lemma 5.1 we get by induction
that L[i,i+k] is a uniform expansion, and as before that L[0,2k] is also a
uniform expansion.

Therefore, L[0,2k] is a σ0-expansion in all cases. �

6. Proof of the Main Statements

Denote by Φ : D → D the billiard map for the polytope P and the
contracting reflection law f .
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Proof of Theorem 2.6. Let x = (p, v) ∈ D be any k-generating point.
We can identify the tangent space TxM with v⊥× v⊥ using the Jacobi
coordinates. From the proof of Proposition 2.5 we know that Eu(x) =
{(J, J ′) ∈ v⊥ × v⊥ : J ′ = 0}. Moreover, by Theorem 5.6, there exists
σ > 1 depending only on P and f such that

‖DΦ2k(x)(J, 0)‖ = ‖L[0,2k](J)‖ ≥ σ‖J‖, ∀ J ∈ v⊥.

This uniform minimum growth expansion on Eu proves the theorem.
�

Proof of Theorem 2.7 . Assume that
∫
T dµ < +∞. Consider the par-

tition {An = T−1{n}}n∈N of D, and define the measurable function
T̃ : D → N, T̃ = n on A′n := Φ(An). This function satisfies

T
(

Φ−T̃ (x)(x)
)

= T̃ (x) for all x ∈ D .

Moreover
∫
T̃ dµ =

∫
T dµ < +∞. From Theorem 2.6 we have∥∥∥DΦ−2 T̃ (x)

x |Eu
∥∥∥ ≤ σ−1 for all x ∈ D .

Define recursively the following sequence of backward iterates and stop-
ping times {

x0 = x

t0 = 2 T̃ (x0)

{
xj+1 = Φ−tj(xj)

tj+1 = 2 T̃ (xj+1)
.

Let us write τn =
∑n−1

j=0 tj. Since tj ≥ 2 d for all j, this sequence tends
to +∞, and we have

− 1

τn
log
∥∥DΦ−τnx |Eu

∥∥ ≥ − 1∑n−1
j=0 tj

n−1∑
j=0

log
∥∥∥DΦ−tjxj

|Eu
∥∥∥

≥ − n∑n−1
j=0 tj

log σ−1 =
log σ

1
n

∑n−1
j=0 T̃ (xj−1)

.

Thus, by Birkhoff’s ergodic theorem, for µ-almost every x ∈ D,

lim sup
n→+∞

− 1

n
log
∥∥DΦ−nx |Eu

∥∥ ≥ log σ∫
T̃ dµ

> 0 .

By Kingman’s ergodic theorem, the above lim sup is actually a limit,
and applying Fatou’s lemma,

lim
n→+∞

∫
− 1

n
log
∥∥DΦ−nx |Eu

∥∥ dµ ≥ log σ∫
T̃ dµ

> 0 .

This proves that µ is a hyperbolic measure. �
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Proof of Theorem 2.8 . By Proposition 2.5, Φ is uniformly partially hy-
perbolic on Λ. Moreover, it follows from Theorem 2.6 that there exists
a constant C > 0 depending only on P and f such that

‖DΦ−nf,P |Eu(x)‖ ≤ C

(
1

σ

) n
2k

for every x ∈ Λ that is k-generating. Since the escaping time function T
is bounded on Λ, every x ∈ Λ is τ -generating where τ := supx∈Λ T (x).
So the expansion rate can be made uniform and equal to σ1/τ > 1.
This shows that Φ is uniformly hyperbolic on Λ. �

Proof of Corollary 2.9. Use Theorem 2.8 and Corollary 4.5. �

Proof of Corollary 2.10. Use Theorem 2.8 and Corollary 4.6. �

7. Examples

In this section we provide some examples of uniformly hyperbolic
polytopal billiards with contracting reflection laws. The examples are
3-dimensional simplexes in R4. We denote by ∆3

h the convex hull of the
vertexes e1, e2, e3, e = (e1 + e2 + e3)/3 +he4, where the vectors ei stand
for the canonical basis of R4. For any set of three faces of ∆3

h, their
normals are linearly independent. Therefore, ∆3

h is in general position
(see Definition 3.1) and it is spanning (see Definition 2.3). First it will
be shown that:

Theorem 7.1. For every h > 0 and every contracting reflection law f
satisfying λ(f) > λ0(h) the billiard map Φf,∆3

h
is uniformly hyperbolic,

where λ0(h) is given by
−4/π arcsin

(
3h/
√

12
√

6h2 + 1 + 45h2 + 12
)

+ 1 for h ≤ 2/
√

3,

−4/π arcsin
(
1/
√

6h2 + 1
)

+ 1 for h > 2/
√

3.

Proof. This theorem follows from Theorem 2.8 and Theorem 4.4. For
that the barycentric angles for φ(∆3

h) is needed to be compute. Note
that there are two distinct barycentric angles: one associated to the
polyhedral cone at the vertex e and other one associated to the poly-
hedral cone at the each of other vertexes.

Let ni be the normal to the face with vertexes {e, e1, e2, e3} \ {ei}
for i ∈ {1, 2, 3}, and n be the normal to the base of the pyramid with
vertexes {e1, e2, e3}. Then, the normals are

ni =
1√

6h2 + 1
(−2hei + h

∑
j 6=i

ej + e4) and n = −e4.

Define w1 and w2 to be respectively the orthogonal vector to the hy-
perplane

∏
1 determined by vectors ni’s and the orthogonal vector to

the hyperplane
∏

2 determined by the vectors n and ni’s with i 6= 1.
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Note that the hyperplanes are considered in the orthogonal complement
subspace of the vector (1, 1, 1, 0). It can be seen that

w1 = e4 and w2 = (−2, 1, 1,
3h√

6h2 + 1 + 1
).

The barycentric angles (see Definition 4.1) are the arcsin of the dis-
tance of the hyperplanes

∏
1 and

∏
2 from the origin, i.e.,

φ1 = arcsin(|〈w1, n2〉|/‖w1‖) = 1/
√

6h2 + 1,

φ2 = arcsin(|〈w2, n2〉|/‖w2‖) = 3h/

√
12
√

6h2 + 1 + 45h2 + 12.

Now, by Theorem 4.4, if 2φi > π/2 − f(π/2) > π/2 − λπ/2 for
i = 1, 2 then the polyhedral cones have bounded escaping time. This
is the case when λ > 1− 4 min{φ1, φ2}/π. Thus, by Theorem 2.8, it is
enough to take λ0 = 1− 4 min{φ1, φ2}/π. �

Remark 7.2. Figure 3(a) shows the region where the parameter λ
can be chosen. We can do same calculation for polytopal billiard with
dimension grater than three. As dimension increases the region for
appropriate λ gets smaller and smaller, see Figure 3(b).

plot(-4* arcsin (1/ sqrt (2/3*(( sqrt (6*h^2 + 1) + 1)/h)^2 + 1))/pi + 1,(h\
,0,2/ sqrt (3)),fill =1)+plot(-4* arcsin (1/ sqrt (6*h^2 + 1))/pi + 1,(h,2/\
sqrt (3) ,5),fill =1)

solve([ arcsin (1/ sqrt (6*h^2 + 1)) == arcsin (1/ sqrt (2/3*( sqrt (6*h^2 + 1) + \
1)*(sqrt (6*h^2 + 1) + 1)/h^2 + 1))],h)

[arcsin(1/sqrt(6*h^2 + 1)) == arcsin(3*sqrt(1/3)/sqrt((15*h^2 + 4*sqrt(6*h^2 + 1) +
4)/h^2))]

solve ([1 -4* arcsin(d42)/pi==1 -4* arcsin(d41)/pi],h)

4

(a)
solve([ arcsin (1/ sqrt (6*h^2 + 1)) == arcsin (1/ sqrt (2/3*( sqrt (6*h^2 + 1) + \

1)*(sqrt (6*h^2 + 1) + 1)/h^2 + 1))],h)
[arcsin(1/sqrt(6*h^2 + 1)) == arcsin(3*sqrt(1/3)/sqrt((15*h^2 + 4*sqrt(6*h^2 + 1) +
4)/h^2))]

solve ([1 -4* arcsin(d42)/pi==1 -4* arcsin(d41)/pi],h)
[arcsin(1/sqrt(12*h^2 + 1)) == arcsin(2*sqrt(1/2)/sqrt((20*h^2 + 3*sqrt(12*h^2 + 1) +
3)/h^2))]

solve ([1 -4* arcsin(d52)/pi==1 -4* arcsin(d51)/pi],h)
[arcsin(1/sqrt(20*h^2 + 1)) == arcsin(5*sqrt(1/5)/sqrt((85*h^2 + 8*sqrt(20*h^2 + 1) +
8)/h^2))]

4

(b)

Figure 3

Theorem 7.3. For any 0 < h <
√

3
3

there exists a compact set Λ ⊂M
and λ0 = λ0(h) > 0 such that for every contracting reflection law f
satisfying λ(f) < λ0(h),

(1) D ⊂ Φf,∆3
h
(Λ ∩M ′) ⊂ Λ,

(2) The orbit of every point in M+ eventually enters Λ.
(3) the billiard map Φf,∆3

h
is uniformly hyperbolic.

Proof. For simplicity, we omit the subindex ∆3
h in Φf,∆3

h
. First, let

assume that λ(f) = 0, that is the bounce on each face will be along
the normal direction. Since after the first iterate of the billiard map
the angle is zero, we can take the billiard map as a map from ∆3

h to
itself and simply denote it by Φ. We show that there is an invariant
set on the base of the pyramid under two iterates of the billiard map,
i.e., Φ2. The base of the pyramid is the triangle A1A2A3. Let C0
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denote the center of A1A2A3, i.e., the point mapped by Φ to the top
vertex of the pyramid. Then, the base triangle is partitioned in to three
triangle with vertexes Ai, Ai+1, C0(mod4). Since Φ(C0) is at the meet
of three faces, it has three distinct images by Φ. By simple calculation,

it can be seen that when h <
√

3
3

, then these images belong to the base
of the pyramid and we denote them by C1, C2 and C3. The image
of the triangle AiAi+1C0 under Φ2 is the triangle AiAi+1Ci+2(mod4).
Therefore Φ2 maps the triangle A1A2A3 to itself.

We claim that the polygon H = M1M2M3M4M5M6 is a trapping
region for Φ2, see left triangle in Figure 4. This hexagon is constructed
as follows. The point M1 is the intersection of A1C2 with the perpen-
dicular to A1C0 through C1. Likewise, M2 is the intersection of A2C1

with the perpendicular to A2C0 through C2. The other Mj’s are sim-
ilarly defined. The hexagon H is the union of three pentagons, each
is mapped by Φ to a different face of the pyramid, see the left trian-
gle in Figure 4. Each of these pentagons is mapped by Φ2 into the
hexagon H. On the right triangle of Figure 4 we can see the image
Φ2(P) = C ′0C

′
1M

′
1M

′
2C
′
2 of the pentagon P = C0C1M1M2C2.

Figure 4

Moreover, the intersection of the image Φ2(P) with the boundary of
H is just the point C ′0 = C3. Hence, for some small enough neighbor-
hood if V of H in the triangle A1A2A3 we have Φ2(V) ⊂ V. Therefore,
if λ(f) ≤ λ0 with λ0 = λ0(h) small enough (λ0 tends to zero as h

gets close to
√

3/3), we also have Φ2
f

(
V× S+

λ0

)
⊂ V × S+

λ0
, where

S+
λ0

= {v ∈ S : 〈v, e4〉 > cos(λ0π/2) and v ⊥ (1, 1, 1, 0)}. Let

Λ = V× S+
λ0
∪ Φf

(
V× S+

λ0

)
.

Obviously, Λ satisfies the statement (1). Remember that we always
exclude the point that is not forward iterate defined. Moreover, Λ is
a basin of attraction: every point in M+ eventually enters Λ. This
holds since V is a basin of attraction for Φ2. To see this fact, note that
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every point in triangle T = A1A2C0 eventually enters the pentagon P

or when for the first time it is out of T, it is either in H or in one of the
triangles A1C1M6 or A2C2M3. In latter case, the point with a zigzag
motion in the triangle A1M1M6 or A2M2M3 eventually enters H. At
the end, the escaping time T (x) for x ∈ Λ is uniformly bounded. The
uniform boundedness of the escaping time is a result of this observation
that for some n the set Pn = Φ2(Pn−1 ∩ T) is empty, where P0 = P.
Then, the orbit segment x,Φ(x),Φ2(x), . . . ,Φ2n(x),Φ2n+1(x) contains
in three different faces of ∆3

h. Therefore, the statement (3) is obtained
by Theorem 2.8.

�
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