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Abstract

The dual risk model assumes that the surplus of a company decreases at a constant
rate over time, and grows by means of upward jumps which occur at random times and at
random sizes. In the present work, we study the dual risk renewal model when the waiting
times are Phase–Type distributed. Using the roots of the fundamental and the genera-
lized Lundberg’s equations, we get expressions for the ruin probability and the Laplace
transform of the time of ruin for an arbitrary single gain distribution. Furthermore, we
calculate the expected discounted dividends when the individual common gains follow a
Phase–Type distribution.

Keywords: Dual risk model; Phase–Type distribution; generalized Lundberg’s equa-
tion; ruin probability; time of ruin; expected discounted dividends.

1 Introduction

We consider the dual risk model where the surplus or equity of the company is commonly
described by the equation

U(t) = u− ct+ S(t), t ≥ 0, u ≥ 0, where S(t) =

N(t)∑
i=0

Xi

is the aggregate gain process.

Here, u ≥ 0 is the initial surplus, c is the constant rate at which the cost are paid,
{Xi}∞i=0 denote the sequence of random gains and N(t) is the random number of gains occur-
ring before time t. The model is called dual as opposed to the well known Cramér–Lundberg
risk model, which consists of constant premiums instead of constant costs, and a sequence of
claims rather than a sequence of gains.

We denote by Wi the waiting time between gains Xi−1 and Xi. We assume that the
sequences {Xi}∞i=0 and {Wi}∞i=0 are i.i.d. and independent from one another. Let P (x) de-
note the cumulative distribution function of the sequence of gains {Xi}∞i=0, p(x) the density
and p̂(s) its Laplace transform. We assume the existence of µ1 = E[X1], and the net profit
condition, i.e. cE(W1) < E(X1) = µ1. These condition means that on average gains are
greater than expenses, per unit time.
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The dual risk model has an increasing interest in ruin theory since recent times. There
are many possible interpretations for the model. We can look at the surplus as the amount
of capital of a business engaged in research and development, where gains are random, at
random instants, and costs are certain. More precisely, the company pays expenses which
occur continuously along time for the research activity, gets occasional revenues according to
an Erlang(n) distribution and of size driven by distribution P (·). Revenues can be interpreted
as values of future gains from an invention or discovery, the decrease of surplus can represent
costs of production, payments to employees, maintenance of equipment, etc.

Among pioneer works on the subject we can cite Cramér (1955), Takács (1967), Seal
(1969), Bühlman (1970) and Gerber (1979). Recent works include those by Avanzi et al.
(2007), Albrecher et al. (2008), Avanzi and Gerber (2008), Bayraktar and Egami (2008),
Cheung and Drekic (2008), Gerber and Smith (2008), Song and Zhang (2008), Yang and Zhu
(2008), Avanzi (2009), Ng (2009), Ng (2010), Cheung (2012), Afonso et al. (2013), Rodŕıguez-
Mart́ınez et al. (2013) and Sendova (2014).

Many published works, particularly those concerning the dual model, deal with the com-
pound Poisson, or Erlang(1), dual model and the computation of discounted dividends. We
particularly reference the work by Avanzi et al. (2007) that explains well where applications
of the dual model are said to be appropriate. On this matter Bayraktar and Egami (2008)
used it to model capital investments. On dividend and optimal strategies we underline the
works by Avanzi et al. (2007), Avanzi and Gerber (2008) and Avanzi (2009). The latter is
an excellent review paper, see also references therein. Among other works considering more
general distributions, we can mention Rodŕıguez-Mart́ınez et al. (2013) and Sendova (2014),
who studied ruin probabilities and dividend problems for a dual risk model with Erlang and
generalized Erlang distributed waiting times, respectively. We also underline the work by
Afonso et al. (2013) who, among other problems, give a different view of the dividend prob-
lem calculation, by taking advantage of the relationship between the Cramér–Lundberg and
the dual models.

As we said, the works particularly focusing the dual model and the discounted dividends
problem mostly assume that the waiting times follow an exponential, Erlang or generalized
Erlang distribution. In this paper, we study the dual risk model when the waiting times Wi

are Phase–Type distributed, generalizing the work of Rodŕıguez-Mart́ınez et al. (2013) and
extending the results presented in Bergel and Eǵıdio dos Reis (2014), the latter of which was
based on the Cramér–Lundberg risk model.

In the next Section 2 we briefly introduce the Phase – Type distribution and the notation
we use further in the paper. In Section 3 we study the fundamental and the generalized
Lundberg’s equations and the role of its solutions. In Section 4 we get expressions for the
ruin probability and the Laplace transform of the time of ruin for an arbitrary individual
gain distribution. We give some illustration examples. Finally, in section 5 we work on the
problem of calculating the expected discounted dividends when the individual common gains
Xi follow a Phase–Type distribution. We present some numerical illustrations.
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2 The Phase – Type distribution

Phase–type distributions are the computational vehicle of much of modern applied proba-
bility. Typically, if a problem can be solved explicitly when the relevant distributions are
exponentials, then the problem may admit an algorithmic solution involving a reasonable
degree of computational effort, if one allows for the more general assumption of phase–type
structure, and not in other cases. A proper knowledge of phase–type distributions seems
therefore a must for anyone working in an applied probability area like risk theory.

We say that a distribution K on (0,∞) is Phase–Type(n) if K is the distribution of the
lifetime of a terminating continuous time Markov process {J(t)}t≥0 with finitely many states
and time homogeneous transition rates. More precisely, we define a terminating Markov
process {J(t)}t≥0 with state space E = {1, 2, . . . , n} and intensity matrix B (n × n) as the
restriction to E of a Markov process {J̄(t)}0≤t<∞ on E0 = E ∪ {0} where 0 is some extra
state which is absorbing, that is, Pr(J̄(t) = 0|J̄(0) = i) = 1 for all i ∈ E and where all states
i ∈ E are transient. This implies in particular that the intensity matrix for {J̄(t)} can be
written in block–partitioned form as (

B bT

0 0

)
(2.1)

The 1 × n vector b = (b1, . . . , bn) is the exit rate vector, i. e., the i–th component bi gives
the intensity in state i for leaving E and going to the absorbing state 0.

Note that since (2.1) is the intensity matrix of a non–terminating Markov process, the rows
sums to zero which in matrix notation can be written as bT+B1T = 0 where 1 = (1, 1, . . . , 1)
is the column vector with all components equal to one. In particular we have

bT = −B1T

The intensity matrix B is denoted by B = (bi,j)
n
i,j=1. This matrix satisfies the conditions:

bi,i < 0, bi,j ≥ 0 for i 6= j, and
∑n

j=1 bi,j ≤ 0 for i = 1, . . . , n.

The vector of entry probabilities is given by α = (α1, α2, . . . , αn) with αi ≥ 0 for i = 1, . . . , n,
and

∑n
i=1 αi = 1, so Pr(J̄(0) = i) = αi.

We list the most important properties of K.

Density k(t) = αeBtbT, t ≥ 0,

C.D.F K(t) = 1−αeBt1T, t ≥ 0,

Laplace T. k̂(s) = α(sI−B)−1bT, (2.2)

Mean E[W1] = −αB−11T,

k(j)(0) = αBjbT, j ≥ 0,

where I is the n× n identity matrix.
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From this point we denote by K(t) the Phase–Type(n) distribution of the waiting times
Wi, and we call our model the Phase–Type(n) dual risk model. Before we continue to the
next section, it is important to notice that can write the corresponding net profit condition
cE(W1) < E(X1) = µ1 in the following way

−cαB−11T < µ1. (2.3)

3 The Lundberg’s equations

In this section we study the Lundberg’s equations

E
[
e−s(X1−cW1)

]
= 1, E

[
e−δW1e−s(X1−cW1)

]
= 1, s ∈ C, δ > 0, (3.1)

(see e.g. Landriault and Willmot (2008) or Rodŕıguez-Mart́ınez et al. (2013).)
As we can see from the works of Gerber and Shiu (2005) and Ren (2007), these equations
can be expressed in the form

k̂(−cs)p̂(s) = 1, k̂(δ − cs)p̂(s) = 1, respectively, (3.2)

A very important result we will use in the rest of our paper is the following

Remark 3.1. For a Phase–Type(n) dual risk model the Lundberg’s equations have exactly n
roots with positive real parts, see Albrecher and Boxma (2005). Denote them by ρ1, · · · , ρn.

The roots of the Lundberg’s equations play an important role in the calculation of many
quantities that are fundamental in risk and ruin theory. Namely, the ultimate and finite time
ruin probabilities, the Laplace transform of the ruin time, the expected discounted future
dividends, among others. All those calculations depend on the nature of the roots of the
Lundberg’s equation, particularly its roots with positive real parts. A study on the multi-
plicities of these roots can be found in Bergel and Eǵıdio dos Reis (2014).

Notice that in order to solve equations (3.2) numerically we need to determine a rational
expression for the Laplace transform k̂(δ − cs). Since

k̂(δ − cs) = α((δ − cs)I−B)−1bT,

the main difficulty is to compute the inverse matrix ((δ − cs)I−B)−1. Before we go further
we give some definitions from linear algebra.

Definition 3.1. Let A = (ai,j)
n
i,j=1 be a n× n matrix.

Define, for 1 ≤ i1 < i2 < . . . < ik ≤ n

Mi1,i2...ik =


ai1,i1 ai1,i2 . . . ai1,ik
ai2,i1 ai2,i2 . . . ai2,ik

...
...

. . .
...

aik,i1 aik,i2 . . . aik,ik

, 1 ≤ k ≤ n,
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then
trk(A) =

∑
1≤i1<i2<...<ik≤n

det(Mi1,i2...ik).

We call trk(A) the k-generalized trace of the matrix A. In particular tr1(A) = trace(A) and
trn(A) = det(A).

Using this definition enables us to express the characteristic polynomial of the matrix B as:

det(sI−B) =
n∑
i=0

(−1)n−itrn−i(B)si.

Moreover, the inverse matrix (sI−B)−1 can be obtained as follows:

Theorem 3.1. The inverse matrix (sI−B)−1 has the expression

(sI−B)−1 =
N(s,B)

det(sI−B)
,

where the matrix N(s,B) takes the form

N(s,B) =
n−1∑
i=0

n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

 si.

Proof. See appendix.

From the Theorem (3.1) we get the rational expression for the Lundberg’s equations (3.2).
The generalized Lundberg’s equation for the Phase–Type(n) dual risk model becomes

1

k̂(δ − cs)
=
det((δ − cs)I−B)

αN(δ − cs,B)bT
= p̂(s), (3.3)

and we obtain the corresponding fundamental Lundberg’s equation by setting δ = 0 in
equation (3.3)

1

k̂(−cs)
=
det((−cs)I−B)

αN(−cs,B)bT
= p̂(s). (3.4)

Although the new expressions for the Lundberg’s equations found in (3.3) and (3.4) are
already in rational form, they are not adequate for our purposes. The reason for this will
be clear in the following section when we will calculate ruin probabilities using integro–
differential equations.
Therefore, we have rewritten the generalized Lundberg’s equation in the form

Bδ(−s) = qδ(−s)p̂(s), s ∈ C, (3.5)

where B and q are polynomials in s given by

Bδ(s) =
det(B− δI− csI)

det(B)
=

n∑
i=0

Bi

(
s+

δ

c

)i
,
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and

qδ(s) =
n−1∑
j=0

B̃j

(
s+

δ

c

)j
.

The equivalent fundamental Lundberg’s equation (for δ = 0) is

B(−s) = q(−s)p̂(s), s ∈ C. (3.6)

The coefficients Bi and B̃j of the polynomials B and q, respectively, are given by the following
expressions

Bi = (−c)i trn−i(B)

det(B)
, B̃j =

n∑
i=j+1

Bi

(
1

c

)i−j
k(i−1−j)(0).

Theorem 3.2. The expressions (3.3) and (3.5) are equivalent forms of the generalized Lund-
berg’s equation. Analogously, expressions (3.4) and (3.6) both represent the fundamental
Lundberg’s equation.

Proof. The proof is simple and follows by rearranging and comparing the coefficients of the
above mentioned versions of the Lundberg’s equations. Namely, it is easy to prove that

det((δ − cs)I−B)

αN(δ − cs,B)bT
=
Bδ(−s)
qδ(−s)

.

4 The time of ruin and its Laplace transform

In this section we study the ruin probability and the Laplace transform of the time of ruin
in the Phase–Type(n) dual risk model. Let

τu =

{
min{t > 0 : U(t) = 0 | U(0) = u}
∞ if U(t) ≥ 0 ∀t ≥ 0

be the time to ruin, ψ(u) = P (τu <∞) be the ultimate ruin probability and

ψ(u, δ) = E[e−δτuI(τu <∞) | U(0) = u]

be the Laplace transform of the time to ruin, where δ > 0 and I(.) is the indicator function.
This Laplace transform can be interpreted as the expected value of one monetary unit received
at the time of ruin discounted at the constant force of interest δ.

4.1 The ruin probability

The ruin probability in the dual risk model with exponential waiting times (k(t) = λe−λt),
satisfies the following renewal equation

ψ(u) = e−λt0 +

∫ t0

0
λe−λt

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt,
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where t0 = u
c is the time of ruin if no gain arrives. See e.g. Afonso et al.(2013).

Differentiation with respect to u gives an integro–differential equation for ψ(u)

ψ(u) +
( c
λ

) d

du
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx.

We can write this equation as(
I +

( c
λ

)
D
)
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx,

where I is the identity operator and D is the differentiation operator, D = d/du.

In the exponential case, Gerber (1979) found that ψ(u) = e−ρu, where ρ is the unique positive
root of the Fundamental Lundberg’s equation for n = 1.

For the Phase–Type(n) dual risk model the renewal equation becomes

ψ(u) = 1−K
(u
c

)
+

∫ u
c

0
k(t)

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt, (4.1)

and the analogous integro–differential equation is given in the following theorem:

Theorem 4.1. The ruin probability ψ(u) satisfies the following integro–differential equation

B(D)ψ(u) = q(D)W (u), (4.2)

where W (u) =
∫∞
0 p(x)ψ(u+x)dx and B, q are the same polynomials described before for the

fundamental Lundberg’s equation (3.6). The operator D is the differentiation with respect to
u, as before.

The boundary conditions of (4.2) are given by

ψ(0) = 1,

dj

duj
ψ(u)

∣∣∣∣
u=0

= − 1

cj
k(j−1)(0) +

j−1∑
i=0

1

ci+1
k(i)(0)W (j−1−i)(0), (4.3)

j = 1, . . . , n− 1.

Proof. See appendix.

For the Phase–Type(n) dual risk model, we found that the ruin probability can be written
as follows

Theorem 4.2. The ultimate ruin probability ψ(u) can be written in the general form

ψ(u) =
L∑
i=1

βi∑
j=1

aiju
j−1e−ρiu,

where ρ1, . . . , ρL are the only roots of the Fundamental Lundberg’s equation which have
positive real parts, and ρi has multiplicity βi, with

∑L
i=1 βi = n.
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Proof. It is very simple to verify that if ρ is a single root of the fundamental Lundberg’s
equation B(−s) = q(−s)p̂(s) then the function f(u) = e−ρu satisfies the integro–differential
equation B(D)f(u) = q(D)Wf (u), where Wf (u) =

∫∞
0 p(x)f(u+ x)dx.

Moreover, it is also straightforward to show that if ρ is a root of the fundamental Lundberg’s
equation with multiplicity j ≥ 1 then the function f(u) = uj−1e−ρu is solution of the same
integro–differential equation.

Since the functions uj−1e−ρiu, i = 1, . . . , L; j = 1, . . . , βi are linearly independent, any solution
of B(D)f(u) = q(D)Wf (u) can be expressed in the following way

f(u) =
L∑
i=1

βi∑
j=1

biju
j−1e−ρiu, for some constants bij . (4.4)

Then the ruin probability is

ψ(u) =

L∑
i=1

βi∑
j=1

aiju
j−1e−ρiu.

Using the boundary conditions (4.3) we can determine the constants aij that correspond to
ψ(u).

Example: For n = 2, the ruin probability in the Phase–Type(2) model has the expression

ψ(u) =
ρ2 + 1

cαbT(p̂(ρ2)− 1)

ρ2 − ρ1 + 1
cαbT(p̂(ρ2)− p̂(ρ1))

e−ρ1u

−
ρ1 + 1

cαbT(p̂(ρ1)− 1)

ρ2 − ρ1 + 1
cαbT(p̂(ρ2)− p̂(ρ1))

e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of B(−s) = q(−s)p̂(s).

4.2 The Laplace transform of the time of ruin

The Laplace transform of the time of ruin ψ(u, δ) = E(e−δTuI(Tu < ∞)) for the Phase–
Type(n) dual risk model satisfies the renewal equation

ψ(u, δ) =
(

1−K
(u
c

))
e−δ(

u
c ) +

1

c

∫ u

0
k

(
u− s
c

)
e−δ(

u−s
c )
∫ ∞
0

p(x)ψ(s+ x, δ)dx ds.

We can obtain a formula for the Laplace transform of the time of ruin ψ(u, δ) following an
analogous approach to the previous section
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Theorem 4.3. The Laplace transform of the time of ruin ψ(u, δ) satisfies the integro–
differential equation

Bδ(D)ψ(u, δ) = qδ(D)Wδ(u), (4.5)

where Wδ(u) =
∫∞
0 p(x)ψ(u + x, δ)dx and Bδ, qδ are the same polynomials described before

for the generalized Lundberg’s equation (3.5).
The boundary conditions of (4.5) are given by

ψ(0, δ) = 1,

di

dui
ψ(u, δ)

∣∣∣∣
u=0

=

(
−δ
c

)i
−

i−1∑
j=0

1

ci

(
i

j

)
(−δ)jk(i−1−j)(0)

+
i−1∑
j=0

(
i−1−j∑
l=0

1

ci−j

(
i− 1− j

l

)
(−δ)lk(i−1−j−l)(0)

)
W

(j)
δ (0), (4.6)

i = 1, . . . , n− 1.

For the Phase–Type(n) dual risk model, we have found that the Laplace transform of the
time of ruin can be written as follows

ψ(u, δ) =
L∑
i=1

βi∑
j=1

aij,δu
j−1e−ρiu, (4.7)

where ρ1, . . . , ρL are the only roots of the generalized Lundberg’s equation which have pos-
itive real parts, and ρi has multiplicity βi, with

∑L
i=1 βi = n.

Using the boundary conditions (4.6) we can determine the constants aij,δ that correspond to
ψ(u, δ).

Example:
For n = 2, the Laplace transform of the time of ruin in the Phase–Type(2) model has the
expression

ψ(u, δ) =
ρ2 − δ

c + 1
cαbT(p̂(ρ2)− 1)

ρ2 − ρ1 + 1
cαbT(p̂(ρ2)− p̂(ρ1))

e−ρ1u

−
ρ1 − δ

c + 1
cαbT(p̂(ρ1)− 1)

ρ2 − ρ1 + 1
cαbT(p̂(ρ2)− p̂(ρ1))

e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of Bδ(−s) = qδ(−s)p̂(s).

5 Expected Discounted Dividends

On this section we consider a barrier strategy for dividend calculation in terms of a dividend
barrier b. Any time the surplus upcrosses b the excess is paid as dividend. From that payment
instant the process restarts from level b and that repeats whenever it occurs in the future,
until ruin.
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Let {Di}∞i=1 be the sequence of the dividend payments and let D(u, b) be the aggregate
discounted dividends, at force of interest δ and from initial surplus u.

We denote by V (u, b) = E[D(u, b)], the expected value of D(u, b).

Note that

V (u, b) = E[u− b+D(b, b)] = u− b+ V (b, b), u ≥ b. (5.1)

The expected discounted dividends V (u, b) satisfy the renewal equation

V (u, b) =

∫ u
c

0
k(t)e−δt

[∫ b−u+ct

0
V (u− ct+ y, b)p(y)dy+∫ ∞

b−u+ct
Ṽ (u− ct+ y, b)p(y)dy

]
dt, u < b,

with
Ṽ (x, b) = E[D(x, b)] = E[x− b+D(b, b)] = x− b+ V (b, b), x ≥ b.

Differentiating the renewal equation with respect to u we can obtain an integro–differential
equation for V (u, b)

Theorem 5.1. The expected discounted dividends V (u, b) satisfy the integro–differential equa-
tion

Bδ(D)V (u, b) = qδ(D)W (u, b), u < b, (5.2)

where

W (u, b) =

∫ b

u
V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx,

is the integral term.

The boundary conditions of (5.2) are given by

V (0, b) = 0,

di

dui
V (u, b)

∣∣∣∣
u=0

=

i−1∑
j=0

(
i−1−j∑
l=0

1

ci−j

(
i− 1− j

l

)
(−δ)lk(i−1−j−l)(0)

)
W (j)(0, b),

i = 1, . . . , n− 1. (5.3)

Because of the additional information of a barrier level b in V (u, b), we can not solve the
equation

Bδ(D)V (u, b) = qδ(D)W (u, b),

to find an expression for V (u, b) in the same way we did for the ruin probability ψ(u) be-
fore, where we did not need to specify a particular density function p(x) for the gain amounts.
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Instead, we assume that the gain amounts follow a Phase–Type(m) distribution and we use
the annihilator method to find V (u, b).

Following the notation in 2, consider the case when the gains Xi follow a Phase-Type(m)
distribution P (x) with representation (α′,B′,b′).

Let ρ1, . . . , ρn be the roots of the generalized Lundberg’s equation Bδ(−s) = qδ(−s)p̂(s) with
positive real parts, and ρn, . . . , ρn+m the roots with negative real parts.

For simplicity, assume that all those roots are distinct (although this is not the case in gene-
ral).

Because of condition (5.1), we can not write the solutions of (5.2) as a linear combination of
n exponential functions as we did before in the cases of the ruin probability and the Laplace
transform of the time of ruin. We will need instead more than n exponential functions;
the exact number needed will depend on the nature of the distribution of the single gains,
P (x). However, we can apply the annihilator approach known from the theory of ordinary
differential equations to find the appropriate solutions.
We can rewrite W (u, b) as

W (u, b) =

∫ b

u
V (x, b)p(x− u)dx+

∫ ∞
b

(x− b+ V (b, b))p(x− u)dx (5.4)

=

∫ b

u
V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx,

with Ṽ (x, b) = x − b + V (b, b). The idea is to find a linear differential operator that will
annihilate p(x − u) (where the variable is u), so that when we apply this operator to the
integro–differential equation (5.2) we obtain a linear homogeneous differential equation of a
higher degree.
We apply the annihilator operator A(D) = Det(ImD + B′) at both sides of the integro–
differential equation

Bδ(D)V (u, b) = qδ(D)W (u, b),

where Im is the identity m ×m matrix, and we obtain an homogeneous integro–differential
equation of degree m+ n. We look for solutions of this equation of the form

V (u, b) =

n+m∑
l=1

al(b)e
−ρlu, u < b. (5.5)

Using the boundary n conditions (5.3), and the identity

α′

[
n+m∑
k=1

ake
−ρkb

(
(ρkIm −B′)−1B′ + Im

)
−B′

−1
]

= 0. (5.6)

which gives another m conditions, we obtained a system of m + n equations on the m + n
unknowns al(b). Thus, solving this system gives us the exact expression of V (u, b).
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Example: We want to compute V (u, b). Assume that the times between gains are Erlang(2, λ)
distributed and the gain amounts are Erlang(2, β) distributed.

Then the net profit condition is c < λ
β and the generalized Lundberg’s equation becomes

(λ+ β − cs)2(β + s)2 = λ2β2 (5.7)

Let

V (u, b) =
4∑
l=1

al(b)e
−ρlu

The exponents ρl’s are the four roots of (5.7). Assume that ρ1, ρ2 have positive real parts
and ρ3, ρ4 have negative real parts.

The coefficients al’s are obtained using the corresponding boundary conditions V (0, b) =
V ′(0, b) = 0

4∑
l=1

al = 0, and
4∑
l=1

alρl = 0,

and the additional constrains

4∑
l=1

ale
−ρlb ρl

ρl + β
= − 1

β
,

4∑
l=1

ale
−ρlb ρlβ

(ρl + β)2
= − 1

β
,

Set the values for the parameters λ = β = 1, c = 0.75, δ = 0.02. Then ρ1 = 0.423, ρ2 = 1.831,
ρ3 = −0.063 and ρ4 = −1.471.

u\b 3 5 6 7 8 10 15 20

2 3.079 4.107 4.390 4.507 4.489 4.212 3.187 2.333
3 4.533 6.033 6.450 6.621 6.595 6.188 4.682 3.428
5 6.533 8.773 9.374 9.622 9.584 8.993 6.805 4.981

10 11.533 13.773 14.501 14.825 14.770 13.829 10.468 7.663
15 16.533 18.773 19.501 19.825 19.770 18.829 14.478 10.603
20 21.533 23.773 24.501 24.825 24.770 23.829 19.478 14.537

Table 5.1: Values of V (u, b)

5.1 Optimal Dividends

We noticed that for a fixed u the value of V (u, b) increases until a certain value of b and then
decreases.

For a given initial capital u, let b∗ denote the optimal value of the barrier b that maximizes
the expected discounted dividends V (u, b).
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Avanzi et al (2007) shows that for a dual model with exponentially distributed inter-gain
times the value of b∗ is independent of u.
We have observed that the same situation occur for a dual model with Phase–type(n) dis-
tributed inter-gain times and Phase–Type(m) distributed gain amounts. Let b∗ be the value
that maximizes V (u, b).

For a dividend barrier strategy, the optimal level is independent of the initial surplus.

Theorem 5.2. b∗ is independent of the initial surplus u.

Proof. For a given initial surplus u0 ≥ 0 let b∗0 be the optimal barrier level that maximizes
the expected discounted dividends.

This means that V (u0, b) is maximal at b = b∗0 and

∂

∂ b
V (u0, b)

∣∣∣∣
b=b∗0

= 0, for u = u0.

The idea of this proof is to show that

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0, ∀u ≥ 0.

From (5.1), we have

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0 = −1 +
d

d b
V (b, b)

∣∣∣∣
b=b∗0

, ∀u ≥ b∗0,

and we obtain

d

d b
V (b, b)

∣∣∣∣
b=b∗0

= 1.

Since we have V (0, b) ≡ 0 then clearly

∂

∂ b
V (0, b)

∣∣∣∣
b=b∗0

= 0, for u = 0.

It only remains to show that

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0, 0 < u < b∗0.

Previously in Theorem (5.1) we have found that in the Phase – Type(n) dual risk model the
expected discounted dividends V (u, b) satisfy the integro–differential equation

Bδ(D)V (u, b) = qδ(D)W (u, b),

where

W (u, b) =

∫ b

u
V (y, b)p(y − u)dy +

∫ ∞
b

(y − b+ V (b, b))p(y − u)dy,

13



Moreover, assuming that the gain amounts follow another Phase – Type(m) distribution,
with density function p(x) = α′eB

′xb′T, we were able to write an expression of V (u, b) of the
form (5.5)

V (u, b) =
n+m∑
l=1

al(b)e
−ρlu.

Since

∂

∂ b
W (u, b)

∣∣∣∣
b=b∗0

=

∫ b∗0

u

∂

∂ b
V (y, b)

∣∣∣∣
b=b∗0

p(y − u)dy +(
−1 +

d

d b
V (b, b)

∣∣∣∣
b=b∗0

)
︸ ︷︷ ︸

=0

∫ ∞
b∗0

p(y − u)dy

=

∫ b∗0

u

∂

∂ b
V (y, b)

∣∣∣∣
b=b∗0

p(y − u)dy,

then for 0 < u < b∗0 we have

Bδ(D)
∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= qδ(D)
∂

∂ b
W (u, b)

∣∣∣∣
b=b∗0

,

or equivalently

Bδ(D)
∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= qδ(D)

[∫ b∗0

u

∂

∂ b
V (y, b)

∣∣∣∣
b=b∗0

p(y − u)dx

]
, 0 < u < b∗0 (5.8)

When we replace

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

=
n+m∑
l=1

a′l(b
∗
0)e
−ρlu

in (5.8) we obtained an identity of exponential functions in terms of the coefficients a′l(b
∗
0)

which is valid for all u in (0, b∗0), therefore a′l(b
∗
0) = 0 for all l = 1, . . .m+ n.

This proves that

∂

∂ b
V (u, b)

∣∣∣∣
b=b∗0

= 0, 0 < u < b∗0.

Therefore we have proven that the optimal barrier level is independent of u.
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6 Appendix

In this section we prove the theorems that we stated in this manuscript.

Proof of Theorem (3.1)

Proof. We prove that (sI−B)−1(sI−B) = I or, equivalently, that

(sI−B)N(s,B) = det(sI−B)I.

If we denote by

ai =

n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j ,

then

(sI−B)N(s,B) = (sI−B)
n−1∑
i=0

n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

 si

= (sI−B)

n−1∑
i=0

ais
i

= an−1s
n +

n−1∑
i=1

(ai−1 − aiB)si − a0B.

Now we can easily verify that an−1 = I. Since

det(sI−B) =
n∑
i=0

(−1)n−itrn−i(B)si,

we get −a0B = (−1)ndet(B)I and

ai−1 − aiB =

n−i∑
j=0

(−1)jtrj(B)Bn−i−j −

n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

B

= (−1)n−itrn−i(B)I.

Therefore,

(sI−B)N(s,B) = Isn +

n−1∑
i=1

((−1)n−itrn−i(B)I)si + (−1)ndet(B)I

=
n∑
i=0

((−1)n−itrn−i(B)I)si = det(sI−B)I.
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Proof of Theorem (4.1)

Proof. We proceed taking successive derivatives of the ruin probability using the renewal
equation (4.1). Changing the variable, u − ct = s, the renewal equation can be rewritten in
the form

ψ(u) = 1−K
(u
c

)
+

1

c

∫ u

0
k

(
u− s
c

)
W (s)ds,

where W (s) =
∫∞
0 ψ(s+ x)p(x)dx.

We want to prove the equation B(D)ψ(u) = q(D)W (u). Notice that the B(D) has the
following property with the Phase–Type density:

B(D)k

(
u− s
c

)
=

n∑
k=0

BkDk[αeB(u−s
c

)bT] = α

[
n∑
k=0

BkDk(eB(u−s
c

))

]
bT

= α

[
n∑
k=0

Bk

(
1

c

)k
BkeB(u−s

c
)

]
bT

= α

[
n∑
k=0

Bk

(
1

c
B

)k]
eB(u−s

c
)bT

= α

[
B

(
1

c
B

)]
eB(u−s

c
)bT

= α

[
det(B− cI

(
1
cB
)
)

det(B)

]
eB(u−s

c
)bT = 0,

Analogously, we can see B(D)
(
1−K

(
u
c

))
= 0.

The j derivative of the ruin probability ψ(u) with respect to u is given by the expression

dj

duj
ψ(u) = −

(
1

c

)j
k(j−1)

(u
c

)
+

j−1∑
i=0

(
1

c

)i+1

k(i)(0)W (j−1−i)(u)

+

(
1

c

)j+1 ∫ u

0
k(j)

(
u− s
c

)
W (s)ds

for j = 1, . . . , n− 1. Hence, we obtain

dj

duj
ψ(u)

∣∣∣∣
u=0

= −
(

1

c

)j
k(j−1)(0) +

j−1∑
i=0

(
1

c

)i+1

k(i)(0)W (j−1−i)(0), j = 1, . . . , n− 1.
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Now we apply the apply the differential operator B(D) to the ruin probability ψ(u)

B(D)ψ(u) = B(D)
(

1−K
(u
c

))
︸ ︷︷ ︸

=0

+B(D)

(
1

c

∫ u

0

k

(
u− s
c

)
W (s)ds

)

=

n∑
j=0

BjDj

(
1

c

∫ u

0

k

(
u− s
c

)
W (s)ds

)

=

n∑
j=0

Bj

(
j−1∑
i=0

(
1

c

)i+1

k(i)(0)W (j−1−i)(u) +

(
1

c

)j+1∫ u

0

k(j)
(
u− s
c

)
W (s)ds

)

=

n∑
j=1

Bj

j−1∑
i=0

(
1

c

)i+1

k(i)(0)W (j−1−i)(u) +

(
1

c

)j+1∫ u

0

B(D)k

(
u− s
c

)
︸ ︷︷ ︸

=0

W (s)ds

=

n−1∑
j=0

 n∑
i=j+1

Bi

(
1

c

)i−j

k(i−1−j)(0)

W (j)(u) =

n−1∑
j=0

B̃jW
(j)(u) = q(D)W (u).
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Bühlman, H. (1970). Mathematical Methods in Risk Theory. Springer-Verlag, Berlin, Heidel-
berg, New York.

Cheung, E. C. K. (2012). A unifying approach to the analysis of business with random gains.
Scandinavian Actuarial Journal, 3:153–182.

17



Cheung, E. C. K. and Drekic, S. (2008). Dividend moments in the dual risk model: exact
and approximate approaches. ASTIN Bulletin, 38.

Cramér, H. (1955). Collective Risk Theory: A Survey of the Theory from the Point of View
of the Theory of Stochastic Process. Ab Nordiska Bokhandeln, Stockholm.

Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory. Huebner Foundation
for Insurance Education, S. S.

Gerber, H. U. and Shiu, E. S. W. (2005). The time value of ruin in a sparre anderson model.
North American Actuarial Journal, 9(2):49–84.

Gerber, H. U. and Smith, N. (2008). Optimal dividends with incomplete information in the
dual model. Insurance: Mathematics and Economics, 43.

Landriault, D. and Willmot, G. (2008). On the gerber–shiu discounted penalty function
in the sparre andersen model with an arbitrary interclaim time distribution. Insurance:
Mathematics and Economics, 42.

Ng, A. (2009). On a dual model with a dividend threshold. Insurance: Mathematics and
Economics, 44.

Ng, A. (2010). On the upcrossing and downcrossing probabilities of a dual risk model with
phase-type gains. ASTIN Bulletin, 40.

Ren, J. (2007). The discounted joint distribution of the surplus prior to ruin and the deficit
at ruin in a sparre andersen model. North American Actuarial Journal, 11(3):128–136.
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