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Abstract

This paper presents a hurdle-type regression model for panel count data with

excess zeros and bounded support. Each time series of counts is modelled by making

use of the binomial thinning, a conceptual device that facilitates the consideration of

dependence between consecutive integers. Nonlinear least squares, quasi-maximum

likelihood and maximum likelihood are suggested methods to estimate the resulting

model, which can also be produced under a random e¤ects approach, following suit-

able assumptions concerning the conditional distribution of unobserved individual

heterogeneity. These assumptions yield a two-part panel data generalization of the

beta-binomial model, estimable through user-friendly quasi-maximum likelihood.

A Monte Carlo exercise illustrates the behaviour of the proposed estimators, both

with and without unobserved heterogeneity, as well as the performance of some

speci�cation tests. Finally, the proposed approach is illustrated as a model of re-

payment behaviour, estimated with a panel data set on personal loans granted by

a Portuguese �nancial institution.

JEL classi�cation: C23, C25, G210

Key Words: panel count data; hurdle model; binomial thinning; quasi- maximum

likelihood; beta-based mixture; loan repayment behaviour.

�Corresponding Author. Address: Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal. E-mail:

jmurt@fe.uc.pt. Fax: + 351 239790514.



1 Introduction

This paper presents two-part regression models for panel count data. Several features

of the data generating process (DGP) require a modelling approach that di¤ers from

standard models available in the statistical and econometric literature on discrete data

analysis. In particular, the proposed speci�cation is intended for count data with bounded

support and excess zeros relative to a one-part DGP, a kind of data that may occur, e.g.,

in the areas of consumer credit or behavioural scoring, with respect to the repayment of

loans through consecutive �xed installments. At each repayment date a debtor faces a

known number of missed installments, which, on the one hand, depends on his previous

repayment decisions and, on the other hand, is bounded by the age of the loan. At the

same time, given that most clients usually repay their debts on time, the number of missed

installments at each date is expected to display more zero values than would be the case

if this variable were to follow a single-part distribution.

Throughout the text a sample of observations on independent time series of counts is

supposed to be available to the researcher. For each time series, the possibility of excess

zeros is dealt with through a hurdle-type speci�cation (Cragg, 1971, Mullahy, 1986), which

allows a di¤erentiated treatment of null and positive values of the responses. Meanwhile,

the bounded nature of the responses suggests that a model for limited dependent variables,

such as the binomial distribution, is clearly more appropriate than such customary models

as, e.g., the Poisson or negative binomial.

The literature proposes several ways to model time series dependence among discrete

variables: surveys can be found, among others, in McKenzie (2003) and Cameron and

Trivedi (2013, Ch. 7). Integer-valued autoregressive, moving average (INARMA) models

constitute a prominent, well established example, including INAR models as a special

case. The latter specify the realized value of the variable of interest at period t, yt, as

the sum of an integer function of past outcomes and the realization of an independent

integer random variable. These models have the same serial correlation structure as linear

ARMA models for continuous data, a clearly attractive feature. Di¤erent choices for the

distribution of the innovation term (e.g. Poisson) lead to di¤erent marginal probability

functions (p.f:) for yt. Within the pure time series case, the Poisson INAR(1) was �rst

proposed by McKenzie (1985) and further discussed, along with other INARMA models,

by Al-Osh and Alzaid (1987) and McKenzie (1988). The extension of these models to
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the regression case was initiated by Brännäs (1995), who proposed the speci�cation of

INAR parameters as functions of covariates. Meanwhile, one alternative route to allow

for dependence among discrete variables consists on assuming that these variables share

common, often time-dependent, unobservable features. Such is the case of Hidden Markov

Models, described and illustrated in detail in MacDonald and Zucchini (1997).

In this text the dependence structure within each time series is addressed through

the use of the �binomial thinning�operator (Steutel and VanHarn, 1979). As described

below, this operator provides a �exible way to model the dependence between counts, with

the observed integer for one period de�ning the upper bound of the support of the count

variable in the following period. Binomial thinning constitutes the most popular form of

thinning, a general probabilistic operation that can be applied to random counts.(1) The

main idea is that the count represents the size of some population, randomly shrinked (or

�thinned�) through the thinning operation. As the size of the thinned population is still

integer-valued, the application of thinning always yields integer values. Thus (contrarily

to conventional ARMA processes), all elements of the time sequence are integer-valued.

The remainder of the paper is organized as follows. Section 2 presents the general ap-

proach and illustrates its use as a model of loan-repayment behaviour. Section 3 proposes

estimation of the model through pooled nonlinear least squares (NLS), pooled quasi-

maximum likelihood (QML) and maximum likelihood (ML), and discusses procedures to

test its speci�cation. The performance of the proposed estimators is assessed in Section

4 on the basis of simulated data. Section 5 illustrates the application of the proposed

model to a data set on personal loans granted by a Portuguese �nancial institution. Sec-

tion 6 concludes and suggests future research and extensions. A �nal Appendix presents

algebraic derivations and proofs of some of the formulas and results used in the text.

2 General Model

Assume the availability of a sample of observations on n independent time series of counts,

yi � (yi1; : : : ; yiTi)
0, i = 1; :::; n, each sequence with t = 1; : : : ; Ti terms. In what follows

a model for each individual sequence of counts is presented, enabling the speci�cation of

a time series count data model. The �rst part of the Section describes a pure time series

1A survey of thinning operations and their applications can be found in Weiss (2008).
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framework, appropriate to accomodate the introduction of explanatory variables and the

construction of a regression model, as discussed in Section 2.2. Estimation and inference

issues are discussed in Section 3.

2.1 Time Series Framework

For each individual i, the proposed speci�cation starts with the structural assumption on

the triplet (yit; yi;t�1; dit)

yit =

8>>><>>>:
yi;t�1 + 1; dit = 1

0; dit = 0; yi;t�1 = 0

p1 � yi;t�1; dit = 0; yi;t�1 > 0

; yit 2 f0; 1; :::; tg ; t = 1; :::; Ti: (1)

In this expression yi0 � 0, dit 2 f0; 1g denotes a Bernoulli random variable with Pr (dit = 1) =

p, and the parameter p1 is such that 0 � p1 � 1. The symbol ���denotes the bino-

mial thinning operator, de�ned as follows. If z denotes a positive integer, then p1 � z �Pz
j=1 bj (p1), where fbj (p1) , j = 1; :::; zg denotes a set of i.i.d: Bernoulli random variables,

with Pr (bj (p1) = 1) = p1. Thus, given z, p1 � z represents a binomial random variable,

the number of successes in z independent trials in each of which the probability of success

is p1.

Consequently, for each individual (for simplicity, the index i is omitted in the remainder

of the present Section) the support of yt, given yt�1, is f0; 1; :::; yt�1 + 1g: if dt = 1, then

yt = yt�1 + 1; on the contrary, if dt = 0, then, given yt�1, yt is either zero (if yt�1 = 0) or

follows a binomial p.f. with parameters yt�1 and p1. The probabilistic model for ytjyt�1
is thus speci�ed as a two-part, or hurdle, model: the �rst part is a binary outcome model

and the second part is a count model with bounded support. Formally,

Pr (ytjyt�1) = Ed (Pr (ytjyt�1; dt)) =

8<: p; yt = yt�1 + 1;

(1� p)
�
yt�1
yt

�
pyt1 (1� p1)

yt�1�yt ; yt 2 f0; 1; :::; yt�1g
(2)

Unless p = 0 (corresponding to the trivial case yt � 0, 8t), the sequence y �

(y1; : : : ; yT ) is not stationary. To see this start by considering the sequence of condi-

tional moment generating functions (mgf), of yt, given yt�1, which, under the model�s
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assumptions and the de�nition of the binomial thinning operator can be written as

Mtjt�1 (s) � E (exp (syt) jyt�1) = Ed (E (exp (syt) jyt�1; dt)) =

pes(yt�1+1) + (1� p) (1� p1 + p1es)yt�1 : (3)

By evaluating derivatives of Mtjt�1 (s) at s = 0, one can produce conditional moments of

any order, E
�
ykt jyt�1

�
, k 2 N . The �rst two conditional moments are given by

E (ytjyt�1) = p+ ryt�1; (4)

E
�
y2t jyt�1

�
= p+ (2p+ p1 (1� p1) (1� p)) yt�1 +

�
p+ p21 (1� p)

�
y2t�1; (5)

t = 1; :::; Ti;

where r � p+p1 (1� p). From these results one can obtain, e.g., the conditional variance

V (ytjyt�1) = E (y2t jyt�1)� E2 (ytjyt�1).

The unconditional �rst moment of yt can then be obtained by successively applying

the law of iterated expectations; using the initial condition y0 � 0,

E (yt) = E (E (ytjyt�1)) = p+ rE (yt�1) =

p+ rE (E (yt�1jyt�2)) = p (1 + r) + r2E (yt�2) =

: : : = p
�
1 + r + : : :+ rt�1

�
+ rtE (y0)

= p
�
1 + r + r2 + � � �+ rt�1

�
: (6)

If p and p1 are both less than 1 (so r < 1), this equals E (yt) = p (1� rt) = (1� r). Aside

from the trivial case p = 0, E (yt) varies with t, so the sequence y is not stationary.

The covariance function can be expressed as

COV (yt; yt�k) = r
kV (yt�k) ; (7)

a similar result to the expression for the covariance function in linear AR models for

continuous variables (see the Appendix for details). In this expression the variance can

be obtained from V (yt) = E (y
2
t ) � E (yt)

2 with E (y2t ) expressed as the solution to the

di¤erence equation (obtained from (5))

E
�
y2t
�
= E

�
E
�
y2t jyt�1

��
= (8)

p+ (p+ r (1� p1))E (yt�1) + (p+ rp1)E
�
y2t�1

�
;
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with E (yt�1) given in (6) and initial condition E (y21) = p. It is then evident that the

expression for V (yt) also depends on t.(2) Consequently, the autocorrelation function

CORR (yt; yt�k) = r
k
p
V (yt�k) =V (yt); (9)

depends not only on lag (k) but also on t.

For each individual the present model can be viewed as a nonstationary version of the

DAR(1) model proposed by Jacobs and Lewis (1978). The latter can be expressed as

yt = dtyt�1 + (1� dt) zt;

where dt are i.i.d: binary and zt are i.i.d: with a given distribution. If y0 is also sampled

from this distribution, then the model de�nes a stationary process with that same marginal

distribution. Model (1), however, di¤ers from this approach because not only stationarity

is absent (due to the term yt�1 + 1) but also the variable p1 � yt�1, replacing zt, is not

i.i.d..

The proposed model can also be cast within the general framework of a �rst-order

Markov chain. For the time sequence of counts one can formally write the following

recurrence formula for Pr (yt):

Pr (yt = y) =
tX

j=maxf1;yg

Pr (yt = yjyt�1 = j � 1) Pr (yt�1 = j � 1) ;

0 � y � t; 1 � t � T;

with Pr (y0 = 0) = 1 and transition probabilities expressed in (2),

Pr (yt = yjyt�1 = j � 1) =

8<: p; y = j;

(1� p)
�
j�1
y

�
py1 (1� p1)

j�1�y ; y 2 f0; 1; : : : ; j � 1g :

2.2 Regression Model

A regression model can be produced by introducing explanatory variables in the proba-

bilities p and/or p1, following the usual practice for discrete choice models. These prob-

abilities can be speci�ed as, e.g., logit, probit or any other convenient model, based on

some chosen c.d.f..

2Trivially, if p = 1 (, r = 1), then E (yt) = t and if p = 0, then E (yt) = 0. In both cases yt is

degenerate so V (yt) = 0.
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The expectation of yt can be taken either conditionally on y(t�1) � (y1; : : : ; yt�1) (name

this the �autoregressive model�or �autoregressive approach�), or marginally to y(t�1) (name

this the �marginal model�or �marginal approach�). Under an �autoregressive�approach the

conditional mean of interest will be E
�
ytjxt;y(t�1)

�
, where xt denotes the explanatory

variables in the conditional expectation of yt apart from lags of the dependent variable

(that is, the covariates in p and p1, other than lagged responses). Under a �marginal�

approach the conditional expectation of interest is E
�
ytjx(t)

�
, where x(t) � (x1; : : : ;xt).

If all covariates in p and p1 are time-invariant (only involving covariates of the type

xt � x, 8t), then the above formulae for the moments of the response variables (e.g., (6),

(7) and (4)) remain substantively unchanged �the only di¤erence being that the proba-

bilities p and p1 are now time-invariant functions of covariates. If, however, p and/or p1

involve time-varying covariates, then the former expressions have to be altered accord-

ingly.

Write the �rst conditional moment of yt given its own lags and xt as

E
�
ytjxt;y(t�1)

�
= pt + rtyt�1; (10)

where pt � p
�
xt;y(t�1)

�
, rt � r

�
xt;y(t�1)

�
� pt + p1t (1� pt) and p1t � p1

�
xt;y(t�1)

�
. If

p and p1 do not involve lags of the dependent variable, the conditional expectation of yt,

given x(t), is given by

E
�
ytjx(t)

�
=

8<: p (x1) t = 1;

pt +
Pt�1

j=1 pj

�Qt
k=j+1 rk

�
; t � 2;

(11)

which, as expected, reduces to (6) when only time-invariant covariates are used in p and p1

(see the Appendix). If, on the other hand, lags of the dependent variable are introduced

in these probabilities, the expression of E
�
ytjx(t)

�
becomes more complex because then

it corresponds to the marginal expectation of (10) with respect to y(t�1), given remaining

covariates.

At any given period t, marginal e¤ects can be obtained from the derivatives of the mean

of yt (for continuous covariates) or its di¤erences (for discrete explanatory variables). The

particular expression of the mean to use in each case hinges on: (i) the type of covariates

included in p and p1 (namely, time-varying or time-invariant); (ii) whether the conditional

or marginal expectation is used. It seems clear that a marginal approach can become

very burdensome when there are time-varying covariates in p and/or p1. Therefore, in
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this latter case the ensuing exposition only considers marginal e¤ects on the conditional

expectation E
�
ytjxt;y(t�1)

�
.

Consider, �rstly, marginal e¤ects on E
�
ytjxt;y(t�1)

�
�expression (10). The marginal

e¤ect of a unit change of a continuous covariate (w, say) can be written asrwpt+rwrtyt�1,

with rwrt = (rwpt) (1� p1t) + (rwp1t) (1� pt). If p and p1 are both monotonically

increasing (decreasing) functions of w �so rwpt and rwrt are both positive (negative) �

this marginal e¤ect is positive (negative). For a discrete covariate w, the marginal e¤ect

can be expressed as �wpt +�wrtyt�1, with (using obvious notation) �wpt � pt (w + 1)�

pt (w) and �wp1t � p1t (w + 1)� p1t (w), so that

�wrt � rt (w + 1)� rt (w) = (1� p1t ��wp1t)�wpt + (1� pt)�wp1t:

Now, p and p1 are both probabilities so, usually, 0 < 1 � p < 1 and 0 < p1 + �wp1 < 1

(omit t for now). If p and p1 are both monotonically increasing in w (�wp > 0 and

�wp1 > 0), then �wr > 0; if p and p1 are both decreasing in w (�wp < 0 and �wp1 < 0),

then �wr < 0. Then, from (10), if pt and p1t are strictly increasing (decreasing) functions

of w, then a unit increase in w has a positive (negative) impact on E (ytjxt; yt�1).

Secondly, consider marginal e¤ects on the marginal expectation, E
�
ytjx(t)

�
(as previ-

ously mentioned, only the case with time-invariant covariates is discussed, xt = x;8t �

see (6)). For a continuous covariate w,

rwE (ytjx) =

8<: rwp; t = 1;

(rwp) (1 + r + � � �+ rt�1) + p (1 + 2r + � � �+ (t� 1) rt�2) (rwr) ; t � 2:
(12)

Equivalently, with r < 1,

rwE (ytjx) =

8><>:
rwp; t = 1;

(rwp)
1� rt
1� r + p

1� trt�1 + (t� 1) rt

(1� r)2
(rwr) ; t � 2:

If p and p1 are both monotonically increasing (decreasing) functions of w �so rwp and

rwr are both positive (negative) �the previous expressions are evidently positive (neg-

ative). A similar conclusion can be drawn with respect to the efect of a unit increase of

a discrete covariate on E (ytjx) �check (6) and recall the above discussion on marginal

e¤ects of changes in a discrete covariate on the conditional mean.

7



2.3 Application: Modelling Loan Repayment Behaviour

If one thinks of individuals as borrowers repaying their loans through �xed periodic in-

stallments, with yit denoting the number of missed installments by individual i at the

end of period t, then the probabilistic model for ytjyt�1 can be seen as a model of re-

payment behaviour.(3) To this e¤ect, let the binary variable dt be de�ned as zero if the

client decides to pay at period t (that is, �success�refers to a non-payment decision, with

probability denoted by p). Once the client chooses to pay (dt = 0) he then decides how

many installments to pay, ranging from just one (p1 � yt�1 = yt�1), to all the installments

missed that far plus the one for the present period (p1 � yt�1 = 0). That is, under the

present framework each borrower is supposed to make a twofold decision at every repay-

ment date: �rstly, he decides whether to pay or not altogether at that date; then, if he

chooses to pay and more than one installment are due, he decides how much (how many

installments) to pay.

This example illustrates the possible meaning of several limiting (though some un-

likely) cases regarding di¤erent values of p and p1. Firstly, p = 0 (dt degenerate at zero,

8t) means the borrower always decides to pay, one installment at least. From y0 � 0

it follows y1 � d1 = 0; given that yt = p1 � yt�1 and the individual always pays, then

yt�1 = 0 = yt, 8t, so p1 is not identi�ed. On the other hand, p = 1 means that the client

always decides not to pay: then, dt = 1, 8t, so yt = yt�1 + 1 = t and p1 is again not

identi�ed.

Next, consider the case p1 = 0. Now, once the client decides to pay (dt = 0) he

pays all the missed payments at that time (all bj�s are degenerate at zero), in addition

to that period installment. That is, at each repayment date a borrower either pays all

the installments he missed that far, plus the one for that period, or he pays none. On

the other hand, p1 = 1 means that when the client decides to pay (dt = 0) he only pays

one installment (all bj�s degenerate at one). That is, with p1 = 1 the client�s balance of

missed payments never decreases �at best it remains at the level it rose to, the last time

the client chose not to pay.

Naturally, some of the above limiting cases may be unlikely �namely the case with p =

1. Also, even for those (presumably many) borrowers who regularly meet their obligations,

3A survey on credit and behavioural scoring techniques can be found, e.g., in Thomas, Edelman and

Crook (2002).
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p can be positive due to the possible occurrence of random unexpected (and undesirable)

events, a¤ecting their �nancial capability and hindering their plans to pay one installment

after the other during the life of the contract. Nonetheless, a well known advantage of

the hurdle speci�cation is that it enables a di¤erentiated treatment of zero and positive

values of the dependent variable. In the present example, with most individuals expected

to regularly meet their �nancial obligations, this feature seems clearly attractive.

It may be more appropriate to consider p and p1 individual-speci�c, rather than con-

stant across di¤erent individuals. Also, a pure time series model may not lead to very

useful conclusions �for instance, credit or behavioural scoring purposes may require the

classi�cation of debtors on the basis of contracts and customers�characteristics. In order

to account for this individual heterogeneity one obvious possibility is to introduce regres-

sors in the model (e.g:, in p and/or p1). In addition, further dynamics can be allowed for

by considering lagged dependent variables in the speci�cation of p and or p1 (for instance,

the probability of nonpayment may depend negatively on the number of previously missed

installments).

The assumption of independence about the joint p.f. of (dt; yt�1; b1; :::; bk), k = yt�1,

may also be inappropriate or unrealistic. On the other hand, analysis and estimation of

the model is considerably eased with such an assumption. A simplifying way out is to

assume that dt and yt�1 are independent conditionally on p. Also, bj, j = 1; :::; t � 1

and yt�1 can be assumed conditionally independent, given p1. Then, the independence

assumption of these variables can be relaxed with the introduction of regressors in the

model, in p and/or p1. If, for instance, p and p1 are speci�ed as logits with time-invariant

regressors, one will have

pi � (1 + exp (�x0i�))
�1
; p1i � (1 + exp (�z0i
))

�1
; (13)

where � and 
 denote vectors of parameters conformable to, respectively, covariates�

vectors xi and zi.

3 Estimation and Inference

This Section discusses estimation and testing of the model presented above, on the basis

of a sample of n independent time series of response variables and covariates f(yit;xit) ;
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t = 1; : : : ; Ti; i = 1; : : : ; ng. Throughout the Section the case with n large relative to

max fTi; i = 1; : : : ; ng is considered, as the asymptotics hold with bounded Ti and n!1.

Al-Osh and Alzaid (1987), Jin-Guan and Yuan (1991) and Ronning and Jung (1992)

discuss the use of least squares and ML methods in the context of the stationary Poisson

INAR. Brännäs (1994) introduces GMM and extends its use to a panel data generalized

Poisson INAR(1). Brännas (1995) proposes a Poisson INAR(1) regression model and

studies its estimation through conditional least squares and GMM. More recent accounts

of estimation methods for panel count data can be found in Jung, Kukuk and Liesenfeld

(2006), Windmeijer (2006) and Sun and Zhao (2013 � in the area of Bio- and Health

Statistics).

As mentioned, the conditional expectation of yit can be taken either conditionally

on yi(t�1) � (yi1; : : : ; yi;t�1) (�autoregressive model�), or marginally to yi(t�1) (�marginal

model�). If all covariates are time-invariant, adoption of either an autoregressive or a

marginal approach (using, respectively, (4) or (6)) seems fairly atraightforward. On the

other hand, with time-varying covariates the marginal approach can become very burden-

some so, in this case, the autoregressive model (10) seems clearly more attractive from a

practical standpoint.

3.1 Pooled Nonlinear Least Squares

Among other possibilities, the proposed model can be estimated by pooled NLS. This

method minimizes the criterion
Pn

i=1

PTi
t=1 (yit � �it)

2 with respect to the parameters in

p and p1, where �it denotes the appropriate (�autoregressive�or �marginal�) expression

of the conditional expectation of yit. This objective function is the one associated with

pooled least squares estimation of the model

yit = �it + uit; t = 1; :::; Ti, i = 1; :::; n;

where, by de�nition, the error term, uit, has null conditional mean. Consequently, under

standard regularity assumptions, for bounded Ti, i = 1; :::; n, and n!1 the pooled NLS

estimator is consistent and
p
n-asymptotically normal.

By construction the errors of this model are heteroskedastic and uncorrelated (across

both i and t): with regard to error variance note that both the conditional and marginal

variances of the dependent variable vary with i and t � see, respectively, (5), and (8)
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in the case of time-invariant covariates. A fortiori, the same can be said in the case

of time-varying covariates. With regard to error correlation, correct speci�cation of the

conditional mean ensures that the autoregressive model is dynamically complete and,

hence, its error term is serially uncorrelated. The same can obviously be ascertained with

respect to the marginal model.

Under a marginal approach the expression of the skedastic function is not easy to

deduce � see (8) � so the robust �sandwich� covariance estimator should be used for

inference purposes, upon pooled NLS estimation of the marginal expectation parameters.

On the other hand, under the autoregressive approach the expression of the conditional

variance V (yitjyi;t�1;xit) is easy to obtain from (4) and (5); therefore, in this case one

can also implement the asymptotically more e¢ cient pooled weighted NLS estimator. In

general, for time t (omitting i),

V
�
utjxt; y(t�1)

�
= V

�
ytjxt; y(t�1)

�
= E

�
y2t jxt; y(t�1)

�
� E2

�
ytjxt; y(t�1)

�
=

(1� pt)
�
pt + (2pt + p1t) (1� p1t) yt�1 + pt (1� p1t)2 y2t�1

�
;

estimable by plugging in �rst-step pooled NLS estimates of the regression parameters.

3.2 Pooled Quasi-Maximum Likelihood

The QML method proceeds through maximization of a linear exponential family (LEF)

likelihood. As is well known, the QML estimator is consistent and asymptotically normal

regardless of the true likelihood, provided the means of the response variables are correctly

speci�ed (Gouriéroux, Monfort and Trognon, 1984). Therefore, one seemingly appealing

route is to choose from several candidate univariate densities in the LEF family and

estimate the parameters of the model by pooled QML.

Like NLS, for n ! 1 QML is asymptotically valid under both a marginal and an

autoregressive approach (see Appendix). As with pooled NLS, an autoregressive approach

is clearly easier than a marginal approach when time-varying covariates are included in p

and/or p1.

The pooled QML estimator maximizes the quasi-log-likelihood
Pn

i=1 LLi, with LLi �PTi
t=1 log f (yit;�it) and f (�; �) denoting a particular LEF conditional density. Correct

speci�cation of the mean, �it, as a function of covariates, ensures that

p
n
�
�̂QML � �0

�
d�! N

�
0;A�1

0 B0A
�1
0

�
;
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with �̂QML denoting the QML estimator of the parameters in p and p1, N (�; �) the mul-

tivariate normal distribution, �0 the population parameter values and

A0 � E (�r��0LLi)�=�0 ; (14)

B0 � E (r�LLir�0LLi)�=�0 :

Consistent estimators for A0 and B0 are obtained in the usual manner, replacing �0 by

�̂QML and population expectations by sample averages.(4)

In the present context natural choices for the quasi-likelihood are, among other possi-

bilities, such discrete p.f.�s as the Poisson or negative binomial. In these cases, the density

is given by, respectively,

Poisson : fP (yit;�it) = exp (��it)�
yit
it = (yit!) ; (15)

Negative binomial : fNB (yit;�it) =
� (a+ yit)

� (a) � (yit + 1)

��it
a

�yit ��it
a
+ 1
��(yit+a)

;(16)

where a denotes some given positive constant.(5) For instance, a = 1 yields fNB (yit;�it) =

�yitit (�it + 1)
�(yit+1).

3.3 Maximum Likelihood

Under the assumption of independent individual time sequences ML estimation requires

the joint probabilistic model for the Markov chain y � (y1; : : : ; yT ). This model is now

made fully explicit in order to implement the ML approach.

In the present context y0 � 0 so y1 � d1 and Pr (y1) = py1 (1� p)1�y1, with y1 2 f0; 1g.

Assumption (1) yields the transition probabilities (2), now rewritten as (individual index

omitted)

Pr (ytjyt�1) = p1(yt=yt�1+1)
�
(1� p)

�
yt�1
yt

�
pyt1 (1� p1)

yt�1�yt
�1(yt�yt�1)

;

4Inference should be conducted by using the corresponding covariance matrix estimator of �̂QML

in the construction of standard errors and Wald statistics. A likelihood ratio-type statistic is not valid

because of a very probably incorrect variance assumption, as well as neglected time dependence implied

by the adopted likelihood.
5With a a positive constant, fNB corresponds to a member of what is usually termed the NB2 model

in the count data literature (where the conditional mean is usually speci�ed as exp (x0it�) �see, e.g.,

Cameron and Trivedi, 2013).
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where 1 (�) denotes the usual indicator function. Then, with constant p and p1 the joint

conditional density of each individual sequence can be written as

fy (yjp; p1)

=

TY
t=1

 
p1(yt=yt�1+1)

�
(1� p)

�
yt�1
yt

�
pyt1 (1� p1)

yt�1�yt
�1(yt�yt�1)!

(17)

=
TY
t=1

 �
p

1� p

�1(yt=yt�1+1)
(1� p)

��
yt�1
yt

��
p1

1� p1

�yt
(1� p1)yt�1

�1(yt�yt�1)!
/ p

PT
t=1 1(yt=yt�1+1) (1� p)

PT
t=1 1(yt�yt�1) � �

p1
1� p1

�PT
t=2 1(yt�yt�1)yt

(1� p1)
PT
t=2 1(yt�yt�1)yt�1

!1(T�2)
;

exhibiting, as expected, the usual split of hurdle models in two separate components. The

�rst, involving p, refers to the binary process that splits individual sequences into �success�

(periods for which yt = yt�1 + 1), and �failure�(periods for which yt � yt�1); the second,

involving p1, refers to the binomial part of the model, for periods with yt � yt�1.

ML estimates can be obtained on the basis of an individual contribution to the log-

likelihood of the form

LLi = const:+

TiX
t=1

1 (yit = yi;t�1 + 1) log p+

TiX
t=1

1 (yit � yi;t�1) log (1� p) + (18)

1 (Ti � 2)
 

TiX
t=2

1 (yit � yi;t�1)
�
yit log

p1
1� p1

+ yi;t�1 log (1� p1)
�!

:

It is readily seen that estimation of the �rst component of the hurdle (p estimation) uses all

observations in the sample. Estimation of the second component (involving p1) disregards

data on the �rst period for every individual (consequently disregarding individuals with

only one observation), as well as observations for periods with dit = 1 so yit = yi;t�1 + 1.

In the case of a regression model, with covariates introduced in p and/or p1, these

should be appropriately speci�ed and notation modi�ed accordingly. With time-varying

covariates �consider pt and p1t �(17) should be replaced by

TY
t=1

 �
pt

1� pt

�1(yt=yt�1+1)
(1� pt)

��
yt�1
yt

��
p1t

1� p1t

�yt
(1� p1t)yt�1

�1(yt�yt�1)!
(19)

and the log-likelihood subsequently altered.

13



3.4 Unobserved Individual Heterogeneity

Allowing for unobserved individual heterogeneity within the present framework raises

some speci�cation and estimation issues that deserve caution. Frequently, in discrete

choice models unobservables are added to the index functions within choice probabilities;

for instance, with time-invariant unobserved e¤ects, eit = ei;8t, and logit speci�cations

one can have pit = (1 + exp (�x0it� � ei))
�1 and similarly for p1it.

Assume that xi � (xi1; : : : ;xTi) are strictly exogenous conditionally on individual

e¤ects �formally, E (yitjxi; ei) = E (yitjxit; ei). This condition agrees with the absence of

lagged dependent variables in the de�nition of xi; also, the condition rules out feedback

from yt to future explanatory variables. Now, with ei assumed independent of exogenous

covariates a random e¤ects approach involves estimation of E (yijxi) = Ee (E (yijxi; ei)),

given some appropriate model for the inner expectation. This marginalization of hetero-

geneity likely involves integrals with no analytical solution, so estimation will entail the

use of approximation techniques such as quadrature or Monte Carlo integration. Note,

in addition, that this approach is only valid to estimate the parameters of the �marginal�

model (because ei is not independent of lags of the dependent variables); therefore, with

time-varying covariates in p and/or p1 its application can become seriously burdensome.

Under the restriction that unobservables enter additively in p alone, a �xed e¤ects

strategy might also be used. The �rst component of the present hurdle speci�cation is a

binary model that uses data on dit � 1 (yit = yi;t�1 + 1) alone �check (18). Thus, with p

speci�ed as logit, conditional ML, given a su¢ cient statistic for ei, can be used to estimate

its parameters �appropriate references in this regard are Chamberlain (1980) (no lagged

responses in p), Chamberlain (1985) (dynamic pure time series logit model), or Honoré

and Kyriazidou (2000) (other regressors in p, besides lagged responses). The functional

separability of the hurdle likelihood then enables estimation of p1 parameters through

maximization of the second part of (18). The approach, however, is limited as it excludes

unobservables from p1 (not to mention computational complexity, even for not too large

T �see, e.g., Cameron and Trivedi, 2005, Ch. 23.4).(6)

6One alternative to the additive model of heterogeneity would be o¤ered by a multiplicative model

� as in E (yitjei) = eiE (yit), t = 1; : : : ; Ti. Possibly, this would allow the use of such �xed e¤ects

methods as Hausman, Hall and Griliches� (1984) conditional (multinomial-based) ML or Wooldridge�s

(1997) GMM estimators. However, in the present two-part model this assumption deserves caution as

it rests on somewhat intricate and behaviourally odd assumptions regarding how heterogeneity a¤ects
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One viable random e¤ects alternative strategy is to consider, in each period, pt and/or

p1t random, with some appropriate conditional density, given covariates xt, and y(t�1).

One possibility for the latter is provided by the beta distribution, often used as a mixing

density for probabilities. Here, pt and/or p1t can be speci�ed as beta random variates with

parameters that may depend on covariates; formally, for pt (individual index omitted),

f
�
ptjxt;y(t�1)

�
=
� (1=�t + 1= (�t�t))

� (1=�t) � (1= (�t�t))
p
1=�t�1
t (1� pt)1=(�t�t)�1 ;

where �t and �t denote positive parameters that may depend on xt and y(t�1). Analo-

gously for p1, with f1
�
p1tjxt;y(t�1)

�
, involving positive parameters �1t and �1t possibly

depending on covariates as well. This general idea extends the approach of Santos Silva

and Murteira (2009) for cross sectional single-part count data with bounded support, in

which case it leads to the well known beta-binomial conditional p.f. (see also Heckman

and Willis, 1977, for a well known seminal proposal of the beta-binomial p.f.).

The two-part framework naturally raises the possibility of statistical dependence of

pt and p1t, as individual heterogeneity in each of p and p1 is bound to be mutually

dependent � a type of concern raised, e.g., in Winkelmann (2004). While this con-

cern is justi�ed, allowing for dependence among pt and p1t (e.g. using copulas � see

Joe, 1997) can render estimation more di¢ cult (seemingly requiring approximation tech-

niques), even under an autoregressive approach. Indeed, in this case, E
�
ytjxt;y(t�1)

�
=

Ep;p1
�
pt + rtyt�1jxt;y(t�1)

�
, the argument of which is nonlinear in pt and p1t � recall

rt � pt + p1t (1� pt). Nonetheless, a not too strong assumption considerably facilitates

estimation: if pt and p1t are assumed uncorrelated conditionally on xt and y(t�1), that is,

E
�
ptp1tjxt;y(t�1)

�
= E

�
ptjxt;y(t�1)

�
E
�
p1tjxt;y(t�1)

�
, then E

�
ytjxt;y(t�1)

�
can be eas-

ily obtained because Ep;p1
�
rtjxt;y(t�1)

�
= E

�
p1tjxt;y(t�1)

� �
1� E

�
ptjxt;y(t�1)

��
. Note

that this assumption does not rule out dependence among pt and p1t: nonlinear depen-

dence conditional on xt and y(t�1) is fully allowed for, as well as marginal (to xt and

y(t�1)) dependence.

Under beta conditional densities for pt and p1t, then E (pt) = �t= (1 + �t) and E (p1t) =

�1t= (1 + �1t); assuming p and p1 are conditionally uncorrelated, one has (conditioning on

both p and p1 in each period. In particular, an assumption of time-invariant individual heterogeneity

a¤ecting the conditional expectation of yit rests on a time-varying unobservable term a¤ecting p1 (see

the Appendix).
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explanatory variables omitted)

E
�
ytjxt;y(t�1)

�
= Ep;p1 (pt + rtyt�1) = E (pt) + E (p1t) (1� E (pt)) yt�1 =

�t
1 + �t

+
�1t

1 + �1t

�
1� �t

1 + �t

�
yt�1 =

�t
1 + �t

+
�1t

1 + �1t

yt�1
1 + �t

: (20)

With a suitable parameterization of �t and �1t this expression enables estimation of the

parameters of the autoregressive conditional mean of yt, through pooled NLS or QML.

In general, � = F (z) = (1� F (z)) (z: covariates) yields E (pt) = F (z), and similarly for

p1t. Hence, it seems appealing to specify � in this way, by choosing some c.d.f. for F

such as, e.g., logit, probit or any other appropriate speci�cation (other suggestions can

be found, e.g., in Ramalho, Ramalho and Murteira, 2011). In general, what this implies

is that under correct speci�cation of the conditional means of pt and p1t, pooled NLS

and QML are valid estimators both without heterogeneity and under (beta distributed,

conditionally uncorrelated) individual heterogeneity. Which means, in turn, that the

estimation of the model through these methods �simpler than, e.g., maximum simulated

likelihood (as for the additive random e¤ects approach described above) �may be more

robust than at �rst envisaged. Further, in view of the known �exibility of the beta density,

able to accomodate diverse heterogeneity patterns, this statement is likely to add up to

the practical attractiveness of the general, beta-based, random e¤ects approach.

Note, incidentally, that the marginal model can be obtained as before (without unob-

served heterogeneity) �with the obvious caveat for analytical/computational intractabil-

ity, if �t and �1t involve time-varying covariates. On the other hand, the likelihood

function is no longer given by (17) or (19) but by the corresponding expectation with

respect to the joint distribution of the Ti-vector of pt and p1t, t = 1; :::; Ti. Therefore, the

estimator based on maximization of any of the former likelihoods is no longer valid under

the suggested type of unobserved individual heterogeneity.

3.5 Speci�cation Analysis

The speci�cation of the proposed models depends crucially on the correct modelling of p

and p1, as functions of regressors. One feasible route to assess the speci�cation of these

conditional probabilities is provided by a RESET-type procedure (Ramsey, 1969; Pagan

and Vella, 1989). In the present context, the test can be carried out by assessing the

signi�cance of powers of covariates�indices, as additional regressors within p and/or p1.
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Speci�cally, with logit p and p1 the test can be implemented by assessing the signi�cance

of (x0it�)
2 and (z0it
)

2 in

pit �
�
1 + exp

�
�x0it� � (x0it�)

2
�
���1

; p1it �
�
1 + exp

�
�z0it
 � (z0it
)

2


���1

:

Obviously, additional powers can also be included and tested � see e.g. Ramalho and

Ramalho (2012) for a comparative Monte Carlo study of several variants of the RESET

test in binary choice models.

One other issue of particular interest in the present context regards the possibility of

a single-part DGP, that is, the hypothesis that zeros and positive values of the responses

are generated by the same conditional law. In this sense, one can reasonably assume

that, under the null hypothesis, yt given yt�1 follows a binomial p.f. with number of

Bernoulli trials given by yt�1 + 1. This hypothesis can be tested against the two-part

speci�cation as follows. Consider, �rstly, a pure time series framework and suppose that

under H0 the probability of success is pB, 0 � pB � 1, so E (yitjyi;t�1) = (yi;t�1 + 1) pB.

Consequently, H0 can be indirectly tested by assessing the signi�cance of the intercept in

the OLS regression

yit = c+ (yi;t�1 + 1) pB + error: (21)

Failure to acceptH0 : c = 0 implies rejection of H0, so a two-part model should reasonably

be entertained.

In a regression framework, with pB a speci�ed function of observed regressors (e.g.,

logit), the test can be implemented upon NLS estimation of the latter regression. Nonethe-

less, the simpler OLS procedure can also be used in the particular situation where pB only

involves strictly exogenous stationary covariates, so that E
�
xtjy(t�1)

�
= E (xt) = �x, 8t,

(which rules out feedback from previous values of the dependent variable to current ex-

planatory variables). In this case, under H0,

E (yitjyi;t�1) = Exjyt�1 (E (yitjyi;t�1;xit)) = (yi;t�1 + 1)Exjyt�1 (pB (xit) jyi;t�1) =

(yi;t�1 + 1)Ex (pB (xit)) = (yi;t�1 + 1)� const:

Consequently, the test of H0 can again be implemented upon simple OLS estimation of

(21) � which is advantageous because it does not require previous speci�cation of pB

as a function of covariates.(7) The next Section presents a succinct simulation exercise
7Note that if pB involves lags of the dependent variable, e.g. pB = pB (xt; yt�1), then E (ytjyt�1) =

(yt�1 + 1)Exjyt�1 (pB (xt; yt�1)) = g (yt�1), with g (�) some (generally nonconstant) function.
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which assesses the �nite sample performance of this procedure under single- and two-part

DGP�s.

The previous Section suggests a Hausman-type test to detect the presence of (con-

ditional beta) unobserved heterogeneity. Under the null hypothesis of no heterogeneity

both ML and pooled NLS/QML are
p
n-consistent estimators; however, in the presence

of such heterogeneity, only the latter are consistent. Therefore, the null hypothesis to be

tested is
p
n-consistency of both estimators. Under this hypothesis the ML estimator of

�, �̂ML, is fully e¢ cient (since it cannot be consistent otherwise, the likelihood not being

a member of the LEF family); then, as is well known, the Hausman test has the form

n
�
~� � �̂ML

�0
(V P � V M)

�1
�
~� � �̂ML

�
;

where ~� denotes either the pooled NLS or pooled QML estimator, V P � V
�p
n
�
~� � �

��
and V M � V

�p
n
�
�̂ML � �

��
. Under the null hypothesis p limn!1

p
n
�
~� � �̂ML

�
= 0

this statistic is asymptotically distributed as a chi-squared random variate with number

of degrees of freedom equal to the rank of V P � V M .(8)

4 Simulation Study

4.1 Performance of Alternative Estimators

Design

The performance of the pooled NLS, pooled QML andML estimators of the conditional

mean parameters are now compared on the basis of simulated data sets. These sets contain

information on each individual time series of counts up to the sampling date, as well as

on a set of covariates.

The value of the dependent variable for individual i at period t is denoted by yit,

where 1 � t � Ti, and Ti represents the length of the i-th series up to the observation

date (for instance, Ti can be measured in months). Throughout the exercise two samples

were generated: the �rst with n = 360 independent individual time sequences and the

second with n = 5400 sequences. In each sample 1 � Ti � 36, with the same number of

8In practice the sample estimate for the covariance matrix to be used with the Hausman test may

not be invertible, nor positive semi-de�nite, even if invertible. See Lee (1996, Ch. 5.9) for an estimator

of the covariance matrix of
p
n
�
~� � �̂ML

�
that is positive semi-de�nite, by construction.
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individuals for each di¤erent Ti value. That is, the smaller sample contains 10 (= 360=36)

time series per each Ti, whereas the larger sample contains 150 (= 5400=36) time series

per Ti.

Under the �rst type of DGP�s (DGP1 and DGP2) no individual e¤ects are considered,

so individual sequences fyit; t = 1; :::; Tig are drawn independently (independence across

i) from the joint (conditional) p.f: de�ned in (17) with p and p1 speci�ed as logits. These

include the following regressors and corresponding marginals: x1 � 1 (intercept); x2 �

Bernoulli (:25); and x3 � N (0; 1). These covariates are supposed time-invariant, so

xkit � xki, k = 2; 3; in addition, a lagged dependent variable can be allowed for in p.

Speci�cally, p and p1 are speci�ed as

pit � (1 + exp (�x0i� � &yi;t�1))
�1
; p1i � (1 + exp (�z0i
))

�1
; (22)

with xi � (1; xi2; xi3)0, zi � (1; xi3)0, � � (:85;�:75; :25)0, 
 � (1;�:5)0 and & = 0 (DGP1)

or & = �:3 (DGP2).

The last DGP, DGP3, involves unobserved individual heterogeneity. Under this process

individual sequences fyit; t = 1; :::; Tig are drawn independently according to the structure

de�ned in (1), where, in each period, pit now denotes a beta r.v. with parameters 1 and

1=�it, where �it = exp (x0i� � :3yi;t�1), and p1i denotes a beta r.v. with parameters 1

and 1=�1i, where �1i = exp (z0i
). This parameterization yields conditional means of pit

and p1i as in (22). The covariates xi and zi and the values of the parameters � and 


are as in DGP2.(9) Under DGP3 the generated probabilities pit and p1i are conditionally

uncorrelated, given xi and yi(t�1), so the conditional mean of yit is given by (20), which,

given the adopted parameterization of the conditional betas, yields logit functions for the

expectations of pit and p1i.

The foregoing simulated data sets can be thought of as, e.g., samples of loan repayment

histories in �xed installments. Each individual represents a di¤erent contract aged Ti

months at the sampling date (completed and incomplete contracts alike can be dealt with).

The assumption of time-invariant regressors may re�ect the frequent fact that clients�

characteristics are recorded at the time of loan applications and remain subsequently

9In order to allow for di¤erent degrees of variability in p and p1 the �rst parameter of the beta

densities was initially allowed to vary with covariates, according to one of the functions exp (�xi3) and

� 2 f0; :1; :25; 1g. Given that the corresponding simulation results did not display noticeable di¤erences,

only those referring to � = 0 are included in the simulation results (Tables 3 and 6).
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unchanged over the repayment period. A negative value for & (pit decreasing in yi;t�1)

can be naturally interpreted as a decrease in the probability not to pay, in response to an

increase in the number of previously missed installments.

Under DGP1 and DGP2 both the autoregressive and marginal models are estimated

�respectively, (4) and (6), with p and p1 correctly speci�ed as logits. All three estimators

(NLS, QML and ML) are used for the autoregressive model whereas the marginal model

is estimated by pooled NLS and QML. Thi is because p involves a time-varying covariate

(lagged response) under DGP2, so the marginal expectation is clearly burdensome to em-

ploy (see (11)) �whereas the autoregressive approach involves no more than E (ytjyt�1;x).

For both types of models the pooled QML estimator is implemented with Poisson, (15),

and negative binomial ((16) with a = 1) likelihoods. Under DGP3 pooled NLS and

pooled QML are used to estimate the autoregressive model, with correctly speci�ed logit

functions for the expectations of pit and p1i.

The performance of the various estimators is assessed on the basis of 2000 replications

of the described samples, with regressors newly drawn at each replica. All computations,

in the present and next Subsections, were performed using TSP 5.0 (Hall and Cummins,

2005).

Simulation Results

The results of the experiment are included in Table 1 through Table 6, referring to

estimation results of correctly speci�ed models under DGP1 through DGP3. For each

estimator the tables display the average (Avg) and empirical root mean squared error

(RMSE) over 2000 replicas, for n = 360 (tables 1 �3) and 5400 (tables 4 �6).

Tables 1 �3 about here

Tables 4 �6 about here

Overall, simulation results concerning valid estimators under the various DGP�s used

in the study can be considered to concord with broad theoretical expectations. In addition,

several particular results appear noteworthy. Although asymptotically more e¢ cient, the

ML estimator does not appear to behave signi�cantly better �actually, it often proves

worse � than competing estimators, namely for the parameters in p and the smaller
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sample size. In this respect, the pooled QML estimator, namely with a negative binomial

likelihood, seems to behave fully satisfactorily. Given that it is easier to implement than

ML, pooled QML may be a perfectly sound choice to estimate the parameters of interest

(either of the autoregressive or the marginal model).

The choice among an autoregressive or a marginal approach (also feasible when no

time-varying covariates appear in p and/or p1) is obviously indi¤erent on asymptotic

grounds (as evinced by the larger sample results �check Table 4, for NLS and pooled

QML estimates). Nonetheless, namely with a smaller sample, a comparative study of

both types of approaches seems to be helpful for practical purposes. In this regard, the

results in Table 1 seem to indicate that estimation of the autoregressive model yields better

results than estimation of the marginal model (both on average and on e¢ ciency grounds

�as suggested by the root mean squared error results). A type of �nding that clearly

adds up to the user-friendlier nature of an autoregressive aproach, which, as mentioned,

can be utilized in a wider range of situations than the marginal model.

4.2 Test of One-part Null Binomial Model

Design

This Section illustrates the performance of two variants of the test of the one-part

binomial null speci�cation that is proposed in Section 3.5. Both versions of the test

are based on the test of signi�cance of the intercept in regression (21). In the �rst

version (T1) the test is carried out upon the OLS regression of yit on yi;t�1 + 1 and

intercept; the second version (T2) is implemented upon NLS estimation of (21), with

pBi � (1 + exp (�1 + �2zi))�1 and zi a random covariate de�ned below.

Two types of DGP are considered: in order to assess the empirical size of the tests, the

data, for each i and t, are sequentially generated according to a binomial with �parameters�

yi;t�1 + 1 and pBi � (1 + exp (�1 + :5zi))�1, where zi denotes a time-invariant normal

variate with null mean and variance �2z 2 f:01; :25; 1g. In order to evaluate the tests�

empirical power, the data are generated from the hurdle model with probabilities pi, used

for DGP1 in the previous subsection, and p1i = pBi. In this experiment one sample is

generated, with n = 360 independent individual time series, 1 � Ti � 36 and the same

number of individuals for each di¤erent Ti. As before, the exercise is based on 2000

replications of the described samples, with regressors newly drawn at each replica.
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Simulation Results

The results of the experiment are included in Table 7 which displays rejection percent-

ages for the proposed tests under the null (binomial model) and alternative hypotheses

(hurdle model), respectively. Given the poor results for the T1 test under H0, grossly

over rejected by this procedure, the table only presents results for the T2 test under

H1. While the former test seems clearly unreliable, the empirical size and power results

displyed by T2 suggest that this version of the test can lead to reliable conclusions about

the convenience of choosing among a one-part vs. a two-part speci�cation.

Table 7 about here

5 An Empirical Illustration

The present Section illustrates the application of the proposed methodologies to a data

set on personal loans granted by a Portuguese �nancial institution. The data consist of

a sample of 98 clients who were either repaying loans in February 2013, or had �nished

repaying their loans some time before this date. The earliest loan in the sample was

contracted in October 2004 and the �rst loan to be fully repaid was completed in July

2010. The data set comprises both completed and active loans: 62 loans in the sample

were still active in February 2013. For each contract the sample contains the time series

of missed monthly installments at the end of each month, over the duration of the loan

or from its beginning up to February 2013 (for loans not fully repaid by this date).

The available data set also contains information on some characteristics of the loans

and of the clients �these variables are described in Table 8. The covariate H is a dummy

variable indicating whether the credit is used to buy a house (H = 1) or not (H = 0). In

the sample, 30 loans are for home purchase and involve a mortgage, while the remaining

68 credits are used for personal consumption. The covariate EFRATE (e¤ort rate) is

included as a measure of the client�s borrowing capacity and is de�ned as the ratio of the

amount of the �xed installment to the client�s family total monthly net income (according

to the annual IRS o¢ cial statement). For some (few) clients the value of EFRATE is

very high, re�ecting, on the one hand, the over relaxed credit granting practice before the

global �nancial crisis that surfaced in 2008 and, on the other hand, the consideration, in
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the decision to grant credit, of some clients�additional sources of income, not disclosed for

tax purposes. The dummy variable FCRIS (�nancial crisis) takes the value 0 before July

2009 and 1 as of this date, from which the ripples of the �nancial crisis can reasonably be

judged to have become stronger in the Portuguese �nancial and economic environment.

The proportion of zero responses in the sample is considerably larger than the total number

of positive values: in a total of 5455 observations, there are 5143 zeros, with an overall

sample average of :357 missed payments and a strongly positive skew (sample skewness

coe¢ cient equal to 12).

Table 8 about here

The null hypothesis of a single-part binomial model was tested as described in Section

4.2, by assessing the signi�cance of the intercept in regression (21), with pB = p1 (de�ned

below). This form of the test, based on NLS estimation of (21), was preferred to the OLS

version, in view of the apparent unreliability of the latter, as suggested by the Monte

Carlo results (in Section 4.2). The available data yielded an NLS intercept estimate of

:018, highly signi�cant (t statistic: 3:743). This result casts a strong doubt upon the

convenience of a single-part speci�cation, so a two-part model was estimated.

The main estimation results of the hurdle regression model are included in Table 9.

These results refer to pooled QML (Poisson and negative binomial with a = 1 in (16))

and ML estimates, with p and p1 speci�ed as logits. No convergence was achieved with

the NLS method, which prevented the presentation of the corresponding estimates. This

setback notwithstanding, a sound alternative seems to be o¤ered by pooled QML, no more

di¢ cult to use than NLS with common econometrics packages.

Table 9 about here

The covariates included in the model are indicated in Table 8. While the ML estimates

of the parameters in p appear somewhat close to corresponding QML estimates, the same

does not seem true with regard to p1 parameters�estimates. Table 9 reports the results of

a Hausman-type test, confronting ML and QML results. In both cases the outcome of the

test suggests a clearcut rejection of the null hypothesis, which, as mentioned in Section 3.5,
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can be indication of unobserved individual heterogeneity in the data, under which presence

ML is not valid. Accordingly, the subsequent analysis refers to QML estimates, deemed

more reliable than ML estimation results. All interaction terms included as regressors in

p and p1 were statistically nonsigni�cant, so the estimated models do not include these

terms. With regard to p1, all variables initially considered, but CAPITAL, turned out

to be nonsigni�cant so only the latter was included in this probability. Thus, p (� pit)

was taken as individual- and time-speci�c (with the inclusion of the covariate FCRIS)

and p1 (� p1i) individual-speci�c. RESET-type tests were carried out by assessing the

signi�cance of squares of covariates indices in each of p and p1; the associated robust t

statistics and corresponding p-values suggest that the adopted speci�cations for both p

and p1 can be taken as appropriate approximations to the true conditional probabilities

(Poisson, additional squared term in p: t = :300; in p1: t = :263; negative binomial,

additional squared term in p: t = :348; in p1: t = :060).

Referring now to QML results, all the parameters�estimates are noted to be statis-

tically signi�cant at the 1% level. As expected, positive estimates were obtained for the

coe¢ cients of EFRATE, FAMILY and FCRIS, all reasonably supposed to have a

negative impact on the probability of loan repayment. The H dummy, in turn, is esti-

mated to have a positive in�uence on this probability, a result in accordance with the fact

that personal consumption loans (H = 0) usually involve less stringent types of collateral

than mortgage loans (H = 1). The explanatory variables CAPITAL and DURATION

are (quite naturally) highly correlated in the sample (correlation coe¢ cient 84:6%) but

both exert a statistically signi�cant in�uence on p (though small and of opposite sign).

Meanwhile, as alluded to before, the covariate DURATION is individually insigni�cant

in p1, which is negatively a¤ected by CAPITAL. At face value the probability of miss-

ing overdue installments seems negatively in�uenced by the amount borrowed; given that

the sample contains a relatively small number of positive observations of the response

variables, these results concerning p1 estimation should be viewed with caution.

In order to illustrate how these results a¤ect the expected value of missed payments,

marginal e¤ects of a unit change of EFRATE (unit: percentage point) were computed

under, respectively, H = 0 and 1, and FCRIS = 0 and 1. The corresponding estimates

were obtained from the average of (12) for all individuals in the sample, considering t = 56

(the average of the age of contracts in the sample) and plugging in QML estimates. Table
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10 displays these results, along with the estimated di¤erences of the mean value of missed

installments for H = 0 and 1 (�rst di¤erence of (6), denoted �HE (ytjx)) under both

FCRIS = 0 and 1.

Table 10 about here

The contents of this table suggest a few remarks. Overall, estimates of marginal e¤ects

computed upon QML-Poisson are invariably larger, in absolute value, than those obtained

from QML-negative binomial. Nevertheless, as expected, no sign contradictions are found

between both methods and, in addition, both yield estimates of marginal e¤ects that are

roughly ten times higher, in absolute value, under FCRIS = 1 than under FCRIS = 0.

In what concerns the marginal e¤ect of one more percentage point of EFRATE on

E (ytjx), although apparently weak, it is strongest for H = 0 and FCRIS = 1 (under

both QML methods). This is somehow expected, as, on the one hand, loans for which

H = 0 usually involve weaker guarantees and, on the other hand, the general hardship

caused by a major �nancial crisis (FCRIS = 1) is bound to a¤ect the dependability of

individuals� and households� repayment behaviour. In the opposite situation (H = 1,

FCRIS = 0), the marginal e¤ect of EFRATE seems negligible: the presence of a strong

collateral involved in mortgage loans may well serve as a strong deterrent of default in

this case. Regarding the marginal e¤ects of H on E (ytjx), estimates clearly suggest

that, on average, the di¤erential e¤ect of a mortgage is stronger under a �nancial crisis

than without it. This result may re�ect the fact that, again, the presence of a strong

collateral somehow stabilizes the repayment behaviour of borrowers, an e¤ect that can be

particularly felt under �nancial stress.

6 Final Remarks

This paper presents a hurdle model for count data with excess zeros and bounded support,

suggesting its estimation through pooled NLS and QML, and ML. A Monte Carlo study

suggests that the QML estimator competes fairly well with the ML estimator, even with

moderate sample sizes. While being considerably easier to use, the pooled QML method

is often more robust than ML, only requiring correct speci�cation of the �rst conditional

moments of the response variables. This feature is particularly useful when the data are
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a¤ected by some forms of unobserved heterogeneity, which invalidate a full information

maximum lilkelihood approach. In addition to the simulation study presented, a real data

set on personal loans granted by a Portuguese �nancial institution illustrates the potential

usefulness of the suggested approach, as a model of individual repayment behaviour.

In this sense, the suggested models can prove a useful tool, for instance, in credit and

behavioural scoring analysis.

The proposed approach can be generalized in several directions, extending its ap-

plication to situations related to the present empirical study. For instance, through a

rede�nition of the support of each yt the model can be used to address early repayment

or redemption, frequent in credit granting applications. Or, by adapting the notion of

thinning to continuous dependent variables, loan contracts with variable installments can

also be addressed. Among others, these extensions provide a natural ground for future

analytical and applied research.
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Appendix

This appendix presents algebraic derivations of expressions for relevant moments of

the marginal, joint and conditional distributions involved in the sequence fyt; t = 1; :::; Tg.

Also included is a brief statement of asymptotic properties of the QML estimator with

n!1 and bounded Ti.

Section 2.1 � COV (yt; yt�k) = r
kV (yt�k).

Proof. Through successive application of the law of iterated expectations to (4), one can

write the �rst conditional moment of yt, given yt�k, as

E (ytjyt�k) = p
�
1 + r + :::+ rk�1

�
+ rkyt�k: (23)

From

COV (yt; yt�k) = E (yt (yt�k � E (yt�k))) = E (E (ytjyt�k) (yt�k � E (yt�k)))

and from (23), it follows that

COV (yt; yt�k) = E
��
p
�
1 + r + :::+ rk�1

�
+ rkyt�k

�
(yt�k � E (yt�k))

�
= rkE (yt�k (yt�k � E (yt�k))) = rkV (yt�k) :

Section 2.2 � General expression of E (ytjx) with time-varying covariates �x �

(x1; : : : ;xT ) does not include lags of dependent variables).

Proof. Suppose that both p and p1 do not involve lags of the dependent variable. Then,

E (y1jx1) = p (x1) ;

E
�
y2jx(2)

�
= E

�
E
�
y2jy1;x(2)

��
= p (x2) + r (x2)E (y1jx1) = p (x2) + r (x2) p (x1) ;

E
�
y3jx(3)

�
= E

�
E
�
y3jy2;x(3)

��
= p (x3) + r (x3)E

�
y2jx(2)

�
=

p (x3) + r (x3) (p (x2) + r (x2) p (x1)) = p (x3) + p (x2) r (x3) + p (x1) r (x2) r (x3) .

A mathematical induction argument ensures the general result8<: p (x1) t = 1;

pt +
Pt�1

j=1 pj

�Qt
k=j+1 rk

�
; t � 2;
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which reduces to (6) when all covariates (therefore p and p1) are time-invariant.

Section ?? � Consistency and
p
n-asymptotic normality of the QML estimator.

Proof. The properties of consistency and
p
n-asymptotic normality of the QML estimator

are well known to result from the fact that the population values of the conditional mean

parameters maximize E (LLi (�)) �see Gouriéroux, et al. (1984). The following merely

evinces the main necessary condition for consistency of QML under an �autoregressive�

approach (as de�ned in the main text).

Assume random sampling from the cross section. The individual contribution to the

LEF log-likelihood can be written as (individual index, i, omitted so LL � LLi, T � Ti
and so forth)

LL = const:+
TX
t=1

(a (�t) + c (�t) yt) ;

where a (�) and c (�) are functions such that �t = �c0 (�t)
�1 a0 (�t), �t = pt + rtyt�1 and

y0 � 0. Let xt now denote all covariates except lagged dependent variables; at the

population value of �, under E (ytjyt�1;xt) = �t;8t,

E

�
@LL

@�

����x� = E
 

TX
t=1

c0 (�t) (yt � �t)r��t

�����x
!
=

TX
t=1

Eyt�1jx (c
0 (�t) (E (ytjyt�1;xt)� �t)r��tjx) = 0;

which enables the consistency of the QML estimator.

Section 3.4 �Multiplicative unobserved e¤ects.

Proof. Let ei � (ei1; : : : ; ei;Ti) and suppose that the mean of yit is a¤ected by a time-

invariant e¤ect multiplicatively, that is, E (yitjei) = eiE (yit) (for simplicity, time-invariant

observable covariates are assumed so they are omitted). Hence, for t = 1,

E (yi1jei) = eiE (yi1) = ei Pr (di1 = 1) = eip:

For t � 2, conditionally on dit = 0 and yi;t�1, yit follows a binomial p.f. with number of

Bernoulli trials given by yi;t�1, so an unobserved e¤ect will intervene in the probability

of �success�, p1; denote this as p1 (e1it). Recalling (1), one can check that, for t = 2, the
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term e1i2 must satisfy the equation

E (yi2jei) = eiE (yi2),

eip (1 + eip+ p1 (e1i2) (1� eip)) = eip (1 + p+ p1 (1� p))

,

eip+ p1 (e1i2) (1� eip) = p+ p1 (1� p) :

This equation is formally di¤erent from those that are obtained for t > 2, so, for each t,

the roots e1it of the corresponding implicit equations vary with t. In words, an assumption

of time-invariant individual heterogeneity a¤ecting the conditional expectation of yit rests

on a time-varying unobservable term a¤ecting p1.
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Table 1 - Performance of Estimators, DGP1, n = 360

Autoregressive Model

NLS QML-Poisson QML-Neg. Bin. ML

Avg RMSE Avg RMSE Avg RMSE Avg RMSE

�1 .870 .108 .858 .070 .856 .072 .852 .032

�2 -.756 .090 -.754 .069 -.754 .081 -.753 .059

�3 .257 .121 .252 .064 .249 .069 .250 .027


1 .957 .206 .985 .127 .992 .141 1.000 .024


2 -.543 .244 -.514 .136 -.507 .155 -.501 .026

Marginal Model

NLS QML-Poisson QML-Neg. Bin.

Avg RMSE Avg RMSE Avg RMSE

�1 .874 .207 .863 .122 .861 .105 � �

�2 -.757 .081 -.755 .077 -.756 .075 � �

�3 .233 .174 .255 .118 .255 .097 � �


1 .581 5.078 .968 .234 .945 1.366 � �


2 -.487 .530 -.535 .255 -.532 .241 � �
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Table 2 - Performance of Estimators, DGP2, n = 360

Autoregressive Model

NLS QML-Poisson QML-Neg. Bin. ML

Avg RMSE Avg RMSE Avg RMSE Avg RMSE

�1 .886 .083 .866 .063 .861 .064 .819 .062

�2 -.754 .105 -.751 .087 -.752 .093 -.736 .062

�3 .259 .068 .255 .050 .251 .054 .249 .026

& -.307 .262 -.301 .246 -.303 .243 -.284 .201


1 .950 .325 .957 .307 .973 .326 1.000 .026


2 -.536 .119 -.528 .097 -.521 .104 -.499 .026

Table 3 - Performance of Estimators, DGP3, n = 360

Autoregressive Model

NLS QML-Poisson QML-Neg. Bin.

Avg RMSE Avg RMSE Avg RMSE

�1 .634 .237 .599 .260 .589 .269

�2 -.519 .251 -.503 .259 -.504 .260

�3 .180 .098 .173 .092 .171 .095

& -.231 .309 -.207 .302 -.211 .309


1 .631 .580 .581 .618 .613 .643


2 -.020 .497 -.016 .495 -.010 .502
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Table 4 - Performance of Estimators, DGP1, n = 5400

Autoregressive Model

NLS QML-Poisson QML-Neg. Bin. ML

Avg RMSE Avg RMSE Avg RMSE Avg RMSE

�1 .851 .027 .850 .017 .850 .018 .850 .008

�2 -.749 .023 -.749 .017 -.749 .020 -.749 .015

�3 .252 .030 .250 .016 .250 .018 .250 .007


1 .997 .050 .999 .032 1.000 .035 1.000 .006


2 -.506 .055 -.501 .033 -0.501 .039 -.500 .007

Marginal Model

NLS QML-Poisson QML-Neg. Bin.

Avg RMSE Avg RMSE Avg RMSE

�1 .851 .042 .851 .031 .850 .025

�2 -.749 .020 -.749 .019 -.749 .018

�3 .253 .041 .252 .030 .252 .024


1 .996 .078 .997 .058 .998 .048


2 -.508 .080 -.506 .060 -.504 .049
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Table 5 - Performance of Estimators, DGP2, n = 5400

Autoregressive Model

NLS QML-Poisson QML-Neg. Bin. ML

Avg RMSE Avg RMSE Avg RMSE Avg RMSE

�1 .852 .022 .851 .016 .851 .017 .817 .036

�2 -.749 .032 -.750 .024 -.750 .025 -.736 .021

�3 .251 .017 .251 .013 .251 .014 .250 .007

& -.299 .206 -.300 .204 -.300 .204 -.283 .200


1 .992 .100 .996 .085 .997 .088 1.000 .006


2 -.504 .031 -.503 .025 -.502 .027 -.500 .006

Table 6 - Performance of Estimators, DGP3, n = 5400

Autoregressive Model

NLS QML-Poisson QML-Neg. Bin.

Avg RMSE Avg RMSE Avg RMSE

�1 .793 .075 .746 .083 .735 .084

�2 -.791 .073 -.778 .077 -.762 .081

�3 .223 .039 ..209 .034 .211 .037

& -.274 .123 -.270 .145 -.258 .148


1 .830 .201 .817 .228 .815 .231


2 -.357 .151 -.337 .163 -.336 .161
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Table 7

Tests of One-part Binomial Model

Rejection Percentages, nominal level 5%

H0 : yit Binomial

�2z :01 :25 1

T1 46.43 47.15 51.28

T2 3.32 3.87 4.07

H1 : yit Hurdle Model

�2z :01 :25 1

T2 93.27 95.34 95.28

Table 8 - Description of Variables Used in the Empirical Illustration

De�nition mean (sum) st.dev.

EFRATE : (installment=monthly net income)� 100% 22:284% 18:880

FAMILY : Number of family members 2:867 1:375

CAPITAL : Total borrowed amount (1000 euros) 34; 285 44; 653

DURATION : Contract duration of return period (months) 157:153 161:385

H = 1, if loan is used to buy a house (30)

FCRIS = 1 as of July 2009
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Table 9 - Estimation Results and Hausman Tests

Estimator ML QML Poisson QML Neg. Binom.

est. s.e. pv est. s.e. pv est. s.e. pv

p

Intercept �7:105 :425 :000 �7:539 :637 :000 �7:570 :641 :000

EFRATE 2:339 :120 :000 2:144 :421 :000 2:184 :430 :000

FAMILY :315 :031 :000 :405 :084 :000 :412 :084 :000

CAPITAL �:00004 :000006 :000 �:00003 :000007 :000 �:00003 :000007 :000

DURATION :015 :002 :000 :010 :003 :003 :010 :003 :002

H �4:051 :554 :000 �2:883 :923 :002 �2:901 :929 :002

FCRIS 2:218 :430 :000 2:447 :432 :000 2:470 :433 :000

p1

Intercept :501 :106 :000 4:688 :649 :000 2:596 :313 :000

CAPITAL �:00002 :000008 :003 �:00007 :00001 :000 �:00004 :00001 :000

Poisson vs. ML Neg. Bin. vs. ML

Hausman Test Test Statistic pv Test Statistic pv

60:544 � 0 64:919 � 0
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Table 10

Average Marginal E¤ects with respect to EFRATE and H

rEFRATEE (ytjx), t = 56

H = 0; FCRIS = 0 H = 0; FCRIS = 1

Poisson Neg. Bin. Poisson Neg. Bin.

.0018 .0002 .0179 .0033

H = 1; FCRIS = 0 H = 1; FCRIS = 1

Poisson Neg. Bin. Poisson Neg. Bin.

.0001 .00001 .0012 .0001

�HE (ytjx), t = 56

FCRIS = 0 FCRIS = 1

Poisson Neg. Bin. Poisson Neg. Bin.

-.1479 -.0482 -1.4488 -.5557
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