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Abstract

This note presents an approximation to multivariate regression models which is

obtained from a �rst-order series expansion of the multivariate link function. The

proposed approach yields a variable-addition approximation of regression models

that enables a multivariate generalization the well-known goodness of link speci�-

cation test, available for univariate generalized linear models. Application of this

general methodology is illustrated with models of multinomial discrete choice and

multivariate fractional data, in which context it is shown to lead to well-established

approximation and testing procedures.
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1 Introduction

This note presents a general variable-addition approximation to multivariate regression

models that generalizes the approach introduced by Pregibon (1980), for univariate gen-

eralized linear models. The proposed methodology provides a uni�ed framework that

encompasses several variable-addition approximation strategies proposed (e.g., in the

Econometrics literature).

As described below, the present approximation is obtained from a modi�cation (series

expansion) of a particular maintained model of interest, nesting some simpler null model.

To the extent that it leads to an added-variables approximation, the approach logically

suggests a general speci�cation test that can be implemented by assessing the signi�cance

of the additional covariates in the null model. The resulting procedure can thus be

implemented without having to estimate the alternative model, which, in the multivariate

case, can prove a signi�cant computational advantage on its own.

The remainder of the paper is organized as follows. Section 2 presents the ba-

sic variable-addition approximation, developed within a general multivariate regression

framework and discusses goodness of link speci�cation tests that are suggested by the

proposed approximation. Section 3 applies the proposed approach to several examples

from the areas of multinomial discrete choice and multivariate fractional data modelling.

Section 4 concludes and suggests subsequent research.

2 Model Approximation and Testing

Let y � (y1; : : : ; yJ)
0 denote a random J-vector with conditional expectation, given a

matrix of observable covariates X, generally expressed as

G (X;�) � [G1 (X;�) ; � � � ; GJ (X;�)]0 � [E (y1jX) ; � � � ; E (yJ jX)]0 � E (yjX) , (1)

where � denotes a column K-vector of parameters. For simplicity, the conditional means

of y may be referred to without explicit mention of their arguments: G � G (X;�) and

Gj � Gj (X;�). Frequently, G is an index function, G (X�), with the forms of G, X

and � depending on the speci�c context. For instance, in the linear seemingly unrelated

regression (SUR) model, typically Gj (X�) = x0j�j, j = 1; : : : ; J , so G (�) is a vector of

identity functions, X is block diagonal with each diagonal block given by the row vector
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x0j; j = 1; :::; J , and � = (�01; : : : ;�
0
J)
0. Another common example arises in the area

of discrete choice analysis, where yj is usually coded as 1 if alternative j is selected (0

otherwise) so Gj (X�) = Pr (yj = 1jX) and G is usually speci�ed as a multivariate c.d.f.

(often logistic or normal) �see, e.g., Cameron and Trivedi (2005, Chapter 15).

Model G can often be appropriately nested within a general model, H (X�;�) �

[H1 (X�;�) ; :::; HJ (X�;�)]
0, with � an L-vector of parameters such, thatH (X�;0) =

G (X�). Then, the correctness of G as a functional form for E (yjX) can be assessed

by testing the hypothesis H0 : � = 0. Common examples of such nests occur, for in-

stance, in the area of discrete choice with the nested logit and dogit generalizations of

the multinomial logit model (respectively, McFadden, 1981, and Gaudry and Dagenais,

1979).

The alternative model can be approximated by including appropriate additional co-

variates in the null conditional mean function,G. One possible approximation stems from

consideration of the multivariate extension of the so-called link function, a widely used

concept in the generalized linear models (GLM) literature (see Fahrmeir and Tutz, 2001).

The multivariate link is de�ned as the vector function relating a set of linear predictors

to a conformable vector of conditional means. Denote the vector of J conditional means

under the alternative hypothesis as

� =H (X�;�) . (2)

If, as is usually the case, the functions Hj (X�;�) are continuously di¤erentiable and

injective, one can invert (2) to obtain

X� = h (�;�) , (3)

with h (�; �) denoting the J-variate link function associated with H. With � = 0, (2)

yields the system of null conditional means; write this as � = H (X�;0) = G (X�),

with associated link g (�) � h (�;0). Given the invertibility of both systems, there is a

one-to-one correspondence between links and functional forms. Thus, as in a univariate

setting, the correctness of the multivariate mean speci�cation can be assessed by testing

the associated link, h (�; �), in the spirit of Pregibon�s (1980) goodness of link test for

univariate GLM�s.

A �rst-order Taylor-expansion of h (�;�) around � = 0 yields

h (�;�) � h (�;0) +
h
r�0h (�;�)j�=0

i
� � = g (�) +

h
r�0h (�;�)j�=0

i
� �; (4)
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where r�0h (�;�)j�=0 denotes evaluation at � = 0 of the J � L matrix of derivatives

of the J elements of h (�;�) with respect to the row L-vector �0. The alternative link,

h (�;�), can thus be approximated by g (�) =X� + Z�, with Z � � r�0h (�;�)j�=0.

Therefore, given the continuity of H, the alternative model can be approximated in the

neighborhood of the null by H� (X�;�) � G (X� +Z�).

Often, system (3) cannot be explicitly produced (notable multivariate exceptions,

besides the linear case, being the multinomial logit and dogit models), so one can make

use of the Implicit Function Theorem to obtain Z. Expressions (2) and (3) yield

��H (X�;�) = 0) �r�0H (X�;�) = 0,

�r(X�)0H (X�;�)
J�J

�r�0h (�;�)
J�L

�r�0H (h;�)
J�L

= 0
J�L

,

�r�0h (�;�) =
�
r(X�)0H (X�;�)

��1 �r�0H (X�;�) . (5)

Evaluation under H0 then yields

Z �
�
r(X�)0G

��1 � r�0Hj�=0 : (6)

If necessary, Z can be obtained through application of the Cramer rule to (5), which

amounts to L linear systems in the columns of r�0h (H ;�) (one system per column).

Assume that a random sample of N observations (yi;X i), i = 1; :::; N , is available to

the researcher. The speci�cation test that is suggested by the present framework requires

evaluation of Z at �rst-step � estimates, �̂, so the procedure tests the null hypothesis

in the augmented model G
�
X i� + Ẑi�

�
, with Ẑi � Z

�
X i�̂

�
. The null model can

be estimated through some M -estimation method (e.g., maximum likelihood, ML, quasi-

ML, or nonlinear least squares), upon which any of the three classical tests can be used

(Wald, likelihood ratio, LR, or score, LM). As Z is absent from the model under H0, the

null distribution of these tests is not a¤ected by the �rst-step estimation of Z. Thus,

given present-day software packages, easily handling nonlinear estimation, Wald or LR

tests seem fairly easy to use as neither involves estimation of the original alternative

speci�cation but only requires estimation of model G twice (respectively, without, and

with Ẑi).(1) Even when the values of the parameters under H0 are on the frontier of the

1Even as a regression-based procedure, such as those proposed by Wooldridge (1991), the LM test

can be di¢ cult to implement as it requires the construction of many new variables. Therefore, its

computational advantage over the other classical tests seems, by now, largely o¤set.
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alternative parameter space (e.g., when the elements of � are nonnegative), the estimation

of the added variables approximate model does not need to impose this restriction so all

three procedures (not only the LM test) retain their usual asymptotic null law. Meanwhile,

it is interesting to note, with regard to the LM test, that the same test statistic is obtained,

irrespective of whether the original alternative model or its variable addition variant is

employed.(2) In other words, the LM test is inherently a variable addition test, with

additional covariates appropriately de�ned by Z.

Other variable addition strategies are possible, like the augmentation of the null model

with powers and cross-products of the elements ofX�, extending the well-known RESET

test (Ramsey, 1969) to nonlinear and/or multivariate models (see Pagan and Vella, 1989,

Shukur and Edgerton, 2002, Alkhamisi, et al., 2008). The present approach di¤ers from

RESET in that the latter approximates the unspeci�ed H by expanding the inverse

function G�1 [H(X�)] around X� = 0, whereas, here, the null model is augmented

with Z, not necessarily a polynomial in X�. In this sense, by choosing appropriate

additional covariates, the present test, rather than being used as a general procedure like

RESET, can be designed to have power against speci�c departures from the null.

The present approach can be used in various multivariate contexts. The next Section

illustrates its application to a few econometric examples from the areas of discrete choice

and fractional data modelling. In these areas, the multinomial logit stands out as a tool

of choice, so particular attention is devoted to this model.

3 Illustration: Goodness of Link Tests of Discrete

Choice and Fractional Data Models

Data on discrete choice and data on fractional variables share the two basic features

of being bounded in the unit interval, 0 � yj � 1, j = 1; : : : ; J , and adding up

to one,
PJ

j=1 yj = 1. Understandably, the speci�cations that are commonly used to

model the probability of an individual choosing between mutually exclusive alternatives,

P (yjjX) = E (yjjX), j = 1; : : : ; J , may also be employed to describe the conditional

means of shares, E (yjjX), in the fractional context (see, e.g., Murteira and Ramalho,

2013, and the references therein).

2Note that r�0H�j�=0 = r(X�)0G�Z = r(X�)0G�
�
r(X�)0G

��1 � r�0Hj�=0 = r�0Hj�=0.
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Models for both types of data are usually estimated through maximization of a mul-

tivariate Bernoulli likelihood, given the speci�cation of the vector of conditional proba-

bilities or means. It should be noted, nonetheless, that maximization of this likelihood

yields ML estimates for discrete choice parameters whereas, for fractional data models,

it corresponds to QML estimation. As is well known, QML estimation requires robust

standard errors of parameters�estimates, a requirement to be taken into account when

testing the signi�cance of conditional mean regressors.

3.1 Tests of the Logit

The multinomial logit model can be expressed as Gj (X�) = exp
�
x0j�

�
=
PJ

l=1 exp (x
0
l�),

j = 1; :::; J ,whereX � (x1; :::;xJ)0 is (J �K), with xj the column K-vector of covariates

associated with alternative j, j = 1; :::; J , and � a column K-vector of parameters.(3) Any

alternative model nesting the logit can be suitably approximated by making use of (6).

Let G� � (G1; :::; GJ�1)0 and � � X��, where X� � (x1; :::;xJ�1)0. The expression of

Z involves the inverse of the (J � 1)-square matrix of derivatives ofG� with respect to �0,

which can be checked to have typical element �jlG�1j +G�1J ; j; l = 1; : : : ; J � 1, where �jl
denotes the Kronecker delta andGJ = 1�

PJ�1
j=1 Gj. Then, H

�
j (X�;�) = Gj (X� +Z�),

with Z a (J � L)-matrix with j-th row the L-vector z0j � G�1j r�0Hjj�=0, j = 1; :::; J .

This result allows the added variables approximation to any alternative model nesting

the logit to be generally expressed as

H�
j (X i�;�) = exp

�
x0ij� +G

�1
ij f

0
ij�
��XJ

l=1
exp

�
x0il� +G

�1
il f

0
il�
�
; (7)

where, for each sample unit, the vectors f ij satisfy the condition
PJ

j=1 f ij = 0. For

instance, in the univariate case �J = 2 �expression (7) yields

H� (x0i�; �) = exp
�
x0i� + (Gi (1�Gi))

�1 f 0i�
�� �

1 + exp
�
x0i� + (Gi (1�Gi))

�1 f 0i�
�	
;

(8)

for some chosen vector f i. This general expression encompasses various binomial logit gen-

eralizations proposed in the literature (see, e.g., Stukel, 1988, and the references therein).

3In this form, the model is known as �conditional logit�, a term introduced by McFadden (1973). The

formulation also allows for constant covariates across alternatives and alternative-speci�c parameters, by

including interactions of alternative-speci�c indicators with alternative-invariant variables.
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Note incidentally that, for chosen L, f 0i = Gi (1�Gi)
h
(x0i�)

2 ; :::; (x0i�)
L+1
i
yields an

approximation to the alternative model that is used for RESET-type tests.

Some multivariate examples �J � 2 �are considered in the ensuing text.

Dogit

The dogit model (Gaudry and Dagenais, 1979), can be formally expressed as Hj �

S�1
�
�j +Gj

�
; j = 1; :::; J; with Gj the multinomial logit, S � 1 +

PJ
j=1 �j and the J

parameters �j are non-negative. The model reduces to the logit under H0 : � = 0. For

this model, f ij is a J-vector with l-th element �lj � Gij, l; j = 1; :::; J , which yields the

approximation(4)

H�
ij = exp

�
x0ij� + �jG

�1
ij

�� JX
l=1

exp
�
x0il� + �lG

�1
il

�
; j = 1; :::; J: (9)

Random Parameters Logit

The random parameters logit, also known as �mixed logit� (McFadden and Train,

2000), generalizes the logit by taking � as random (owing to such concerns as, e.g., in-

dividual heterogeneity of parameters, measurement errors and/or omission of covariates).

Taking expectation with respect to some mixing joint density of �, the model can be

expressed as Hj = E� (Gj); following Cox (1983), a Taylor-expansion of Hj around E (�)

yields the small variance approximation Gj + 1
2
vech

�
r��0Gj

�0
�, where � contains the

nonredundant elements of COV (�k; �l) and vech (�) denotes the column vector stacking

the independent elements of r��0Gj evaluated at E (�). Accordingly, f ij now specializes

to vech
�
r��0Gij

�
=2, so

H�
ij =

exp
h
x0ij� +G

�1
ij vech

�
r��0Gij

�0
�
i

PJ
l=1 exp

h
x0il� +G

�1
il vech

�
r��0Gil

�0
�
i ; j = 1; :::; J: (10)

For discrete-choice the LM test of H0 : � = 0 leads to the general Information Matrix

Test statistic (White, 1982), which, as is well-known, can be interpreted as a test for

neglected heterogeneity (Chesher, 1984). The fully general random parameters logit nat-

urally encompasses particular models of interest on their own. One special case results by

restricting parameters�randomness to the intercepts, in which case one can produce, e.g.,

a simple �poolability� test in the context of panel data. Cardell (1977), among others,

considers the random intercepts multinomial logit for cross-sectional data; Pforr (2011)

4For discrete choice and fractional data, LM tests of the logit against the dogit have been proposed

by, respectively, Tse (1987) and Murteira, et al. (2013).
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discusses the panel data version of the model. Let t denote time index and write a logit

model for each it-th sample unit as

Gitj = exp
�
d0j�+ x

0
itj�
��XJ

l=1
exp (d0l�+ x

0
itl�) ; j = 1; :::; J; (11)

where dj � (�j1; :::; �jJ�1)0 is a vector of Kronecker deltas, � � (�1; :::; �J�1)0, �J is set to

zero for identi�cation purposes and the vectors xitj do not include constant term. This

expression can be seen as nested within a panel data logit speci�cation with individual

(time-invariant) e¤ects �i � (�i1; :::; �i;J�1)0, with mean E (�i) = � and some covariance

matrix V (�i). Then, the null hypothesis of interest, H0 : V (�ij) = 0;8i; j, implies

�i = �;8i. Acceptance ofH0 prompts pooled estimation through maximization of the log-

likelihood logL =
PN

i=1

PTi
t=1

PJ
j=1 yitj logGitj, with Ti the number of time observations

for individual i. By restricting V (�i) to a scalar matrix, V (�i) = �IJ�1, one can produce

a simpler model with similar local behaviour. Then, L = 1 and for each it-th unit,

f itj = tr (r��0Gitj) =2 =
1

2
�

8<: itGitj +Gitj � 2G2itj; j = 1; :::; J � 1;

itGitJ ; j = J;
(12)

with it � 2
PJ�1

l=1 G
2
itl�

PJ�1
l=1 Gitl. The resulting panel data version of (10) is written as

H�
itj =

exp
�
�j + x

0
itj� + � (1� 2Gitj)

�PJ�1
l=1 exp [�l + x

0
itl� + � (1� 2Gitl)] + exp (x0itJ�)

; j = 1; :::; J � 1; (13)

with H�
itJ such, that

PJ
j=1H

�
itj = 1.

Nested Logit

One other logit generalization is provided by the nested logit, the most common mem-

ber of the �generalized extreme-value� class of models (see, e.g., Train, 2009, Ch. 4,

and references therein). The nested logit can be expressed as follows (only two decision

levels are considered): suppose that J > 2 and the alternatives are distributed into L

nonoverlapping nests, N1, ..., NL, L < J . Suppose that alternative j belongs to nest l;

the probability of choosing alternative j �or, in the fractional case, the conditional mean

of yj �can be expressed as Hj = Glj � Sl,where

Glj � exp
�
x0j�= (1 + �l)

��X
k2Nl

exp [x0k�= (1 + �l)] ; (14)

Sl �
(X
k2Nl

exp [x0k�= (1 + �l)]

)1+�l, LX
m=1

(X
k2Nm

exp [x0k�= (1 + �m)]

)1+�m
:
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For this model one obtains f ij in (7) as the L-vector with typical element

r�lHij
��
�=0

= Gij

 
�jl

(
log

"X
k2Nl

exp (x0ik�)

#
� x0ij�

)
� (15)

X
k2Nl

Gik

(
log

"X
m2Nl

exp (x0im�)

#
� x0ik�

)!
; l = 1; : : : ; L:

3.2 Tests of the Dogit

By making use of the previous results for the logit, the present method is easily applied

to approximate models that nest the dogit speci�cation.

Denoting the dogit model as Dij and the logit as Gij, one has r�Dij = S
�1r�Gij so

the added variables approximation to a (dogit nesting) alternative model can be expressed

as H�
ij = S

�1 ��j +G�ij�, with
S � 1 +

JX
j=1

�j; G
�
ij � (16)

exp
�
x0ij� +G

�1
ij Sf

0
ij�
�� JX

l=1

exp
�
x0il� +G

�1
il Sf

0
ij�
�

and, as before, f ij � r�Hijj�=0 (obviously, the constant S is irrelevant for the test of

H0). One possible generalization of the dogit would be obtained by considering random

�j parameters, an alternative easily dealt with by the present approach.

3.3 Tests for Non-nested Models

As suggested by Cox (1961) and further explored by Atkinson (1970), a test of the null

speci�cation against a non-nested alternative can be obtained by testing the null against

a general model that arti�cially nests the two competing models. While these authors

propose an exponential combination of the two alternative likelihoods, very convenient in

the case of Gaussian models, diverse arti�cial nests seem advantageous if other models

are of interest (e.g., Pesaran and Pesaran, 1993, Weeks, 1996, and Santos Silva, 2001).

Here, as in Santos Silva (2001), a linear convex combination of the competing models is

used, enabling computation of a simple non-nested speci�cation test. Under this approach,

the two competing models for E (yjX), denoted G (X�) and GA (X), are arti�cially

nested within a general model speci�ed asHj (X;�;; �) = (1� �)Gj (X�)+�GAj (X) ;

9



where  denotes regression parameters and � denotes a mixing parameter such, that

0 � � � 1.(5) Let G denote the null hypothesis, corresponding to H0 : � = 0 in

the arti�cial model. Using the results of Section 2, the general model can be approx-

imated in the neighborhood of H0 by taking the vector of additional covariates, Z =�
r�0G

���1 �G�A �G��, with G�A de�ned analogously as G�. Thus, as before, the test

of H0 can be cast as a variable addition test within the null speci�cation.

A null multinomial logit, for instance, can be tested against a non-nested alternative

by considering

H�
ij = exp

�
x0ij� + �

�
GAij=Gij � 1

���XJ

l=1
exp

�
x0il� + �

�
GAil=Gil � 1

��
: (17)

In the univariate case, a test of the logit against, e.g., the probit, �i � � (x0i) (� (�):

standard normal c.d.f.), tests omission of the covariate [Gi (1�Gi)]�1 (�i �Gi) in the

augmented logit. Reversing roles, the test of the probit against the logit (now GAi ) eval-

uates the � estimate in H�
i = �

�
x0i� + ��

�1
i

�
GAi � �i

��
, with �i � � (x0i�) the standard

normal density.

As another example, consider a test of the Dogit against some non-nested alternative

(e.g., probit or nested logit). From Section 3.2, the approximation to the arti�cial model

can be written as H�
ij = S

�1 ��j +G�ij�, where
G�ij � exp

�
x0ij� + �

�
GAij �Dij

�
G�1ij

�� JX
l=1

exp
�
x0il� + �

�
GAil �Dil

�
G�1il

�
: (18)

4 Conclusion

This note presents an approximation to multivariate regression models that is inspired by

the goodness of link approach introduced by Pregibon (1980), for univariate GLM�s. The

suggested approach provides a comprehensive framework which encompasses, as special

cases, several approximation and testing procedures well established in the literature. In

a multivariate context, this basic idea is particularly attractive as it leads to speci�ca-

tion tests that are easily implemented through Wald or LR procedures that only require

estimation of the null model, augmented with speci�c covariates.

The present text suggests some ideas for future research. One such route generalizes

the proposed method by extending the Taylor-expansion of the alternative link function to
5With appropriate exclusion restrictions on the parameters of both models, di¤erent sets of regressors

can be included in each conditional expectation.

10



higher-than-one degree polynomials. This strategy will lead to extended variable-addition

speci�cation tests, presumably more powerful against speci�c alternatives of interest.
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