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Abstract

We propose a new model for multivariate Markov chains of order one or higher based on

the mixture transition distribution (MTD) model. We call it the MTD-Probit. The proposed

model presents two attractive features: it is completely free of constraints, thereby facilitating

the estimation procedure, and it is more precise at estimating the transition probabilities of a

multivariate or higher-order Markov chain than the standard MTD model.
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1 Introduction

In this paper we consider a multivariate stochastic Markov process f(S1t; :::; Sst) ; t = 1; 2; :::g

where Sjt (j = 1; :::; s) can take values in the �nite set f1; 2; :::;mg : One assumes that Sjt de-

pends on the previous values of S1t�1; :::; Sjt�1; :::; Sst�1; which are used to predict or explain

Sjt. To simplify the notations we consider a �rst order multivariate Markov chain (MMC),

but in the following Sjt can also depend on some explanatory variables lagged over more

than one period - our approach may in fact be viewed as a higher-order MMC (we brie�y

address this issue in section 4). A natural model to represent dependences between these cat-

egorical variables is the Markov chain, through the transition probabilities Pj ( i0j i1; :::; is) :=

P (Sjt = i0jS1;t�1 = i1; :::; Ss;t�1 = is) where j 2 f1; 2; :::; sg : These probabilities are the main

focus of statisticians and they can be easily estimated through the expression (maximum likeli-

hood estimates)

P̂j ( i0j i1; :::; is) =
ni1i2:::iis i0Pn
i0=1

ni1i2:::iis i0
(1)

where ni1i2:::iis i0 is the number of transitions of type S1;t�1 = i1; :::; Ss;t�1 = is; Sjt = i0: However,

modeling these probabilities when s and m are relatively large and the sample size is small

or even moderate, is impracticable since the total number of parameters is ms (m� 1) : In

practical terms, this means that the numerator as well as the denominator of (1) may be, in

most of cases, zero or very close to zero. As a consequence, the parameters cannot be e¢ ciently

estimated or even identi�ed with �nite sample size. To overcome this problem, Ching et al.

(2002) considered a simplifying hypothesis, which is, in fact, an extension of Raftery (1985a),

for modeling high-order Markov chains (HOMC). It involves assuming that the probability

Pj ( i0j i1; :::; is) := P (Sjt = i0jS1;t�1 = i1; :::; Ss;t�1 = is) can be written as a linear combination

of fPj1 ( i0j i1) ; :::; Pjs ( i0j is)g, where Pjk ( i0j i) := P (Sjt = i0jSk;t�1 = i) i.e.

P (Sjt = i0jS1;t�1 = i1; :::; Ss;t�1 = is) = PMTD
j ( i0j i1; :::; is) := �j1Pj1 ( i0j i1)+:::+�jsPjs ( i0j is)

(2)
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where
Ps

i=1 �ji = 1 and

0 �
sX

k=1

�jkPjk ( i0j ik) � 1: (3)

This expression is called the mixture transition distribution model (MTD) and tries to combine

realism with parsimony (Raftery, 1985). With 0 � �ji � 1 the inequality (3) is automatically

satis�ed. Imposing this condition has the advantage that the �-parameters may be interpreted

as probabilities and that the estimation procedure is easier to implement; however, it reduces

the range of dependence patterns, including negative partial e¤ects that the MTD can actually

capture.

2 A Brief Literature Review

We �rst focus on the MTD model and its generalizations, and then on the estimation process.

The MTD model has proven to be very useful in several areas, for example, in wind modeling,

social behavior, DNA sequences, and in many areas of �nance and economic areas (see a detailed

description of these applications in Berchtold and Raftery, 2002; see also Ching et al., 2004 and

Ching et al. 2008). Several generalizations of the HOMC under MTD hypothesis have been

proposed aimed at a better data �t and to extend the scope of applications. Raftery (1985b)

proposed using di¤erent transition matrices for each lag. Bercthold (1996, 1998) generalized this

approach. Ching et al. (2004) still considered this hypothesis and applied a linear programming

formulation to estimate the � parameters. Mehran (1989 a,b) and Le et al. (1996) devise an

in�nite-Lag MTD model, which can be useful to capture �long-memory� e¤ects. Berchtold

(1996) discussed a version of a MTD model to analyze missing data. Raftery (1985b) discussed

the case of in�nite denumerable state spaces. A MTD speci�cation was also generalized to

cover the analysis of non-Gaussian processes with an arbitrary state space to model time series

exhibiting outliers, change points, bursts of volatility and even �at stretches (see Le et al., 1996).

Another extension, considered in Raftery and Ban�eld (1991), was developed to approximate

the conditional distribution of spatial data, in which the temporal reference in the MTD model
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was replaced by a concept of neighborhood. Ching et al. (2008) combine the HOMC and MMC

models in a single model. Other contributions related to the MTD model are made by Adke

and Deshmukk (1988), Raftery (1993) and MacDonal and Zucchini (1997), among others.

Let us now focus on the estimation process. To estimate the parameters �ji of MMC under

the MTD hypothesis, Ching et al. (2002) assumed 0 � �ji � 1: They considered a method based

on linear programming involving the stationary vector. As referred to in Zhu and Ching (2010),

this method generally produces a large error when the data sequence period is not long enough.

Zhu and Ching (2010) have proposed a more e¢ cient method based on minimizing the prediction

error. However, neither article addresses the statistical inference problem. It is important to

emphasize that the maximum likelihood estimation (MLE) for MMC under the MTD hypothesis

is essentially the same as the MLE for HOMC under the same hypothesis. In fact, in terms of

estimation, the MMC process can be seen as an HOMC if we interpret the conditioning variables

S1;t�1; S2;t�1; :::; Ss;t�1 as, respectively, the lagged variables St�1; St�2; :::; St�s. For this reason,

we brie�y look at some contributions to the literature on the estimation HOMC under the MTD

hypothesis. The log likelihood function is known (either for HOMC or MMC) and is given by

logL =
X

i1i2:::iis i0

ni1i2:::iis i0 log
�
PMTD
j ( i0j i1; :::; is)

�
subject to

Ps
i=1 �ji = 1 and (3). As referred to by Raftery and Tavaré (1994), this estimation

is di¢ cult to carry out as the parameter space is highly non-convex, being de�ned by a large

number of non-linear constraints (in total ms (m� 1)). The number of constraints can however

be reduced to m: They prove that (3) is equivalent to

Tq� (i) + (1� T ) q+ (i) � 0 for all i, (4)

where T =
P

i:�ji�0 �ji; q� (i) = min1�g�m Pjk ( ij g) and q+ (i) = max1�g�m Pjk ( ij g) :

The maximization of the likelihood, even under the constraints (4), still poses di¢ culties as

the objective function is highly nonlinear and the number of constraints can still be considered

high. In particular, reaching a global maximum can be di¢ cult, especially if the initial values are
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far away from the optimal values. Berchtold (2001) proposed a method to improve the selection

of the initial values by computing a measure of the strength of the association between each

lagged value and the present one. Other papers such as Mehran (1989a) and Berchtold (1998)

have also addressed the choice of initial values. Several other strategies have been employed to

circumvent the di¢ culties in maximizing the likelihood given the nonlinearity of the objective

function and the high number of constraints. Berchtold (2001) developed an algorithm that does

not require any �external optimization routine� and can lead to satisfactory results provided

good initial values are chosen. The idea leads to a modi�cation of the Newton methods and

consists of balancing an increase in one of the parameters with an equal decrease in another

using the boundary adjustment in the MLE. Lèbre and Bourguignon (2008) also pointed out

that �[...] the e¢ ciency for the MTD parameter estimations proposed up to date still remains

problematic on account of the large number of constraints on the parameters�. They used

the expectation-maximization (EM) algorithm to estimate the parameters of the MTD model,

with good results, although Chen and Lio mentioned that the complexity from the counts of

the pattern of sequences is still unsolved in the search for a global maximizer. Chen and Lio

(2009) proposed transforming the nonlinear constraints of the parameters in the MTD into

box-constraints in that each parameter is given a lower and/or upper bound. This technique

allows the MLE to be obtained via a hybrid algorithm from the evolutionary algorithms and/or

quasi-Newton algorithms and has the advantage of focusing on a search for a global maximizer.

3 The MTD-Probit Model

3.1 Motivation

We have shown the usefulness of the MTD and its extensions. One of the main challenges in

applying the MTD model is linked to the estimation and the way the nonlinear constraints are

dealt with in the numerical optimization, although some progress has been made as we described

in the previous section (e.g. Berchtold, 2001, Lèbre and Bourguignon, 2008, and Chen and Lio,

5



2009). However, the constraints associated with the MTD model still pose di¢ culties. Even in

Chen and Lio (2009), who transformed the nonlinear constraints of the parameters in the MTD

into box-constraints, the constraints are still present.

In this paper we propose a speci�cation, inspired by the MTD model, which is completely

free from constraints, facilitating the estimation procedure and, at the same time, as we show

below, is a more accurate speci�cation for Pj ( i0j i1; :::; is) :We suggest modeling Pj ( i0j i1; :::; is)

as follows

Pj ( i0j i1; :::; is) = P�j ( i0j i1; :::; is) :=
�
�
�j0 + �j1Pj1 ( i0j i1) + :::+ �jsPjs ( i0j is)

�Pm
k=1�

�
�j0 + �j1Pj1 (kj i1) + :::+ �jsPjs (kj is)

� (5)

where �ji 2 R (j = 1; :::; s; i = 1; :::;m) and � is the (cumulative) standard normal distribution

function. We denote this speci�cation as a MTD-Probit model. We have the following remarks:

1. The numerator of (5) follows the same principle as the original MTD model: the argument

of � (�) is a linear combination of probabilities Pjk ( i0j ik), k = 1; :::; s, just as in the MTD

model.

2. No constraints are needed in (5), as P�j ( i0j i1; :::; is) is bounded in the interval (0; 1) ;

regardless of the values �js.

3. The purpose of the denominator in equation (5) is to guarantee that
Pm

i0=1
P�j ( i0j i1; :::; is) =

1. Notice, by analogy, that the same condition has to hold for Pj ( i0j i1; :::; is) ; i.e.Pm
i0=1

Pj ( i0j i1; :::; is) = 1:

4. A constant term �j0 is introduced in the P
�
j ( i0j i1; :::; is) speci�cation and, in this way, the

proposed speci�cation involves one additional parameter in comparison to the MTD case;

although it can be set to zero, �j0 generally improves the �t (i.e. allows the probability

P�j ( i0j i1; :::; is) to be closer to Pj ( i0j i1; :::; is)).

5. Here � can be replaced by another distribution function of any continuous random variable

with state space R.
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6. In principle, it is possible to add exogenous explanatory variables to the model (this topic

deserves further research).

7. When Sjt is the dependent variable the likelihood is

logL =
X

i1i2:::iis i0

ni1i2:::iis i0 log
�
P�j ( i0j i1; :::; is)

�
: (6)

and the maximum likelihood estimator is de�ned, as usual, as �̂j = argmax�j1;:::;�js logL:

The parameters Pjk ( i0j i1) ; k = 1; ; :::; s can be estimated in advance, through the consis-

tent estimators

P̂jk ( i0j i1) =
ni1i0Pn
i0=1

ni1i0

where ni1i0 is the number of transitions from Sk;t�1 = i1 to Sjt = i0: This procedure

greatly simpli�es the estimation procedure and does not alter the consistency of the MLE

�̂j estimator, as P̂jk is a consistent estimator of Pjk.

Equation (5) can be superior to the MTD hypothesis for several reasons. First, in the absence

of constraints, the estimation is much easier and standard numerical optimization routines may

apply. We have used the Constrained Maximum Likelihood module in GAUSS software that

allows switching between several algorithms (BFGS, DFP, Newton, BHHH, scaled BFGS and

scaled DFP) depending on three measures of progress, change in function value, number of

iterations, or change in line search step length. However, the likelihood (6) is not a strictly

concave function on the entire parameter state space, hence the choice of the starting values is

relevant. Second, since no restrictions on the parameters are needed, the MTD-Probit enables

the description of a wide range of possible dependencies; according to the theorem below, this

range is likely to be wider than that of the MTD. Third, the proposed model is more accurate

than the MTD model in the sense that P�j ( i0j i1; :::; is) is closer in Euclidean distance to the

true probability Pj ( i0j i1; :::; is) than that of PMTD
j ( i0j i1; :::; is). This result is proved in the

following theorem.
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Theorem Suppose that Sjt and Sk;t�1 are not independent (the transition probability ma-

trices between Sjt and Sk;t�1 do not have identical rows). For each j 2 f1; :::; sg ; we have

min
�ji

mX
i1i2:::iis i0=1

��Pj ( i0j i1; :::; is)� P�j ( i0j i1; :::; is)��2 � (7a)

min
�j1+:::+�js=1

0�
Ps
k=1 �jkPjk( i0jik)�1

mX
i1i2:::iis i0=1

��Pj ( i0j i1; :::; is)� PMTD
j ( i0j i1; :::; is)

��2 : (7b)

Proof To simplify the notations consider without any loss of generality that �i = �ji and

�i = �ji: The probabilities Pj ( i0j i1; :::; is) and Pj1 ( i0j i1) ; :::; Pjs ( i0j is) are assumed to be

known for all permutations in the set fi0; i1; :::; isg. The constraints 0 �
Ps

k=1 �kPk ( i0j ik) � 1

are considered in part (4), below. For now assume that f�ji :
Ps

i=1 �ji = 1g : We prove the

theorem in four steps.

(1) The value of the expression of the right-hand side of the inequality (7b) is equal to the

sum of squared residuals (SSR) of the regression

Pj ( i0j i1; :::; is) = �1Pj1 ( i0j i1) + :::+ �s�1Pj;s�1 ( i0j is�1) + �sPjs ( i0j is) + error1

subject to the restrictions
Ps

i=1 �i = 1: (Notes: (i) in classical linear regression terms, Pj ( i0j i1; :::; is)

may be understood as the �independent�variable and can take on ms+1 values (as many as the

number of permutations in the set fi0; i1; :::; isg): For each of those values, fPj1 ( i0j i1) ; :::; Pjs ( i0j is)g

are the corresponding �explanatory variables�; (ii) the error term error1 results from the

fact that the probabilities Pj ( i0j i1; :::; is) are not generally equal to a linear combination of

fPj1 ( i0j i1) ; :::; Pjs ( i0j is)g : This linear combination is only an approximation to the true prob-

abilities Pj ( i0j i1; :::; is). Hence there is always an error which is identi�ed here by error1).

Given that �s = 1� �1 � :::� �s�1 we may rewrite the previous equation as

Pj ( i0j i1; :::; is) = Pjs ( i0j is) + �1Pj1 ( i0j i1) + :::

+�s�1Pj;s�1 ( i0j is�1) +
�
��1 � :::� �s�1

�
Pjs ( i0j is) + error1, or

Pj ( i0j i1; :::; is)� Pjs ( i0j is) = �1Pj1 ( i0j i1) + :::+ �s�1Pj;s�1 ( i0j is�1) (8)

+
�
��1 � :::� �s�1

�
Pjs ( i0j is) + error1
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(2) To deal with the left-hand side expression (7a), we use the Gauss-Newton method to

�nd the nonlinear regression estimates by running successive linear regressions until a solution

is reached. We start by linearizing P�j ( i0j i1; :::; is) using a Taylor series expansion with linear

terms Pj1 ( i0j i1) ; :::; Pjs ( i0j is) around the vector �(0) such that �
�
�(0)

�
= Pjs ( i0j is) : This

produces a linear regression equation of type

Pj ( i0j i1; :::; is) = Pjs ( i0j is) + �1Pj1 ( i0j i1) + :::

+�s�1Pj;s�1 ( i0j is�1) + �sPjs ( i0j is) + error2

Pj ( i0j i1; :::; is)� Pj ( i0j is) = �1Pjs ( i0j i1) + ::: (9)

+�s�1Pj;s�1 ( i0j is�1) + �sPjs ( i0j is) + error2

where �1; :::; �2 are unknown parameters, depending on �i; that are estimated by ordinary least

squares. The main point is that the SSR of regression (9) is lower than the SSR of regression (4),

despite the fact that both equations use the same �explanatory variables�fPj1 ( i0j i1) ; :::; Pjs ( i0j is)g :

The reason for this di¤erence is that the parameters of equation (4) are subject to restrictions,

whereas the parameters of equation (9) are free. In other words, a solution of an unconstrained

optimization problem is always equal or better than that of a constrained optimization prob-

lem. Let �(1) be the least squares estimates of equation (9). The Gauss-Newton algorithm

proceeds by approximating P�j ( i0j i1; :::; is) through a Taylor series expansion with linear terms

Pj1 ( i0j i1) ; :::; Pjs ( i0j is) around the vector obtained in the previous step, �(1) and a new re-

gression is formed.

(3) Now it is necessary to show that successive iterations of the Gauss-Newton method

cannot worsen the solution obtained in step (2). A su¢ cient condition is that the set (a)�
� : F (�) � F

�
�(0)

�	
is bounded, where F (�) :=

Pm
i1i2:::iis i0=1

���Pj ( i0j i1; :::; is)� P�j ( i0j i1; :::; is; �)���2
and that the (b) Jacobian J (�) := @P�j ( i0j i1; :::; is) =@� has full rank in all steps (see, for exam-

ple, Madsen et al., 2004). Condition (a) may be easily satis�ed if one assumes that � is compact

(i.e. we assume that any admissible value for �i is �nite). On the other hand, one is able to show
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that the assumption of the theorem guarantees condition (b) (note: if Sk;t�1 is independent of

Sjt, the variable Sk;t�1 can be removed from the model, and the assumption of the theorem may

hold with respect to the other explanatory variables).

(4) The theorem was proven assuming that �j1; :::; �js belong to the set f�ji :
Ps

i=1 �ji = 1g :

Therefore, a fortiori, it also applies to the smaller set f�ji :
Ps

i=1 �ji = 1; 0 �
Ps

k=1 �jkPjk ( i0j ik) � 1g.�

The previous theorem does not quantify the gains in using the model P�j ( i0j i1; :::; is) : These

gains can be small or substantial depending on the values Pj ( i0j i1; :::; is) and fPj1 ( i0j i1) ; :::; Pjs ( i0j is)g.

The following example illustrates the gains that can be obtained in using the proposed speci�-

cation. Consider a MMC f(S1t; S2t)g with s = 2 and m = 2. Each process takes values in the

set f1; 2g. Suppose that the data generating process is de�ned as follows

P1 (1j 1; 1) = P (S1t = 1jS1;t�1 = 1; S2;t�1 = 1) = 0:1; P1 (2j 1; 1) = 1� P1 (1j 1; 1) = 0:9

P1 (1j 1; 2) = P (S1t = 1jS1;t�1 = 1; S2;t�1 = 2) = 0:1; P1 (2j 1; 2) = 1� P1 (1j 1; 2) = 0:9

P1 (1j 2; 1) = P (S1t = 1jS1;t�1 = 2; S2;t�1 = 1) = 0:2; P1 (2j 2; 1) = 1� P1 (1j 2; 1) = 0:8

P1 (1j 2; 2) = P (S1t = 1jS1;t�1 = 2; S2;t�1 = 2) = 0:9; P1 (2j 2; 2) = 1� P1 (1j 2; 2) = 0:1

and P (Sr;t�1 = i2jSk;t�1 = i1) = 0:5 for i2; i1; k; r 2 f1; 2g : By the law of total probability, we

obtain the following values for Pj1 ( i0j i1) and Pj2 ( i0j i2):

P11 (1j1) = 0:1; P11 (2j1) = 0:9; P11 (1j2) = 0:55; P11 (2j2) = 0:45

P12 (1j1) = 0:15; P12 (2j1) = 0:85; P12 (1j2) = 0:5; P12 (2j2) = 0:5:

Given Pj1 ( i0j i1) and Pj2 ( i0j i2) ; the precision of P�1 ( i0j i1; i2) and PMTD
1 ( i0j i1; i2) can be

compared to the true values P1 ( i0j i1; i2), by considering the following optimization problems:

min
�1i

2X
i1i2;i0=1

��P1 ( i0j i1; i2)� P�1 ( i0j i1; i2)��2 = 0:040;

min
�11+�12=1

2X
i1i2=1

��P1 ( i0j i1; i2)� PMTD
1 ( i0j i1; i2)

��2 = 0:398

In the second optimization problem we checked that all estimated values of PMTD
1 ( i0j i1; i2) were

probabilities. There is a signi�cant di¤erence between both methods. Our hypothesis leads to
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an error that is about 10 times lower than the MTD method. This di¤erence obviously depends

on the parameters that were previously de�ned (other values may lead to smaller di¤erences).

3.2 Monte Carlo experiment

We have just performed a numerical analysis to show how close P�j ( i0j i1; :::; is) can be to

the true probability. This analysis was conducted after we �xed the values of P1 ( i0j i1; i2) ;

P1 ( i0j i1) and P1 ( i0j i1) and then deduced the best numerical approximations of PMTD
1 ( i0j i1; i2)

and P�1 ( i0j i1; i2) to P1 ( i0j i1; i2) : It is also interesting to perform a Monte Carlo simulation

experiment in which the categorical data is simulated and then the estimates from both methods

are compared to the true probabilities. We consider a simple process with two categorical data

(s = 2) and m = 2 (each variable takes on 1 or 2). Our objective is to estimate P1 ( i0j i1; i2)

from the maximum likelihood estimates P̂�1 ( i0j i1; i2) and P̂MTD
1 ( i0j i1; i2). Since the results

are sensitive to the values of P1 ( i0j i1; i2) ; we let these probabilities take several di¤erent values

in the set [0; 1], as described below. We use the following algorithm:

Step 0: Set �i = 0:1, i = 1; 2; :::; 6

Step 1: Set

P1 (1j 1; 1) = �1; P1 (1j 1; 2) = �2; P1 (1j 2; 1) = �3; P1 (1j 2; 2) = �4;

p11 = �5; p21 = �6,

(we explain the parameters p11and p21below).

Set 2: Simulate a path f(S1t; S2t)g ; t = 1; 2; :::; n

Step 2.1: Initialize the process f(S1t; S2t)g :

Step 2.2: Simulate a random variable u � U (0; 1) : Assume that S1;t�1 = i1 and S2;t�1 =

i2: Then S1t = 1 if u � P1 (1j i1; i2) ; and S1t = 2 otherwise.
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Step 2.3: Simulate S2t according to the probabilities P (S2t = ijS1t = j) = pji (say)

(note: since we are not focusing on the probability P2 ( i0j i1; i2), we simulate S2t

from a simple probabilistic structure.

Step 2.4: Return to step 2, until t = n:

Step 3: Given the simulated sequence f(S1t; S2t)g ; estimate the parameters �1i and �1i by

maximum likelihood and obtain , from them, P̂MTD
1 ( i0j i1; i2) and P̂�1 ( i0j i1; i2) : If the

constraints 0 �
Ps

k=1 �̂jkP̂jk ( i0j ik) � 1 are not satis�ed, the simulated sequence is re-

moved and not considered in the analysis. Note: in our Monte Carlos study the above

constraints were satis�ed in about 98.5% of cases.

Step 4: Assess the precision of P̂MTD
1 ( i0j i1; i2) and P̂�1 ( i0j i1; i2) by comparing them to the

values P1 ( i0j i1; i2) de�ned in step 1, using the statistics

 MTD =
2X

i1=1

2X
i2=1

�
P̂MTD
1 ( i0j i1; i2)� P1 ( i0j i1; i2)

�2
;

 � =

2X
i1=1

2X
i2=1

�
P̂�1 ( i0j i1; i2)� P1 ( i0j i1; i2)

�2
:

Step 5: Increase one � by 0.1. Keep all others �i with the same value. Stop the procedure if

�1 = ::: = �6 = 0:9; otherwise go to step 1.

Each parameter takes on 9 di¤erent values in the range [0:1; 0:9] ; hence there are 96 =

531; 441 permutations. For each of these permutations, we simulate a path f(S1t; S2t)g with

100, 1000 and 5000 observations. To assess the models we computed a global average of the

statistics mentioned in step 4.

** Table 1 here **

The di¤erences between the models are not so great as we saw in the numerical analysis.

Nevertheless, it is clear that the estimator P̂� dominates the P̂MTD:
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3.3 An empirical application

In this section we illustrate our method by considering a multivariate Markov chain to model

the SP500, Nikkei 225 and DAX stock indices (we analyze weekly data from January 6, 1965

to December 5, 2012, which corresponds to 2289 observations). This example can be seen as

a generalization of McQueen and Thorley�s (1991) approach to analyzing the predictability of

stock returns . They consider a Markov chain model to test the random walk hypothesis of

stock prices. Their Markov chain is de�ned by two states: one to represent high returns and

the other to represent low returns. We generalize this approach by considering three categorical

data (s = 3) and ten states (m = 10): A fully parameterized MMC involves ms (m� 1) = 9000

independent parameters, which is impossible to estimate with only 2289 observations. The

main purpose of this application is only to illustrate the proposed model and to compare both

methods.

Let r1t; r2t and r3t be the returns associated with the SP500, Nikkei 225 and DAX respec-

tively. We split the returns into 10 categories as follows. Let q(i)� be the �-quantile of the

marginal distribution of rit; i.e. q
(i)
� is such that P

�
rit � q

(i)
�

�
= �; and q̂(i)� the corresponding

sample quantile (for simplicity we will refer to the q̂0:10 as the 10th percentile, the q̂0:20 as the

20th percentile, and so on). We have

Sit = 1 if rit � q̂
(i)
0:10;

Sit = 2 if q̂(i)0:10 < rit � q̂
(i)
0:20

::::

Sit = 10 if rit � q̂
(i)
0:90

(the higher the value Sit takes on the higher the associated return; for example S1t = 10 means

that at time t the return of the SP500 index is above the 90th percentile).

Tables 2 and 3 present the estimation results of both methods described in the previous

section (in the MTD case we ran the optimization procedure with no restrictions on the �
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terms. In all cases the restrictions (3) were satis�ed).

** Table 2 here **

** Table 3 here **

These results show that the proposed model is superior to that of MTD model, both in

terms of likelihood and BIC criterion (BIC = �2LL+ q log (n) ; where LL is the log likelihood,

q represents the number of independent parameters and n the sample size), despite the fact that

our model has one additional parameter (the data and the routines in GAUSS to estimate the

models are available at site: http://pascal.iseg.utl.pt/~nicolau/myHP/codes.rar). An interest-

ing fact is that all estimates are statistically signi�cant. This means that both models may have

predictive power.

We present a simple illustration of the famous quotation by Mandelbrot when referring

to returns behavior: �large changes tend to be followed by large changes, of either sign, and

small changes tend to be followed by small changes�. Suppose that in the previous period all

three returns were below the 10th percentile (there is a large negative change in period t � 1).

Then, from expression P�j and estimates �̂jk; we may calculate the conditional probabilities

P̂�1 ( i0j i1 = 1; i2 = 1; i3 = 1) (see table 4).

** Table 4 here **

Table 4 shows that the probability of the SP500 being in a bull market (i.e. S1t = 10) after

the three indices were below the 10th percentile in the previous week is relatively high (the

probability is 0.3124) and higher than the probability of the SP500 continuing below the 10th

percentile. Another similar exercise can be done, using the conditioning set S1t�1 = 10; S2t�1 =

10 and S3t�1 = 10. The conditional probabilities of S1t are given in table 5.
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** Table 5 here **

Table 5 shows that the probability of the SP500 being in a bear market after the three

indices were above the 90th percentile in the previous week is relatively high and higher than

the probability of the SP500 continuing above the 90th percentile. Our results not only con�rm

Mandelbrot�s idea (that low values of Sit�1 tend to be followed by low or high values of Sit;

but not by moderate values) but also enables us to conclude that a bull (bear) market is more

likely to be followed by a bear (bull) market. This conclusion is also con�rmed by �gure 1. In

the �rst panel of this �gure, we plot P̂�1 ( i0j i1 = 1; i2 = 1; i3 = 1) (i.e. the values of table 4).

In the second panel we plot P̂�1 ( i0j i1; i2; i3) when S1t�1; S2t�1; S3t�1 take values in the set

f1; 2g (in total there are 8 conditional probability functions, considering all the permutations of

S1t�1; S2t�1; S3t�1 in the set f1; 2g). It is interesting to observe the U-shape of these conditional

probability functions. This means that when the three markets were in decline, it is more likely

in the next period, that the returns of the SP500 will be in the lowest or highest percentiles,

but not in the middle ones (i.e. representing the moderate values of the process).

** Figure 1 here **

4 Conclusions

We propose a new method to estimate multivariate Markov chains of order one or higher.

Through a numerical analysis, a Monte Carlo experiment and an empirical application, we have

shown that the proposed method is more precise than the mixture transition distribution (MTD)

model.

Our model can be easily adjusted to model higher-order Markov chain. To illustrate this

point, suppose that S1t depends on S1t�1; S1t�2 and S2;t�1: Then, according to our model,

P�1 ( i0j i1; :::; is) may be written as

� (�10 + �11P (S1t = i0jS1;t�1 = i1) + �12P (S1t = i0jS1;t�2 = i2) + �13P (S1t = i0jS2;t�1 = i3))

�
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where � is the normalizing constant (as described before).

The empirical application illustrated the potential use of MMC models. In particular, the

results suggest that the model may be able to generate trading rules. This is an issue that may

be worth analyzing in a future paper. There are several other aspects that can be exploited. In

fact, since it is quite easy to obtain conditional moments (such as means, variance, skewness and

kurtosis) as well as Markov times and marginal moments, many interesting �nance applications

can be devised in the context of the MMC . For example, using the expression P�j and the

estimates �̂jk we may compute the conditional mean and volatility over time as follows

�̂t =
10X
k=1

mk � P̂�1 ( ijS1t�1; S2t�1; S3t�1)

�̂2t =
10X
k=1

m2
k � P̂�1 ( ijS1t�1; S2t�1; S3t�1)� �̂2t

wheremk is a representative value of the kth class interval
�
q̂(k�1)=100; q̂k=100

�
(e.g. the midpoint).
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Supporting Information. The data and the routines in GAUSS to estimate the models

are available at site: http://pascal.iseg.utl.pt/~nicolau/myHP/codes.rar
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Table 1: Monte Carlo Results

n Average of  MTD

Average of  �

100 1.10

1000 1.20

5000 1.23

Table 2: Results of the MTD Model

�̂j1 �̂j2 �̂j3 logLik: BIC

Equation 1 (SP500, j = 1) 0:2777
(0:0788)

0:3274
(0:0779)

0:3949
(0:0781)

�1178:44 2380.08

Equation 2 (Nikkei 225, j = 2) 0:2609
(0:0789)

0:5838
(0:0690)

0:1553
(0:0823)

�1177:48 2378.16

Equation 3 (DAX, j = 3) 0:2311
(0:0779)

0:3889
(0:0743)

0:3800
(0:0776)

�1179:90 2383.00

Table 3: Results of the Proposed Model

�̂j0 �̂j1 �̂j2 �̂j3 logLik: BIC

Equation 1 (SP500, j = 1) �2:6524
(0:1623)

6:7873
(1:2826)

7:3376
(1:3102)

7:094
(1:3173)

�1166:78 2364.50

Equation 2 (Nikkei 225, j = 2) �3:4530
(0:6657)

2:6336
(0:8004)

2:5880
(0:7430)

2:5880
(0:7430)

�1165:93 2362.80

Equation 3 (DAX, j = 3) �3:0819
(0:2770)

9:284
(1:7169)

9:8165
(1:7544)

9:3397
(1:724)

�1166:32 2363.58

Table 4: Estimates P̂�1 ( i0j i1 = 1; i2 = 1; i3 = 1)

1 2 3 4 5 6 7 8 9 10

0.2135 0.078 0.0748 0.0469 0.0306 0.0314 0.011 0.0956 0.1059 0.3124

Table 5: Estimates P̂�1 ( i0j i1 = 10; i2 = 10; i3 = 10)

1 2 3 4 5 6 7 8 9 10

0.1424 0.1396 0.1038 0.068 0.0899 0.097 0.0927 0.0808 0.1042 0.0814
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Figure 1: Conditional probabilities P̂�1 ( i0j S1t�1; S2t�1; S3t�1); S1t�1; S2t�1; S3t�1 take values

in the set f1; 2g
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