A New Model for Multivariate Markov Chains

João Nicolau
ISEG, Universidade de Lisboa. CEMAPRE

September, 2013

Abstract

We propose a new model for multivariate Markov chains of order one or higher based on the mixture transition distribution (MTD) model. We call it the MTD-Probit. The proposed model presents two attractive features: it is completely free of constraints, thereby facilitating the estimation procedure, and it is more precise at estimating the transition probabilities of a multivariate or higher-order Markov chain than the standard MTD model.

Acknowledgements

This research was supported by the Fundação para a Ciência e a Tecnologia. I am thankful to the referees for their insightful and construtive comments.

Running headline: Multivariate Markov Chains
Keywords: Maximum likelihood method, Mixture transition distribution, Multivariate Markov chains, high-order Markov chains.

1 Introduction

In this paper we consider a multivariate stochastic Markov process $\left\{\left(S_{1 t}, \ldots, S_{s t}\right) ; t=1,2, \ldots\right\}$ where $S_{j t}(j=1, \ldots, s)$ can take values in the finite set $\{1,2, \ldots, m\}$. One assumes that $S_{j t}$ depends on the previous values of $S_{1 t-1}, \ldots, S_{j t-1}, \ldots, S_{s t-1}$, which are used to predict or explain $S_{j t}$. To simplify the notations we consider a first order multivariate Markov chain (MMC), but in the following $S_{j t}$ can also depend on some explanatory variables lagged over more than one period - our approach may in fact be viewed as a higher-order MMC (we briefly address this issue in section 4). A natural model to represent dependences between these categorical variables is the Markov chain, through the transition probabilities $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right):=$ $P\left(S_{j t}=i_{0} \mid S_{1, t-1}=i_{1}, \ldots, S_{s, t-1}=i_{s}\right)$ where $j \in\{1,2, \ldots, s\}$. These probabilities are the main focus of statisticians and they can be easily estimated through the expression (maximum likelihood estimates)

$$
\begin{equation*}
\hat{P}_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)=\frac{n_{i_{1} i_{2} \ldots i_{i_{s}} i_{0}}}{\sum_{i_{0}=1}^{n} n_{i_{1} i_{2} \ldots i_{s} i_{0}}} \tag{1}
\end{equation*}
$$

where $n_{i_{1} i_{2} \ldots i_{s} i_{0}}$ is the number of transitions of type $S_{1, t-1}=i_{1}, \ldots, S_{s, t-1}=i_{s}, S_{j t}=i_{0}$. However, modeling these probabilities when s and m are relatively large and the sample size is small or even moderate, is impracticable since the total number of parameters is $m^{s}(m-1)$. In practical terms, this means that the numerator as well as the denominator of (1) may be, in most of cases, zero or very close to zero. As a consequence, the parameters cannot be efficiently estimated or even identified with finite sample size. To overcome this problem, Ching et al. (2002) considered a simplifying hypothesis, which is, in fact, an extension of Raftery (1985a), for modeling high-order Markov chains (HOMC). It involves assuming that the probability $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right):=P\left(S_{j t}=i_{0} \mid S_{1, t-1}=i_{1}, \ldots, S_{s, t-1}=i_{s}\right)$ can be written as a linear combination of $\left\{P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)\right\}$, where $P_{j k}\left(i_{0} \mid i\right):=P\left(S_{j t}=i_{0} \mid S_{k, t-1}=i\right)$ i.e.
$P\left(S_{j t}=i_{0} \mid S_{1, t-1}=i_{1}, \ldots, S_{s, t-1}=i_{s}\right)=P_{j}^{M T D}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right):=\lambda_{j 1} P_{j 1}\left(i_{0} \mid i_{1}\right)+\ldots+\lambda_{j s} P_{j s}\left(i_{0} \mid i_{s}\right)$
where $\sum_{i=1}^{s} \lambda_{j i}=1$ and

$$
\begin{equation*}
0 \leq \sum_{k=1}^{s} \lambda_{j k} P_{j k}\left(i_{0} \mid i_{k}\right) \leq 1 \tag{3}
\end{equation*}
$$

This expression is called the mixture transition distribution model (MTD) and tries to combine realism with parsimony (Raftery, 1985). With $0 \leq \lambda_{j i} \leq 1$ the inequality (3) is automatically satisfied. Imposing this condition has the advantage that the λ-parameters may be interpreted as probabilities and that the estimation procedure is easier to implement; however, it reduces the range of dependence patterns, including negative partial effects that the MTD can actually capture.

2 A Brief Literature Review

We first focus on the MTD model and its generalizations, and then on the estimation process. The MTD model has proven to be very useful in several areas, for example, in wind modeling, social behavior, DNA sequences, and in many areas of finance and economic areas (see a detailed description of these applications in Berchtold and Raftery, 2002; see also Ching et al., 2004 and Ching et al. 2008). Several generalizations of the HOMC under MTD hypothesis have been proposed aimed at a better data fit and to extend the scope of applications. Raftery (1985b) proposed using different transition matrices for each lag. Bercthold $(1996,1998)$ generalized this approach. Ching et al. (2004) still considered this hypothesis and applied a linear programming formulation to estimate the λ parameters. Mehran (1989 a,b) and Le et al. (1996) devise an infinite-Lag MTD model, which can be useful to capture "long-memory" effects. Berchtold (1996) discussed a version of a MTD model to analyze missing data. Raftery (1985b) discussed the case of infinite denumerable state spaces. A MTD specification was also generalized to cover the analysis of non-Gaussian processes with an arbitrary state space to model time series exhibiting outliers, change points, bursts of volatility and even flat stretches (see Le et al., 1996). Another extension, considered in Raftery and Banfield (1991), was developed to approximate the conditional distribution of spatial data, in which the temporal reference in the MTD model
was replaced by a concept of neighborhood. Ching et al. (2008) combine the HOMC and MMC models in a single model. Other contributions related to the MTD model are made by Adke and Deshmukk (1988), Raftery (1993) and MacDonal and Zucchini (1997), among others.

Let us now focus on the estimation process. To estimate the parameters $\lambda_{j i}$ of MMC under the MTD hypothesis, Ching et al. (2002) assumed $0 \leq \lambda_{j i} \leq 1$. They considered a method based on linear programming involving the stationary vector. As referred to in Zhu and Ching (2010), this method generally produces a large error when the data sequence period is not long enough. Zhu and Ching (2010) have proposed a more efficient method based on minimizing the prediction error. However, neither article addresses the statistical inference problem. It is important to emphasize that the maximum likelihood estimation (MLE) for MMC under the MTD hypothesis is essentially the same as the MLE for HOMC under the same hypothesis. In fact, in terms of estimation, the MMC process can be seen as an HOMC if we interpret the conditioning variables $S_{1, t-1}, S_{2, t-1}, \ldots, S_{s, t-1}$ as, respectively, the lagged variables $S_{t-1}, S_{t-2}, \ldots, S_{t-s}$. For this reason, we briefly look at some contributions to the literature on the estimation HOMC under the MTD hypothesis. The log likelihood function is known (either for HOMC or MMC) and is given by

$$
\log L=\sum_{i_{1} i_{2} \ldots i_{i_{s}} i_{0}} n_{i_{1} i_{2} \ldots i_{i_{s}} i_{0}} \log \left(P_{j}^{M T D}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)\right)
$$

subject to $\sum_{i=1}^{s} \lambda_{j i}=1$ and (3). As referred to by Raftery and Tavaré (1994), this estimation is difficult to carry out as the parameter space is highly non-convex, being defined by a large number of non-linear constraints (in total $m^{s}(m-1)$). The number of constraints can however be reduced to m. They prove that (3) is equivalent to

$$
\begin{equation*}
T q_{-}(i)+(1-T) q_{+}(i) \geq 0 \text { for all } i \tag{4}
\end{equation*}
$$

where $T=\sum_{i: \lambda_{j i} \geq 0} \lambda_{j i}, q_{-}(i)=\min _{1 \leq g \leq m} P_{j k}(i \mid g)$ and $q_{+}(i)=\max _{1 \leq g \leq m} P_{j k}(i \mid g)$.
The maximization of the likelihood, even under the constraints (4), still poses difficulties as the objective function is highly nonlinear and the number of constraints can still be considered high. In particular, reaching a global maximum can be difficult, especially if the initial values are
far away from the optimal values. Berchtold (2001) proposed a method to improve the selection of the initial values by computing a measure of the strength of the association between each lagged value and the present one. Other papers such as Mehran (1989a) and Berchtold (1998) have also addressed the choice of initial values. Several other strategies have been employed to circumvent the difficulties in maximizing the likelihood given the nonlinearity of the objective function and the high number of constraints. Berchtold (2001) developed an algorithm that does not require any "external optimization routine" and can lead to satisfactory results provided good initial values are chosen. The idea leads to a modification of the Newton methods and consists of balancing an increase in one of the parameters with an equal decrease in another using the boundary adjustment in the MLE. Lèbre and Bourguignon (2008) also pointed out that "[...] the efficiency for the MTD parameter estimations proposed up to date still remains problematic on account of the large number of constraints on the parameters". They used the expectation-maximization (EM) algorithm to estimate the parameters of the MTD model, with good results, although Chen and Lio mentioned that the complexity from the counts of the pattern of sequences is still unsolved in the search for a global maximizer. Chen and Lio (2009) proposed transforming the nonlinear constraints of the parameters in the MTD into box-constraints in that each parameter is given a lower and/or upper bound. This technique allows the MLE to be obtained via a hybrid algorithm from the evolutionary algorithms and/or quasi-Newton algorithms and has the advantage of focusing on a search for a global maximizer.

3 The MTD-Probit Model

3.1 Motivation

We have shown the usefulness of the MTD and its extensions. One of the main challenges in applying the MTD model is linked to the estimation and the way the nonlinear constraints are dealt with in the numerical optimization, although some progress has been made as we described in the previous section (e.g. Berchtold, 2001, Lèbre and Bourguignon, 2008, and Chen and Lio,
2009). However, the constraints associated with the MTD model still pose difficulties. Even in Chen and Lio (2009), who transformed the nonlinear constraints of the parameters in the MTD into box-constraints, the constraints are still present.

In this paper we propose a specification, inspired by the MTD model, which is completely free from constraints, facilitating the estimation procedure and, at the same time, as we show below, is a more accurate specification for $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$. We suggest modeling $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ as follows

$$
\begin{equation*}
P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)=P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right):=\frac{\Phi\left(\eta_{j 0}+\eta_{j 1} P_{j 1}\left(i_{0} \mid i_{1}\right)+\ldots+\eta_{j s} P_{j s}\left(i_{0} \mid i_{s}\right)\right)}{\sum_{k=1}^{m} \Phi\left(\eta_{j 0}+\eta_{j 1} P_{j 1}\left(k \mid i_{1}\right)+\ldots+\eta_{j s} P_{j s}\left(k \mid i_{s}\right)\right)} \tag{5}
\end{equation*}
$$

where $\eta_{j i} \in \mathbb{R}(j=1, \ldots, s ; i=1, \ldots, m)$ and Φ is the (cumulative) standard normal distribution function. We denote this specification as a MTD-Probit model. We have the following remarks:

1. The numerator of (5) follows the same principle as the original MTD model: the argument of $\Phi(\cdot)$ is a linear combination of probabilities $P_{j k}\left(i_{0} \mid i_{k}\right), k=1, \ldots, s$, just as in the MTD model.
2. No constraints are needed in (5), as $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ is bounded in the interval $(0,1)$, regardless of the values $\eta_{j s}$.
3. The purpose of the denominator in equation (5) is to guarantee that $\sum_{i_{0}=1}^{m} P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)=$ 1. Notice, by analogy, that the same condition has to hold for $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$, i.e. $\sum_{i_{0}=1}^{m} P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)=1$.
4. A constant term $\eta_{j 0}$ is introduced in the $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ specification and, in this way, the proposed specification involves one additional parameter in comparison to the MTD case; although it can be set to zero, $\eta_{j 0}$ generally improves the fit (i.e. allows the probability $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ to be closer to $\left.P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)\right)$.
5. Here Φ can be replaced by another distribution function of any continuous random variable with state space \mathbb{R}.
6. In principle, it is possible to add exogenous explanatory variables to the model (this topic deserves further research).
7. When $S_{j t}$ is the dependent variable the likelihood is

$$
\begin{equation*}
\log L=\sum_{i_{1} i_{2} \ldots i_{i_{s}} i_{0}} n_{i_{1} i_{2} \ldots i_{s} i_{0}} \log \left(P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)\right) \tag{6}
\end{equation*}
$$

and the maximum likelihood estimator is defined, as usual, as $\hat{\eta}_{j}=\arg \max _{\eta_{j 1}, \ldots, \eta_{j s}} \log L$. The parameters $P_{j k}\left(i_{0} \mid i_{1}\right), k=1, \ldots, s$ can be estimated in advance, through the consistent estimators

$$
\hat{P}_{j k}\left(i_{0} \mid i_{1}\right)=\frac{n_{i_{1} i_{0}}}{\sum_{i_{0}=1}^{n} n_{i_{1} i_{0}}}
$$

where $n_{i_{1} i_{0}}$ is the number of transitions from $S_{k, t-1}=i_{1}$ to $S_{j t}=i_{0}$. This procedure greatly simplifies the estimation procedure and does not alter the consistency of the MLE $\hat{\eta}_{j}$ estimator, as $\hat{P}_{j k}$ is a consistent estimator of $P_{j k}$.

Equation (5) can be superior to the MTD hypothesis for several reasons. First, in the absence of constraints, the estimation is much easier and standard numerical optimization routines may apply. We have used the Constrained Maximum Likelihood module in GAUSS software that allows switching between several algorithms (BFGS, DFP, Newton, BHHH, scaled BFGS and scaled DFP) depending on three measures of progress, change in function value, number of iterations, or change in line search step length. However, the likelihood (6) is not a strictly concave function on the entire parameter state space, hence the choice of the starting values is relevant. Second, since no restrictions on the parameters are needed, the MTD-Probit enables the description of a wide range of possible dependencies; according to the theorem below, this range is likely to be wider than that of the MTD. Third, the proposed model is more accurate than the MTD model in the sense that $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ is closer in Euclidean distance to the true probability $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ than that of $P_{j}^{M T D}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$. This result is proved in the following theorem.

Theorem Suppose that $S_{j t}$ and $S_{k, t-1}$ are not independent (the transition probability matrices between $S_{j t}$ and $S_{k, t-1}$ do not have identical rows). For each $j \in\{1, \ldots, s\}$, we have

$$
\begin{align*}
& \min _{\eta_{j i}} \sum_{\substack{i_{1} i_{2} \ldots i_{i s} i_{0}=1}}^{m}\left|P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)-P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)\right|^{2} \leq \tag{7a}\\
& \min _{\substack{\lambda_{j 1}+\ldots+\lambda_{j s}=1 \\
0 \leq \sum_{k=1}^{s} \lambda_{j k} P_{j k}\left(i_{0} \mid i_{k}\right) \leq 1}} \sum_{i_{1} i_{2} \ldots i_{i_{s}} i_{0}=1}^{m}\left|P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)-P_{j}^{M T D}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)\right|^{2} . \tag{7b}
\end{align*}
$$

Proof To simplify the notations consider without any loss of generality that $\eta_{i}=\eta_{j i}$ and $\lambda_{i}=\lambda_{j i}$. The probabilities $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ and $P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)$ are assumed to be known for all permutations in the set $\left\{i_{0}, i_{1}, \ldots, i_{s}\right\}$. The constraints $0 \leq \sum_{k=1}^{s} \lambda_{k} P_{k}\left(i_{0} \mid i_{k}\right) \leq 1$ are considered in part (4), below. For now assume that $\left\{\lambda_{j i}: \sum_{i=1}^{s} \lambda_{j i}=1\right\}$. We prove the theorem in four steps.
(1) The value of the expression of the right-hand side of the inequality (7 b) is equal to the sum of squared residuals (SSR) of the regression

$$
P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)=\beta_{1} P_{j 1}\left(i_{0} \mid i_{1}\right)+\ldots+\beta_{s-1} P_{j, s-1}\left(i_{0} \mid i_{s-1}\right)+\beta_{s} P_{j s}\left(i_{0} \mid i_{s}\right)+\text { error }_{1}
$$

subject to the restrictions $\sum_{i=1}^{s} \beta_{i}=1$. (Notes: (i) in classical linear regression terms, $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ may be understood as the "independent" variable and can take on m^{s+1} values (as many as the number of permutations in the set $\left.\left\{i_{0}, i_{1}, \ldots, i_{s}\right\}\right)$. For each of those values, $\left\{P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)\right\}$ are the corresponding "explanatory variables"; (ii) the error term error ${ }_{1}$ results from the fact that the probabilities $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ are not generally equal to a linear combination of $\left\{P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)\right\}$. This linear combination is only an approximation to the true probabilities $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$. Hence there is always an error which is identified here by error ${ }_{1}$). Given that $\beta_{s}=1-\beta_{1}-\ldots-\beta_{s-1}$ we may rewrite the previous equation as

$$
\begin{align*}
P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)= & P_{j s}\left(i_{0} \mid i_{s}\right)+\beta_{1} P_{j 1}\left(i_{0} \mid i_{1}\right)+\ldots \\
& +\beta_{s-1} P_{j, s-1}\left(i_{0} \mid i_{s-1}\right)+\left(-\beta_{1}-\ldots-\beta_{s-1}\right) P_{j s}\left(i_{0} \mid i_{s}\right)+\text { error }_{1}, \text { or } \\
P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)-P_{j s}\left(i_{0} \mid i_{s}\right)= & \beta_{1} P_{j 1}\left(i_{0} \mid i_{1}\right)+\ldots+\beta_{s-1} P_{j, s-1}\left(i_{0} \mid i_{s-1}\right) \tag{8}\\
& +\left(-\beta_{1}-\ldots-\beta_{s-1}\right) P_{j s}\left(i_{0} \mid i_{s}\right)+\text { error }_{1}
\end{align*}
$$

(2) To deal with the left-hand side expression (7a), we use the Gauss-Newton method to find the nonlinear regression estimates by running successive linear regressions until a solution is reached. We start by linearizing $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ using a Taylor series expansion with linear terms $P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)$ around the vector $\eta^{(0)}$ such that $\Phi\left(\eta^{(0)}\right)=P_{j s}\left(i_{0} \mid i_{s}\right)$. This produces a linear regression equation of type

$$
\begin{align*}
P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)= & P_{j s}\left(i_{0} \mid i_{s}\right)+\beta_{1} P_{j 1}\left(i_{0} \mid i_{1}\right)+\ldots \\
& +\beta_{s-1} P_{j, s-1}\left(i_{0} \mid i_{s-1}\right)+\beta_{s} P_{j s}\left(i_{0} \mid i_{s}\right)+\text { error }_{2} \\
P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)-P_{j}\left(i_{0} \mid i_{s}\right)= & \beta_{1} P_{j s}\left(i_{0} \mid i_{1}\right)+\ldots \tag{9}\\
& +\beta_{s-1} P_{j, s-1}\left(i_{0} \mid i_{s-1}\right)+\beta_{s} P_{j s}\left(i_{0} \mid i_{s}\right)+\text { error }_{2}
\end{align*}
$$

where $\beta_{1}, \ldots, \beta_{2}$ are unknown parameters, depending on η_{i}, that are estimated by ordinary least squares. The main point is that the SSR of regression (9) is lower than the SSR of regression (4), despite the fact that both equations use the same "explanatory variables" $\left\{P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)\right\}$. The reason for this difference is that the parameters of equation (4) are subject to restrictions, whereas the parameters of equation (9) are free. In other words, a solution of an unconstrained optimization problem is always equal or better than that of a constrained optimization problem. Let $\eta^{(1)}$ be the least squares estimates of equation (9). The Gauss-Newton algorithm proceeds by approximating $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ through a Taylor series expansion with linear terms $P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)$ around the vector obtained in the previous step, $\eta^{(1)}$ and a new regression is formed.
(3) Now it is necessary to show that successive iterations of the Gauss-Newton method cannot worsen the solution obtained in step (2). A sufficient condition is that the set (a) $\left\{\eta: F(\eta) \leq F\left(\eta^{(0)}\right)\right\}$ is bounded, where $F(\eta):=\sum_{i_{1} i_{2} \ldots i_{s} i_{0}=1}^{m}\left|P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)-P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s} ; \eta\right)\right|^{2}$ and that the (b) Jacobian $J(\eta):=\partial P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right) / \partial \eta$ has full rank in all steps (see, for example, Madsen et al., 2004). Condition (a) may be easily satisfied if one assumes that η is compact (i.e. we assume that any admissible value for η_{i} is finite). On the other hand, one is able to show
that the assumption of the theorem guarantees condition (b) (note: if $S_{k, t-1}$ is independent of $S_{j t}$, the variable $S_{k, t-1}$ can be removed from the model, and the assumption of the theorem may hold with respect to the other explanatory variables).
(4) The theorem was proven assuming that $\lambda_{j 1}, \ldots, \lambda_{j s}$ belong to the set $\left\{\lambda_{j i}: \sum_{i=1}^{s} \lambda_{j i}=1\right\}$. Therefore, a fortiori, it also applies to the smaller set $\left\{\lambda_{j i}: \sum_{i=1}^{s} \lambda_{j i}=1,0 \leq \sum_{k=1}^{s} \lambda_{j k} P_{j k}\left(i_{0} \mid i_{k}\right) \leq 1\right\}$

The previous theorem does not quantify the gains in using the model $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$. These gains can be small or substantial depending on the values $P_{j}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ and $\left\{P_{j 1}\left(i_{0} \mid i_{1}\right), \ldots, P_{j s}\left(i_{0} \mid i_{s}\right)\right\}$. The following example illustrates the gains that can be obtained in using the proposed specification. Consider a MMC $\left\{\left(S_{1 t}, S_{2 t}\right)\right\}$ with $s=2$ and $m=2$. Each process takes values in the set $\{1,2\}$. Suppose that the data generating process is defined as follows

$$
\begin{array}{ll}
P_{1}(1 \mid 1,1)=P\left(S_{1 t}=1 \mid S_{1, t-1}=1, S_{2, t-1}=1\right)=0.1, & P_{1}(2 \mid 1,1)=1-P_{1}(1 \mid 1,1)=0.9 \\
P_{1}(1 \mid 1,2)=P\left(S_{1 t}=1 \mid S_{1, t-1}=1, S_{2, t-1}=2\right)=0.1, & P_{1}(2 \mid 1,2)=1-P_{1}(1 \mid 1,2)=0.9 \\
P_{1}(1 \mid 2,1)=P\left(S_{1 t}=1 \mid S_{1, t-1}=2, S_{2, t-1}=1\right)=0.2, & P_{1}(2 \mid 2,1)=1-P_{1}(1 \mid 2,1)=0.8 \\
P_{1}(1 \mid 2,2)=P\left(S_{1 t}=1 \mid S_{1, t-1}=2, S_{2, t-1}=2\right)=0.9, & P_{1}(2 \mid 2,2)=1-P_{1}(1 \mid 2,2)=0.1
\end{array}
$$

and $P\left(S_{r, t-1}=i_{2} \mid S_{k, t-1}=i_{1}\right)=0.5$ for $i_{2}, i_{1}, k, r \in\{1,2\}$. By the law of total probability, we obtain the following values for $P_{j 1}\left(i_{0} \mid i_{1}\right)$ and $P_{j 2}\left(i_{0} \mid i_{2}\right)$:

$$
\begin{aligned}
& P_{11}(1 \mid 1)=0.1, P_{11}(2 \mid 1)=0.9, P_{11}(1 \mid 2)=0.55, P_{11}(2 \mid 2)=0.45 \\
& P_{12}(1 \mid 1)=0.15, P_{12}(2 \mid 1)=0.85, P_{12}(1 \mid 2)=0.5, P_{12}(2 \mid 2)=0.5
\end{aligned}
$$

Given $P_{j 1}\left(i_{0} \mid i_{1}\right)$ and $P_{j 2}\left(i_{0} \mid i_{2}\right)$, the precision of $P_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)$ and $P_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)$ can be compared to the true values $P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)$, by considering the following optimization problems:

$$
\begin{aligned}
\min _{\eta_{1 i}} \sum_{i_{1} i_{2}, i_{0}=1}^{2}\left|P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)-P_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)\right|^{2} & =0.040 ; \\
\min _{\lambda_{11}+\lambda_{12}=1} \sum_{i_{1} i_{2}=1}^{2}\left|P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)-P_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)\right|^{2} & =0.398
\end{aligned}
$$

In the second optimization problem we checked that all estimated values of $P_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)$ were probabilities. There is a significant difference between both methods. Our hypothesis leads to
an error that is about 10 times lower than the MTD method. This difference obviously depends on the parameters that were previously defined (other values may lead to smaller differences).

3.2 Monte Carlo experiment

We have just performed a numerical analysis to show how close $P_{j}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ can be to the true probability. This analysis was conducted after we fixed the values of $P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)$, $P_{1}\left(i_{0} \mid i_{1}\right)$ and $P_{1}\left(i_{0} \mid i_{1}\right)$ and then deduced the best numerical approximations of $P_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)$ and $P_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)$ to $P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)$. It is also interesting to perform a Monte Carlo simulation experiment in which the categorical data is simulated and then the estimates from both methods are compared to the true probabilities. We consider a simple process with two categorical data $(s=2)$ and $m=2$ (each variable takes on 1 or 2). Our objective is to estimate $P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)$ from the maximum likelihood estimates $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)$ and $\hat{P}_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)$. Since the results are sensitive to the values of $P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)$, we let these probabilities take several different values in the set $[0,1]$, as described below. We use the following algorithm:

Step 0: Set $\delta_{i}=0.1, i=1,2, \ldots, 6$

Step 1: Set

$$
\begin{aligned}
P_{1}(1 \mid 1,1) & =\delta_{1}, \quad P_{1}(1 \mid 1,2)=\delta_{2}, \quad P_{1}(1 \mid 2,1)=\delta_{3}, \quad P_{1}(1 \mid 2,2)=\delta_{4}, \\
p_{11} & =\delta_{5}, \quad p_{21}=\delta_{6},
\end{aligned}
$$

(we explain the parameters p_{11} and p_{21} below).

Set 2: Simulate a path $\left\{\left(S_{1 t}, S_{2 t}\right)\right\}, t=1,2, \ldots, n$

Step 2.1: Initialize the process $\left\{\left(S_{1 t}, S_{2 t}\right)\right\}$.
Step 2.2: Simulate a random variable $u \sim U(0,1)$. Assume that $S_{1, t-1}=i_{1}$ and $S_{2, t-1}=$ i_{2}. Then $S_{1 t}=1$ if $u \leq P_{1}\left(1 \mid i_{1}, i_{2}\right)$, and $S_{1 t}=2$ otherwise.

Step 2.3: Simulate $S_{2 t}$ according to the probabilities $P\left(S_{2 t}=i \mid S_{1 t}=j\right)=p_{j i}$ (say) (note: since we are not focusing on the probability $P_{2}\left(i_{0} \mid i_{1}, i_{2}\right)$, we simulate $S_{2 t}$ from a simple probabilistic structure.

Step 2.4: Return to step 2, until $t=n$.

Step 3: Given the simulated sequence $\left\{\left(S_{1 t}, S_{2 t}\right)\right\}$, estimate the parameters $\lambda_{1 i}$ and $\eta_{1 i}$ by maximum likelihood and obtain, from them, $\hat{P}_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)$ and $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)$. If the constraints $0 \leq \sum_{k=1}^{s} \hat{\lambda}_{j k} \hat{P}_{j k}\left(i_{0} \mid i_{k}\right) \leq 1$ are not satisfied, the simulated sequence is removed and not considered in the analysis. Note: in our Monte Carlos study the above constraints were satisfied in about 98.5% of cases.

Step 4: Assess the precision of $\hat{P}_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)$ and $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)$ by comparing them to the values $P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)$ defined in step 1 , using the statistics

$$
\begin{aligned}
\psi^{M T D} & =\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2}\left(\hat{P}_{1}^{M T D}\left(i_{0} \mid i_{1}, i_{2}\right)-P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)\right)^{2}, \\
\psi^{\Phi} & =\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2}\left(\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}\right)-P_{1}\left(i_{0} \mid i_{1}, i_{2}\right)\right)^{2} .
\end{aligned}
$$

Step 5: Increase one δ by 0.1 . Keep all others δ_{i} with the same value. Stop the procedure if $\delta_{1}=\ldots=\delta_{6}=0.9$, otherwise go to step 1.

Each parameter takes on 9 different values in the range $[0.1,0.9]$, hence there are $9^{6}=$ 531,441 permutations. For each of these permutations, we simulate a path $\left\{\left(S_{1 t}, S_{2 t}\right)\right\}$ with 100,1000 and 5000 observations. To assess the models we computed a global average of the statistics mentioned in step 4.
** Table 1 here ${ }^{* *}$

The differences between the models are not so great as we saw in the numerical analysis. Nevertheless, it is clear that the estimator \hat{P}^{Φ} dominates the $\hat{P}^{M T D}$.

3.3 An empirical application

In this section we illustrate our method by considering a multivariate Markov chain to model the SP500, Nikkei 225 and DAX stock indices (we analyze weekly data from January 6, 1965 to December 5, 2012, which corresponds to 2289 observations). This example can be seen as a generalization of McQueen and Thorley's (1991) approach to analyzing the predictability of stock returns . They consider a Markov chain model to test the random walk hypothesis of stock prices. Their Markov chain is defined by two states: one to represent high returns and the other to represent low returns. We generalize this approach by considering three categorical data $(s=3)$ and ten states $(m=10)$. A fully parameterized MMC involves $m^{s}(m-1)=9000$ independent parameters, which is impossible to estimate with only 2289 observations. The main purpose of this application is only to illustrate the proposed model and to compare both methods.

Let $r_{1 t}, r_{2 t}$ and $r_{3 t}$ be the returns associated with the SP500, Nikkei 225 and DAX respectively. We split the returns into 10 categories as follows. Let $q_{\alpha}^{(i)}$ be the α-quantile of the marginal distribution of $r_{i t}$, i.e. $q_{\alpha}^{(i)}$ is such that $P\left(r_{i t} \leq q_{\alpha}^{(i)}\right)=\alpha$, and $\hat{q}_{\alpha}^{(i)}$ the corresponding sample quantile (for simplicity we will refer to the $\hat{q}_{0.10}$ as the $10 t h$ percentile, the $\hat{q}_{0.20}$ as the 20th percentile, and so on). We have

$$
\begin{aligned}
S_{i t}= & 1 \text { if } r_{i t} \leq \hat{q}_{0.10}^{(i)} \\
S_{i t}= & 2 \text { if } \hat{q}_{0.10}^{(i)}<r_{i t} \leq \hat{q}_{0.20}^{(i)} \\
& \cdots \\
S_{i t}= & 10 \text { if } r_{i t} \geq \hat{q}_{0.90}^{(i)}
\end{aligned}
$$

(the higher the value $S_{i t}$ takes on the higher the associated return; for example $S_{1 t}=10$ means that at time t the return of the SP500 index is above the $90 t h$ percentile).

Tables 2 and 3 present the estimation results of both methods described in the previous section (in the MTD case we ran the optimization procedure with no restrictions on the λ
terms. In all cases the restrictions (3) were satisfied).

```
** Table 2 here \({ }^{* *}\)
** Table 3 here \({ }^{* *}\)
```

These results show that the proposed model is superior to that of MTD model, both in terms of likelihood and BIC criterion $(B I C=-2 L L+q \log (n)$, where $L L$ is the log likelihood, q represents the number of independent parameters and n the sample size), despite the fact that our model has one additional parameter (the data and the routines in GAUSS to estimate the models are available at site: http://pascal.iseg.utl.pt/~nicolau/myHP/codes.rar). An interesting fact is that all estimates are statistically significant. This means that both models may have predictive power.

We present a simple illustration of the famous quotation by Mandelbrot when referring to returns behavior: "large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes". Suppose that in the previous period all three returns were below the 10th percentile (there is a large negative change in period $t-1$). Then, from expression P_{j}^{Φ} and estimates $\hat{\eta}_{j k}$, we may calculate the conditional probabilities $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}=1, i_{2}=1, i_{3}=1\right)($ see table 4$)$.

[^0]Table 4 shows that the probability of the SP500 being in a bull market (i.e. $S_{1 t}=10$) after the three indices were below the 10th percentile in the previous week is relatively high (the probability is 0.3124) and higher than the probability of the SP500 continuing below the 10th percentile. Another similar exercise can be done, using the conditioning set $S_{1 t-1}=10, S_{2 t-1}=$ 10 and $S_{3 t-1}=10$. The conditional probabilities of $S_{1 t}$ are given in table 5 .
** Table 5 here **

Table 5 shows that the probability of the SP500 being in a bear market after the three indices were above the $90 t h$ percentile in the previous week is relatively high and higher than the probability of the SP500 continuing above the $90 t h$ percentile. Our results not only confirm Mandelbrot's idea (that low values of $S_{i t-1}$ tend to be followed by low or high values of $S_{i t}$, but not by moderate values) but also enables us to conclude that a bull (bear) market is more likely to be followed by a bear (bull) market. This conclusion is also confirmed by figure 1 . In the first panel of this figure, we plot $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}=1, i_{2}=1, i_{3}=1\right)$ (i.e. the values of table 4). In the second panel we plot $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}, i_{2}, i_{3}\right)$ when $S_{1 t-1}, S_{2 t-1}, S_{3 t-1}$ take values in the set $\{1,2\}$ (in total there are 8 conditional probability functions, considering all the permutations of $S_{1 t-1}, S_{2 t-1}, S_{3 t-1}$ in the set $\left.\{1,2\}\right)$. It is interesting to observe the U-shape of these conditional probability functions. This means that when the three markets were in decline, it is more likely in the next period, that the returns of the SP500 will be in the lowest or highest percentiles, but not in the middle ones (i.e. representing the moderate values of the process).

** Figure 1 here ${ }^{* *}$

4 Conclusions

We propose a new method to estimate multivariate Markov chains of order one or higher. Through a numerical analysis, a Monte Carlo experiment and an empirical application, we have shown that the proposed method is more precise than the mixture transition distribution (MTD) model.

Our model can be easily adjusted to model higher-order Markov chain. To illustrate this point, suppose that $S_{1 t}$ depends on $S_{1 t-1}, S_{1 t-2}$ and $S_{2, t-1}$. Then, according to our model, $P_{1}^{\Phi}\left(i_{0} \mid i_{1}, \ldots, i_{s}\right)$ may be written as
$\frac{\Phi\left(\eta_{10}+\eta_{11} P\left(S_{1 t}=i_{0} \mid S_{1, t-1}=i_{1}\right)+\eta_{12} P\left(S_{1 t}=i_{0} \mid S_{1, t-2}=i_{2}\right)+\eta_{13} P\left(S_{1 t}=i_{0} \mid S_{2, t-1}=i_{3}\right)\right)}{\Sigma}$
where Σ is the normalizing constant (as described before).

The empirical application illustrated the potential use of MMC models. In particular, the results suggest that the model may be able to generate trading rules. This is an issue that may be worth analyzing in a future paper. There are several other aspects that can be exploited. In fact, since it is quite easy to obtain conditional moments (such as means, variance, skewness and kurtosis) as well as Markov times and marginal moments, many interesting finance applications can be devised in the context of the MMC. For example, using the expression P_{j}^{Φ} and the estimates $\hat{\eta}_{j k}$ we may compute the conditional mean and volatility over time as follows

$$
\begin{aligned}
\hat{\mu}_{t} & =\sum_{k=1}^{10} m_{k} \times \hat{P}_{1}^{\Phi}\left(i \mid S_{1 t-1}, S_{2 t-1}, S_{3 t-1}\right) \\
\hat{\sigma}_{t}^{2} & =\sum_{k=1}^{10} m_{k}^{2} \times \hat{P}_{1}^{\Phi}\left(i \mid S_{1 t-1}, S_{2 t-1}, S_{3 t-1}\right)-\hat{\mu}_{t}^{2}
\end{aligned}
$$

where m_{k} is a representative value of the k th class interval $\left[\hat{q}_{(k-1) / 100}, \hat{q}_{k / 100}\right]$ (e.g. the midpoint).

Supporting Information. The data and the routines in GAUSS to estimate the models are available at site: http://pascal.iseg.utl.pt/ ${ }^{\text {nicolau/myHP/codes.rar }}$

References

Adke, S., Deshmukh (1988). Journal of the Royal Statistical Society B 50, 105-108.

Berchtold, A. (1996). Modélisation autorégressive des chaînes de Markov: Utilisation d'une Matrice Différente pour Chaque Retard. Revue de Statistique Appliquée 44, 5-25.

Berchtold A. (1998). Chaînes de Markov et Modèles de Transition: Applications aux Sciences Sociales. HERMES Paris

Berchtold, A. (2001). Estimation in the mixture transition distribution model. Journal of Time Series Analysis 22, 379-397.

Berchtold, A., Raftery, A. (2002). The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series. Statistical Science, 17, 328-356.

Chen, D., Lio, Y. (2009). A Novel Estimation Approach for Mixture Transition Distribution Model in High-Order Markov Chains. Communications in Statistics - Simulation and Computation 38, 990-1003.

Ching, W., Fung, E., (2002). A Multivariate Markov Chain Model for Categorical Data Sequences and Its Applications in Demand Predictions. Journal of Management Mathematics 13, 187-199.

Ching, W., Fung, E., Ng, M. (2004). Higher-order Markov Chain Models for Categorical Data Sequences. Naval Research Logistics 51, 557-574.

Ching, W., Ng, M., Fung, E. (2008). Higher-order Multivariate Markov Chains and their Applications. Linear Algebra and its Applications 428, 492-507.

Le, N., Martin, R., Raftery A. (1996). Modeling Flat Stretches Bursts and Outliers in Time Series Using Mixture Transition Distribution Models, Journal of the American Statistical Association 91, 1504-1515.

Lèbre, S., Bourguignon, P. (2008). An EM Algorithm for Estimation in the Mixture Transition Distribution Model. Journal of Statistical Computation and Simulation 78, 713-729.

MacDonald, I., Zucchini, W. (1997). Hidden Markov and Other Models for Discrete Valued Time Series, London: Chapman \& Hall.

Madsen, K., Nielsen, H., Tingleff O. (2004). Methods for Non-Linear Least Squares Problems, Informatics and Mathematical Modelling, Technical University of Denmark.

Mehran, F. (1989a). Longitudinal analysis of employment and unemployment based on matched rotation samples. Report, International Labour Office, Bureau of Statistics, Geneva.

Mehran, F. (1989b). Analysis of discrete longitudinal data: Infinite-lag Markov models. In Statistical Data Analysis and Inference (ed, Y Dodge) 533-541. North-Holland, Amster.

McQueen, G., Thorley, S. (1991). Are Stock Returns Predictable? A Test Using Markov Chains. Journal of Finance 46, 239-263.

Raftery, A. (1985a). A model for high-order Markov chains. Journal of the Royal Statistical Society - Series B 47, 528-539.

Raftery A. (1985b). A New Model for Discrete-Valued Time Series Autocorrelations and Extensions. Rassegna di Metodi Statistici ed Applicazioni 3-4, 149-162.

Raftery, A. (1993). Change Point and Change Curve Modeling in Stochastic Processes and Spatial Statistics. Journal of Applied Statistical Science 1, 403-423.

Raftery, A., Banfield, J. (1991). Stopping the Gibbs Sampler, the use of Morphology and other Issues in Spatial

Statistics. Annals of the Institute of Statistical Mathematics 43, 32-43.

Raftery, A., Tavaré, S. (1994). Estimation and Modelling Repeated Patterns in High-order Markov Chains with the Mixture Transition Distribution (MTD) Model. Journal of the Royal Statistical Society, series C - Applied Statistics 43, 179-199.

Zhu, D., Ching, W. (2010). A New Estimation Method for Multivariate Markov Chain Model with Application in Demand Predictions. In BIFE '10 Proceedings of the 2010 Third International Conference on Business Intelligence and Financial Engineering (eds L. Yu, K. Lai, S. Wang), Hong Kong.

Table 1: Monte Carlo Results

n	$\frac{\text { Average of } \psi^{M T D}}{\text { Average of } \psi^{\Phi}}$
100	1.10
1000	1.20
5000	1.23

Table 2: Results of the MTD Model

	$\hat{\lambda}_{j 1}$	$\hat{\lambda}_{j 2}$	$\hat{\lambda}_{j 3}$	$\log L i k$.	BIC
Equation $1(\mathrm{SP} 500, j=1)$	$\begin{aligned} & 0.2777 \\ & (0.0788) \end{aligned}$	$\begin{aligned} & 0.3274 \\ & (0.0779) \end{aligned}$	$\begin{aligned} & 0.3949 \\ & (0.0781) \end{aligned}$	-1178.44	2380.08
Equation 2 (Nikkei 225, $j=2$)	$\begin{aligned} & 0.2609 \\ & (0.0789) \end{aligned}$	$\begin{aligned} & 0.5838 \\ & (0.0690) \end{aligned}$	$\begin{aligned} & 0.1553 \\ & (0.0823) \end{aligned}$	-1177.48	2378.16
Equation 3 (DAX, $j=3$)	$\begin{array}{r} 0.2311 \\ (0.0779) \\ \hline \end{array}$	$\begin{array}{r} 0.3889 \\ (0.0743) \\ \hline \end{array}$	$\begin{array}{r} 0.3800 \\ (0.0776) \\ \hline \end{array}$	-1179.90	2383.00

Table 3: Results of the Proposed Model

	$\hat{\eta}_{j 0}$	$\hat{\eta}_{j 1}$	$\hat{\eta}_{j 2}$	$\hat{\eta}_{j 3}$	\log Lik.	BIC
Equation 1 $(\mathrm{SP} 500, j=1)$	$\underset{(0.1623)}{-2.6524}$	$\underset{(1.2826)}{6.7873}$	$\underset{(1.3102)}{7.3376}$	$\underset{(1.3173)}{7.094}$	-1166.78	2364.50
Equation 2 (Nikkei $225, j=2)$	$\underset{(0.6657)}{-3.4530}$	$\underset{(0.8004)}{2.6336}$	$\underset{(0.7430)}{2.5880}$	$\underset{(0.5430)}{2.5880}$	-1165.93	2362.80
Equation 3 (DAX, $j=3)$	$\underset{(0.2770)}{-3.0819}$	$\underset{(1.7169)}{9.284}$	$\underset{(1.7544)}{9.8165}$	$\underset{(1.724)}{9.3397}$	-1166.32	2363.58

Table 4: Estimates $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}=1, i_{2}=1, i_{3}=1\right)$

1	2	3	4	5	6	7	8	9	10
0.2135	0.078	0.0748	0.0469	0.0306	0.0314	0.011	0.0956	0.1059	0.3124

Table 5: Estimates $\hat{P}_{1}^{\Phi}\left(i_{0} \mid i_{1}=10, i_{2}=10, i_{3}=10\right)$

1	2	3	4	5	6	7	8	9	10
0.1424	0.1396	0.1038	0.068	0.0899	0.097	0.0927	0.0808	0.1042	0.0814

Figure 1: Conditional probabilities $\hat{P}_{1}^{\Phi}\left(i_{0} \mid S_{1 t-1}, S_{2 t-1}, S_{3 t-1}\right) ; S_{1 t-1}, S_{2 t-1}, S_{3 t-1}$ take values in the set $\{1,2\}$

e-mail: nicolau@iseg.utl.pt

Postal address: ISEG, Rua do Quelhas 6, 1200-781 Lisbon, Portugal

[^0]: ** Table 4 here **

