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We study approximations to ultimate ruin probabilities under an extention to the classical Cramér-
Lundberg risk model by adding a diffusion component. For the approximations, we adapt some
simple, practical and well know methods used for the classical model. Under this approach, and
for some cases, we are able to separate and compute the ruin probability either exclusively due to
the oscillation, or due to a claim.

1. INTRODUCTION

We start by presenting the model and the probability of ruin. We study the perturbed surplus
process as introduced by Dufresne and Gerber (1991) and defined for time t as:

V (t) = U(t) + σW (t), U(t) = u+ ct− S(t), t ≥ 0 ,

where U(t) defines the classical surplus process, c is the premium rate per unit time, u = V (0) =

U(0) is the initial surplus, S(t) =
∑N(t)

i=0 Xi, X0 ≡ 0, are the aggregate claims up to time t,
N(t) is the number of claims received up to time t, Xi is the i-th individual claim, W (t) is the
diffusion component and σ2 the variance parameter. {W (t), t ≥ 0} is a standard Wiener process,
{N(t), t ≥ 0} is a Poisson process with parameter λ and {Xi}∞i=1 is a sequence of i.i.d. random
variables, independent from {N(t)} with common distribution function P (.) with P (0) = 0. The
corresponding density function is denoted as p(.). Denote by pk = E[Xk]. The existence of p1
is basic and essential, only in some of our methods the existence of higher moments is needed.
We assume that {S(t)} and {W (t)} are independent. We also assume that c = (1 + θ)λp1, where
θ > 0 is the premium loading coefficient.
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The diffusion component introduces an additional uncertainty into the classical process, so that
if ruin occurs it may be caused either from a claim or by an oscillation of the diffusion process.
Let T be the time to ruin such that T = inf {t : t ≥ 0 and V (t) ≤ 0}, T = ∞ if V (t) > 0, ∀t.
Ultimate ruin probability is given by

ψ(u) = Pr(T <∞|V (0) = u) = ψd(u) + ψs(u),

where ψs(u) and ψd(u) are the ruin probabilities due to a claim and to oscillation, respectively.
Survival probability is δ(u) = 1 − ψ(u). We have that ψd(0) = ψ(0) = 1. Furthermore, δ(u),
ψs(u) and ψd(u) follow defective renewal equations, respectively, for u ≥ 0:

ψs(u) = (1− q) [H1(u)−H1 ∗H2(u)] + + (1− q)
∫ u

0

ψs(u− x)h1 ∗ h2(x)dx ,

ψd(u) = 1−H1(u) + (1− q)
∫ u

0

ψd(u− x)h1 ∗ h2(x)dx ,

δ(u) = qH1(u) + (1− q)
∫ u

0

δ(u− x)h1 ∗ h2(x)dx , (1)

with q = 1− λp1/c, h1 and h2(.) given by (H1(.) and H2(.) are the corresponding d.f.):

h1(x) = ζe−ζx, x > 0, ζ = 2c/σ2 ,

h2(x) = p−11 [1− P (x)] , x > 0.

We further introduce the maximal aggregate loss defined asL = max {t ≥ 0, L(t) = u− V (t)}.
It can be decomposed as

L = L
(1)
0 +

M∑
i=1

(
L
(1)
i + L

(2)
i

)
, (2)

L
(1)
i = max{L(t), t < ti+1} − L(ti), i = 0, 1, . . . ,M , (3)

L
(2)
i = L(ti)− L(ti−1)− L(1)

i−1, i = 1, . . . ,M , (4)

where M is the number of records of L(t) that are caused by a claim, L(1)
i and L(2)

i are the record
highs due to oscillation and a claim. {L(1)

i }∞i=0 and {L(2)
i }∞i=1 are independent sequences of i.i.d

random variables, with common d.f. H1(.), and H2(.), respectively. Also, δ(x) = Pr{L ≤ x} is a
compound geometric d.f. and existing moments can be found easily.

We work different approximation methods adapted from the classical model, simple and
of classical use in many risk theory manuals. We start with the method by De Vylder (1978),
that relies on the use of the exact ruin formula when the individual claim amount is exponential.
We follow with a method by Dufresne and Gerber (1989) that produces upper and lower limits
for the ruin probability and it is very useful to test the accuracy of the other methods presented,
often simpler, for the cases where we do not have exact figures for the ruin probability. These two
methods were already tried by Silva (2006), who presented no figures. After, we adapt an approx-
imation known as Beekman and Bowers’, presented in Beekman (1969). It uses an appropriate
gamma distribution in the defective renewal equation for δ(u). Jacinto (2008) also did some work
on the previous methods. We further work two other models, Tijms’ and the Fourier transform
methods. The former was originally presented in the context of queueing theory by Tijms (1994),
the latter is an adaptation of the work by Lima et al. (2002).
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Figure 1: Decomposition of the maximal aggregate loss.

2. APPROXIMATIONS IN THE PERTURBED MODEL

We follow the order presented in the previous section and start with the De Vylder’s approxima-
tion. Following De Vylder (1978), the original process, V (t), is replaced by another process

V ∗(t) = u+ c∗t− S∗(t) + σ∗W (t),

where the individual claims follow an exponential(β), and parameters β, c∗, λ∗ and σ∗ 2 are
calculated so that the existing lower four moments of V (t) and V ∗(t) match:

β = 4p3
p4
; λ∗ = 32λ

p43
3p34

; c∗ = 8λ
p33
3p24

+ c− λp1; σ∗ 2 = σ2 + λp2 − 4λ
p23
3p4

.

Then, we use the exact ruin probability formula from Dufresne and Gerber (1991), so that approx-
imation comes

ψDV (u) = C1e
−r1 + C2e

−r2 , C1 =
r1−β
β

r2
r1−r2 , C2 =

r2−β
β

r1
r2−r1 ,

where r1 and r2 are the solutions of equation, rσ∗2/2 + λ∗/(β − r) = c∗. Furthermore, we can
obtain approximations for the decomposed probabilities ψs(u) and ψd(u), simply using the exact
result for the case where the individual losses are exponential.

The second method is Dufrene & Gerber’s upper and lower bounds. It is based on getting
appropriate discrete distributions to replace on the convolution formula for the survival probability,
Formula (7) in Dufresne and Gerber (1989). For the perturbed model, we use a similar method,
now based on Formula (5.8) of Dufresne and Gerber (1991). Discrete random variables are defined
followed by bounds computation for the ruin probabilities [see Sections 2.3 and 2.4 of Dufresne
and Gerber (1989)]. We have

Lj = L
j,(1)
0 +

M∑
i=1

(
L
j,(1)
i + L

j,(2)
i

)
,
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with Lj = L
j,(1)
0 if M = 0 and j = l, u, Ll,(k)i = ϑ

[
L
(k)
i /ϑ

]
, Lu,(k)i = ϑ

[
(L

(k)
i + ϑ)/ϑ

]
for

{k = 1, i = 0, ...,M}, {k = 2, i = 1, ...,M}, ϑε(0, 1) and [x] is the integer part of x. Each sum-
mand of L, L(k)

i , in (2), is correspondingly approximated by both the next lower and higher multi-
ples of ϑ. We have then,

Ll ≤ L ≤ Lu ⇒ Pr(Ll ≥ v) ≤ ψ(v) ≤ Pr(Lu ≥ v).

We need the p.f. of the discrete r.v.’s Ll,(1)i , L
l,(2)
i , L

u,(1)
i and Lu,(2)i , they are given by, respectively,

hln,k = Pr
(
L
l,(n)
i = kϑ

)
= Hn(kϑ+ ϑ)−Hn(kϑ), n = 1, 2; k = 0, 1, ...,

hun,k = Pr
(
L
u,(n)
i = kϑ

)
= Hn(kϑ+ ϑ)−Hn(kϑ), n = 1, 2; k = 0, 1, ...

The following probability functions of Ll and Lu, f lk and fuk , can be computed using Panjer’s
recursion (for the compound geometric distribution)

f jk = Pr
(
Lj = kϑ

)
, k = 0, 1, ... for j = l, u .

We arrive to the following bounds for ψ(.), where

1−
m−1∑
k=0

f lk ≤ ψ(mϑ) ≤ 1−
m∑
k=0

fuk , m = 0, 1, ..., v/ϑ, v = 0, 1, ...

We consider now Beekman-Bowers’ approximation. We replace δ ∗ h2(.) in the renewal
equation (1), δ(u) = qH1(u)+(1− q)h1 ∗ δ ∗h2(u), by a d.f. of a gamma(α, β), denoted as H3(u).
We arrive to the approximation

δBB(u) = qH1(u) + (1− q)h1 ∗H3(u),

Parameters α and β are got by equating the moments of δBB(u) with those of δ(u), respectively.
We address now Tijms’ approximation. This method relies on the existence of the adjustment

coefficient and an asymptotic formulae for ψ(u), ψd(u), and ψs(u). Similarly to Tijms (1994) we
consider the approximating expression

ψT (u) = Ce−Ru + Ae−Su, u ≥ 0 ,

where A is chosen such that ψ(0) = ψT (0). As ψ(0) = 1, then A = (1− C). As ψ(.) is the
survival function of L, S is chosen in order that

∫∞
0
ψT (u)du = E[L]. Hence,

E[L] =
C

R
+

(1− C)
S

⇔ S =
R (1− C)
RE[L]− C

.

The method we work and simply name as Fourier transform is not quite an approximation method
but an exact formula that allows to compute numerically the ruin probability. This method uses the
Fourier transform,

φf(x)(s) =

∫ +∞

0

eisxf(x)dx =

∫ +∞

0

cos(sx)f(x)dx︸ ︷︷ ︸
φr
f(x)

(s)

+ i

∫ +∞

0

sin(sx)f(x)dx︸ ︷︷ ︸
φc
f(x)

(s)

,
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so that for F ′(x) = f(x) we have

F (x) = F (0) +
2

π

∫ ∞
0

sin(xs)

s
φrf(x)(s)ds . (5)

From the integro-differential equation for ψ(u) we get

ψ′(u) = −qh1(u) + (1− q)
∫ u

0

ψ′(u− x)h1 ∗ h2(x)dx ,

and the transform can be written as

φψ′(u)(s) =
A+ iB

C − iD
=
AC −BD + i(BC + AD)

C2 +D2
,

with A = −qφrh1(u)(s), B = −qφch1(u), C = 1 − J(1 − q)/sp1 and D = I(1 − q)/sp1. I and J
depend only on the real and the complex part of φh1(u)(s) and φp(u)(s) :

I = φrh1(u)(s)− φ
r
h1(u)

(s)φrp(u)(s) + φch1(u)(s)φ
c
p(u)(s)

J = φrh1(u)(s)φ
c
p(u)(s)− φch1(u)(s) + φch1(u)(s)φ

r
p(u)(s) .

Approximation ψF (u) is then got computing numerically the inversion integral (5). Similar results
can be derived for ψd,F (u) and ψs,F (u) (the index F refers to this method).

3. NUMERICAL ILLUSTRATIONS

For illustration we show figures for three examples: when single amounts follow Exponential(1),
Gamma(2, 2) and Pareto(5, 4), all with mean one. Other parameters are: c = 2, λ = 1, σ = 1 and
ϑ = 0.01. Tables 1 and 2 show figures concerning the first example (De Vylder’s is exact in this
case). Table 3 shows figure for the Gamma(2, 2) case. Table 4 shows figures for the Pareto(5, 4)
case and all methods except Tijms’, as it doesn’t apply. Table 5 shows the percentage of ruin due
to oscillation for the worked cases.

u ψ(u) (I) ψBB(u)(II) (I)/(II) ψT (u) (III) (I)/(III)
1 0.40470 0.39819 1.01633 0.40470 1.00000
3 0.16674 0.17096 0.97529 0.16674 1.00000
5 0.06938 0.07089 0.97866 0.06938 1.00000

10 0.00775 0.00731 1.06010 0.00775 1.00000
15 0.00087 0.00072 1.19580 0.00087 1.00000

Table 1: Exact figures, Beekman-Bowers’ and Tijms’ approximations for Exponential(1)
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u ψ(u) (I) ψF (u) (II) (I)/(II) ψd(u) (III) ψd,F (u) (IV ) (III)/(IV )
1 0.40470 0.40470 1.00000 0.09688 0.09688 0.99999
3 0.16674 0.16674 1.00000 0.03655 0.03655 1.00000
5 0.06938 0.06937 1.00000 0.01521 0.01521 1.00000

10 0.00775 0.00775 1.00000 0.00170 0.00170 1.00000
15 0.00087 0.00087 1.00000 0.00019 0.00019 1.00002

Table 2: Exact figures and Fourier method for Exponential(1)

u Lower Bound ψDV (u) ψBB(u) ψT (u) ψF (u) Upper Bound
1 0.38643 0.39199 0.38231 0.39394 0.38867 0.39092
3 0.12024 0.12155 0.12660 0.12198 0.12196 0.12369
5 0.03696 0.03775 0.03825 0.03780 0.03780 0.03865

10 0.00194 0.00203 0.00167 0.00202 0.00202 0.00211
15 0.00010 0.00011 0.00007 0.00011 0.00011 0.00012

Table 3: Dufresne-Gerber’s Bounds, De Vylder’s, Beekman-Bowers’, Tijms’ & Fourier, Gamma.

u Lower Bound ψDV (u) ψBB(u) ψF (u) Upper Bound
1 0.40867 0.45521 0.38282 0.41036 0.41206
3 0.19577 0.15464 0.20096 0.19707 0.19838
5 0.10339 0.08437 0.11286 0.10423 0.10509

10 0.02511 0.02879 0.02824 0.02537 0.02564
15 0.00727 0.01032 0.00730 0.00736 0.00744

Table 4: Dufresne-Gerber’s Bounds, De Vylder’s, Beekman-Bowers’ & Fourier; Pareto(5, 4)

Exponential Gamma Pareto
u ψd(u)/ψ(u) ψd,F (u) ψs,F (u) ψd,F (u)/ψF (u) ψd,F (u) ψs,F (u) ψd,F (u)/ψF (u)
1 24% 0.11221 0.27647 29% 0.09042 0.31994 22%
3 22% 0.03570 0.08626 29% 0.03296 0.16411 17%
5 22% 0.01107 0.02673 29% 0.01590 0.08833 15%

10 22% 0.00059 0.00143 29% 0.00334 0.02203 13%
15 22% 0,00003 0,00008 29% 0.00085 0.00650 12%

Table 5: Weight of ψd(u) for Exponential(1), Gamma(2, 2) and Pareto(5, 4)
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4. CONCLUDING REMARKS

We underline the poor fit of the Beekman-Bowers’ method no matter the distribution examples we
worked on. De Vylder’s and Tijms’ look capable of producing good results for light tail claims size
distributions. On any case, Dufresne & Gerber’s bounds method produces good approximations.
The same happens with Fourier transform method, as said it produces numerically exact figures.
A final remark deals with the contribution of the oscillation component which plays a substantial
role in the ruin probability, especially in the light tails cases. We chose a volatility of one, equal
to the mean claim size in all examples, a deeper study can be done choosing different values. For
more details on the work please see Seixas (2012).
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