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Abstract

The dual risk model assumes that the surplus of a company decreases at a constant
rate over time and grows by means of upward jumps, which occur at random times and
sizes. It has applications to companies with economical activities involved in research and
development. This model is dual to the well known Cramér-Lundberg risk model with
applications to insurance.

Existing results on the study of the dual model assume that the random waiting
times between consecutive gains follow an exponential distribution, as in the classical
Cramér–Lunderg risk model.

We generalize to other compound renewal risk models where such waiting times are
Erlang(n) distributed. Using the roots of the fundamental and the generalized Lundberg’s
equation, we get expressions for the ruin probability and the Laplace transform of the
time of ruin for an arbitrary single gain distribution. Furthermore, we compute expected
discounted dividends, as well as higher moments, when the individual common gains
follow a Phase–Type, PH(m), distribution.

Finally, we perform illustrations working some examples for some particular gain
distributions and obtain numerical results.
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1 Introduction

We consider the dual risk model where the surplus or equity of the company is commonly
described by the equation

U(t) = u− ct+

N(t)∑
i=0

Xi, t ≥ 0, u ≥ 0, (1.1)

where X0 ≡ 0, u is the initial surplus and c is a constant meaning the rate of expenses,
assumed deterministic and fixed. The gains sequence is denoted by {Xi}∞i=0, it is a sequence
of i.i.d. random variables with common cumulative distribution and density functions P (x),
P (0) = 0, and p(x), respectively. We assume the existence of µ1 = E[X1]. We denote the
Laplace transform of p(x) by p̂(s). The model is called dual as opposed to the Cramér–
Lundberg risk model with applications to insurance. For simplicity we will refer this latter as
the primal model (where c is seen as the income premium rate and Xi means the i-th single
loss).

By N(t) = max{k : T0 + T1 + · · · + Tk ≤ t, T0 = 0} we denote the number of gains
occurring before a given time t, where the random variable Ti, denotes the interarrival time
between jumps i − 1 and i (≥ 1). We assume that {Ti}∞i=0 is a sequence of i.i.d. random
variables and also independent from {Xi}. We further assume that T1 follows an Erlang(n)
distribution, whose density is denoted as kn(t) = λntn−1e−λt/(n− 1)!, t ≥ 0, λ > 0, n ∈ N+.
The corresponding distribution function is denoted as Kn(t).

We assume the existence of the negative loading condition, i.e. cE(W1) < E(X1) ⇔
cn < λµ1, designated negative as opposed to the well known positive loading in the primal
Sparre–Andersen risk model, where the condition is reversed. These conditions mean that
on average gains are greater than expenses, per unit time.

This model has been of increasing interest in ruin theory in recent times. There are
many possible interpretations for the model. We can look at the surplus as the amount
of capital of a business engaged in research and development, where gains are random, at
random instants, and costs are certain. More precisely, the company pays expenses which
occur continuously along time for the research activity, gets occasional revenues according to
an Erlang(n) distribution and of size driven by distribution P (·). Revenues can be interpreted
as values of future gains from an invention or discovery, the decrease of surplus can represent
costs of production, payments to employees, maintenance of equipment, etc.

Among pioneer works on the subject we can cite Cramér (1955), Takács (1967), Seal
(1969), Bühlmann (1970) and Gerber (1979). Recent works include those by Avanzi et
al. (2007), Albrecher et al. (2008), Avanzi and Gerber (2008), Bayraktar and Egami (2008),
Cheung and Drekic (2008), Gerber and Smith (2008), Song et al . (2008), Yang and Zhu
(2008), Avanzi (2009), Ng (2009), Ng (2010), Afonso et al . (2011) and Cheung (2011).
Published works, particularly those concerning the dual model, deal with the the compound
Poisson, or Erlang(1), dual model and the computation of discounted dividends. We particu-
larly reference the work by Avanzi et al. (2007) that explains well where applications of the
dual model are said to be appropriate. On this matter Bayraktar and Egami (2008) used it
to model capital investments. On dividend and optimal strategies strategies we underline the
works by Avanzi et al. (2007), Avanzi and Gerber (2008) and Avanzi (2009). The latter is
an excellent review paper, see also references therein. We also underline the work by Afonso
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et al . (2011) who, among other problems, give a different view of the dividend problem
calculation, by taking advantage of the relationship between the primal and the dual models.

As we said, the works particularly focusing the dual model and the problem of discounted
dividends assume that interarrival times follow an exponential distribution. In our manuscript
we extend many of the existing developments to a general Erlang(n) distributed interarrival
times. Also, we relate some developments taken from the primal to the dual model and that
might lead to further and closest relationships.

We consider now some of the basic definitions and notations for the quantities of interest
developed throughout this paper. Let

τu =

{
min{t > 0 : U(t) = 0 | U(0) = u}
∞ if U(t) ≥ 0 ∀t ≥ 0

be the time to ruin, ψ(u) = P (τu <∞) be the ultimate ruin probability and

ψ(u, δ) = E[e−δτuI(τu <∞) | U(0) = u]

be the Laplace transform of the time to ruin, where δ > 0 and I(.) is the indicator function.
This Laplace transform can be interpreted as the expected value of one monetary unit received
at the time of ruin discounted at the constant force of interest δ.

In further developments we introduce an upper barrier into the model and let b denote
its level. This barrier means a dividend payment level whose i-th single amount is going to
be denoted by the random variable Di explained as follows. Each time the surplus process
upcrosses level b the excess gain is paid out immediately to the capital holder as a dividend,
prior to ruin. Let {Di}∞i=1 be the sequence of the dividend payments and let D(u, b) be the
aggregate discounted dividends, at force of interest δ and from initial surplus u. We denote
by Vk(u, b) = E[D(u, b)k], k ≥ 1, the k-th order moment of D(u, b), for simplicity denote
V (u, b) = V1(u, b).

In the next section we consider Lundberg’s fundamental and generalized equations and
their relationship concerning the primal and the dual models. In Section 3 we study the
solutions of the Lundberg’s equations. In Section 4 we develop an integro-differencial equation
for the ultimate ruin probability and then find a solution formula for that probability. We also
give some illustration examples. In Section 5 we develop similar expressions for the Laplace
transform of the time to ruin. In the last section we work the problem of discounted dividends,
first the expected discounted dividends and then higher moments. Here we present a general
integro-differential equation for the expected discounted dividends. To solve the equation we
need to particularize the distribution of the individual jumps size to the Phase-type family.
At the end of this section we show a solution for higher moments.

2 The primal and the dual model

In this section we make some connections of interest between the Cramér-Lundberg insurance
risk model and the dual model. We could call the first as the classical or standard risk model
however, often the literature when referring to the classical model it means the compound
Poisson risk model, which is a particular case of the Erlang(n) risk model. So, we chose to
call it simply the primal model.
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The primal model is driven by an equation similar to (1.1)

UP (t) = u+ ct−
N(t)∑
i=0

Xi, t ≥ 0, u ≥ 0

where UP (t) represents the surplus of a portfolio of insurance risks at time t. For convenience
we keep the same notation but note that the quantities involved have different meanings,
particularly c and Xi, respectively premium rate and individual claim size i. Here, it is
assumed a positive loading condition, cE(W1) > E(X1), and it brings an economical sense to
the model: it is expected that the income until the next claim is greater than the size of the
next claim. The net income between the (i − 1)-th and the i-th claims is cWi −Xi. In this
model it is weel known the notion of the adjustment coefficient, provided that the moment
generating function of X1 exists, and is denoted by MX(.). The adjustment coefficient,
denoted as R, is the unique positive real root of the equation

E
[
e−r(cW1−X1)

]
= 1⇔ E

[
e−rcW1

]
E
[
erX1

]
= 1⇔MX(r) =

(
1 +

( c
λ

)
r
)n

.

We note that expectation E
[
erX1

]
exists at least for r < 0. Note that E

[
e−RcW1

]
exists,

not only because in our case W1 follows an Erlang(n) distribuition, but also because it is a
Laplace transform (and we did not need the former assumption). If we look at the equation
above we can regard it as the expected discounted profit for each waiting arrival period. So
that the adjustment coefficient R, provided that it exists, makes the expected discounted
profit even (considering that premium income and claim costs come together). Constant R
is then seen as an interest force. That equation is known as the fundamental Lundberg’s
equation.

Now, let’s have the same perspective for the dual model case and refer to equation (1.1).
The fundamental Lundberg’s equation is now given as

E
[
e−s(X1−cW1)

]
= 1⇔ E

[
escW1

]
E
[
e−sX1

]
= 1⇔ p̂(s) =

(
1−

( c
λ

)
s
)n

, (2.1)

where the corresponding net income per waiting arrival period i is given by the reversed
difference Xi− cWi. In either case the fundamental Lundberg’s equation has the same form,
but here we do not have to assume the existence of the moment generating function of X1, if
we consider s > 0, and the definition of a similar constant to the the adjustment coefficient in
the primal model is not needed, we would indeed need the existence of expectation E

[
escW1

]
if a general distribution of W1 were considered.

A generalization of each of the above equations were introduced to the actuarial literature
and became known as the generalized Lundberg’s equation. They take the following form,
respectively for the primal and the dual model, for a constant δ > 0 (see e.g. Landriault and
Willmot (2008)):

E
[
e−δW1e−r(cW1−X1)

]
= 1 and E

[
e−δW1e−s(X1−cW1)

]
= 1

In our case, with Erlang(n) interarrival times, they take the following forms, respectively:

MX(r) =

(
1 +

δ

λ
+
( c
λ

)
r

)n
and

p̂(s) =

(
1 +

δ

λ
−
( c
λ

)
s

)n
. (2.2)
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The positive constant δ is often regarded as an interest force and we can think of (2.1) as
the limiting case of (2.2) when δ → 0+. In the following section we discuss the solutions of
both the fundamental and general Lundberg’s equation.

3 Solutions of the Lundberg’s equations

According to Theorem 2 and Remark 1 of Li and Garrido (2004), in a Sparre–Andersen risk
model with Erlang(n) distributed interclaim times, equation (2.2) has n roots with positive
real parts and equation (2.1) has n− 1 roots with positive real parts.

In the dual model, we can use Rouché’s theorem, as in Theorem 2 of Li and Gar-
rido (2004), to prove that both equations have exactly n roots with positive real parts.
Let ρ1(δ), . . . , ρn(δ) denote these roots. Moreover, if n is an odd number only one of these
roots is real, say ρn(δ), and if n is even there are always two real roots, say ρn(δ) and ρn−1(δ)
such that 0 < ρn(δ) < ρn−1(δ). The other roots form pairs of conjugate complex numbers on
each situation. We note that Remark 1 of that theorem does not totally apply to the dual
model since it needs the loading condition in its point 2, which is reversed in our case.

The difference between Li and Garrido (2004)’s conclusion and ours concerning the
number of roots in the limiting case δ → 0+ lies on the loading condition. To understand
this we can proceed as in Li and Garrido (2004). Let’s define the function

h(s) =

(
λ

c

)n
p̂(s)−

(
λ+ δ

c
− s
)n

.

Since h(0) < 0 and lims→−∞ h(s) = +∞, for a sufficiently smooth density p(x) (it is sufficient
that p̂(s) is continuous) we will have at least one negative real root, we denote the larger one
by −R(δ). Also, we have

h′(0) = −
(
λ

c

)n
µ1 + n

(
λ+ δ

c

)n−1

=

(
λ

c

)n−1(
−λ
c
µ1

)
+ n

(
λ+ δ

c

)n−1

< 0,

due to the negative loading condition (cn < λµ1) and for a sufficiently small δ. Note that
h(s) has a local minimum between 0 and ρn(δ). Therefore, limδ→0+(−R(δ)) = 0 because
limδ→0+ h(0) = 0. In the limit only the root −R(δ) equals zero, all the others remain nonzero,
since the limδ→0+ ρn(δ) > 0. Note that if we considered the loading to be reversed, which
makes economical sense for the primal model, we would have limδ→0+ ρn(δ) = 0 [see Remark
1 of Theorem 2 in Li and Garrido (2004)].

Following Ji and Zhang (2012) we note that roots ρ1(δ), . . . , ρn(δ) are all distinct for
δ ≥ 0, see end of their Section 1, p. 75. This remark was originally described for the primal
model, but it remains valid in the case of the dual (their equation corresponding to (2.2)
although dependent of c is irrespective of the loading condition). This feature will be very
important later on this manuscript.

For simplicity we will denote ρi(δ) by ρi, i = 1, ..., n, unless stated otherwise.

5



4 The ruin probability

The ultimate ruin probability in the dual risk model with exponential interarrival times, i.e.
k(t) = λe−λt, satisfies the following renewal equation

ψ(u) = e−λt0 +

∫ t0

0
λe−λt

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt, (4.1)

where t0 = u/c is the time of ruin without any gain arrival. This can be found in Afonso et
al . (2011), and is got by conditioning on the time and amount of the first jump.

Differentiating with respect to u and rearranging, we get an integro–differential equation
for ψ(u) given by

ψ(u) +
( c
λ

) d

du
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx.

We can write this equation as(
I +

( c
λ

)
D
)
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx, (4.2)

where I is the identity operator and D is the differentiation operator.
We can extend the previous method for a general Erlang(n) interarrival time. Likewise,

the renewal equation corresponding to (4.1) becomes

ψ(u) = 1−Kn(t0) +

∫ t0

0
kn(t)

∫ ∞
0

p(x)ψ(u− ct+ x)dx dt. (4.3)

The integro–differential equation analogous to (4.2) in given in the following theorem.

Theorem 4.1 In the Erlang(n) dual risk model the ruin probability satisfies the integro–
differential equation (

I +
( c
λ

)
D
)n
ψ(u) =

∫ ∞
0

p(x)ψ(u+ x)dx, (4.4)

with boundary conditions

ψ(0) = 1 and
di

dui
ψ(u)

∣∣∣∣
u=0

= 0, i = 1, . . . , n− 1. (4.5)

Proof. We proceed taking successive derivatives of the ruin probability using the renewal
equation (4.3). Changing the variable u − ct = s the renewal equation can be rewritten in
the form

ψ(u) = 1−Kn

(u
c

)
+

1

c

∫ u

0
kn

(
u− s
c

)
W (s)ds,

where W (s) =
∫∞

0 ψ(s+ x)p(x)dx.
After applying the operator (I + (c/λ)D) to the ruin probability we get(

I +
( c
λ

)
D
)
ψ(u) = 1−Kn−1

(u
c

)
+

1

c

∫ u

0
kn−1

(
u− s
c

)
W (s)ds.
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Following an inductive argument, it is easy to show that(
I +

( c
λ

)
D
)i
ψ(u) = 1−Kn−i

(u
c

)
+

1

c

∫ u

0
kn−i

(
u− s
c

)
W (s)ds,

for i = 1, . . . , n− 1. Particularly, we have(
I +

( c
λ

)
D
)n−1

ψ(u) = 1−K1

(u
c

)
+

1

c

∫ u

0
k1

(
u− s
c

)
W (s)ds.

Applying the operator once more we get(
I +

( c
λ

)
D
)n
ψ(u) = W (u).

This proves equation (4.4). We have been using here some very known properties of the
Erlang(n) probability density function (for n ≥ 2), namely

k′n(t) = λ(kn−1(t)− kn(t)),

k(i)
n (0) = 0, i = 0, . . . , n− 2,

k(n−1)
n (0) = λn.

We now prove the boundary conditions. Clearly, ψ(0) = 1. We find the remaining condi-
tions by computing directly the derivatives of ψ(u) and evaluating at u = 0,

di

dui
ψ(u) = −

(
1

c

)i
k(i−1)
n

(u
c

)
+

(
1

c

)i+1 ∫ u

0
k(i)
n

(
u− s
c

)
W (s)ds

for i = 1, . . . , n− 1. Hence, we obtain

di

dui
ψ(u)

∣∣∣∣
u=0

= 0, i = 1, . . . , n− 1.

The solution for the integro-differential equation (4.4) with boundary conditions given by
(4.5) is shown in the following theorem.

Theorem 4.2 The ultimate ruin probability can be written as a combination of exponential
functions

ψ(u) =
n∑
k=1

 n∏
i=1,i 6=k

ρi
(ρi − ρk)

 e−ρku, (4.6)

where ρ1, . . . , ρn are the only roots of the fundamental Lundberg’s equation (2.1) which have
positive real parts.

Proof. Let’s consider a general solution f(u) for equation (4.4)(
I +

( c
λ

)
D
)n
f(u) =

∫ ∞
0

p(x)f(u+ x)dx. (4.7)
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We now look for particular solutions of this equation. Let f(u) = e−ru, for some r ∈ C.
Then, for the left hand side of (4.7) we obtain(

I +
( c
λ

)
D
)n
f(u) =

(
1−

( c
λ

)
r
)n
e−ru,

hence, (
1−

( c
λ

)
r
)n

= p̂(r),

which means that r must be a root of the Fundamental Lundberg’s equation (2.1).
Define the functions f1(u) = e−ρ1u, . . . , fn(u) = e−ρnu. Since they are linearly indepen-

dent we can write any solution of (4.7) as

f(u) =

n∑
i=1

aie
−ρiu,

where ai, i = 1, ..., n, are constants. To get a formula for ψ(u) we must find the constants
ai using the boundary conditions (4.5). These can be determined by solving a system of n
equations on the unknowns a1, ..., an. In matrix form we have

a1

a2
...
an

 =


1 1 · · · 1
ρ1 ρ2 · · · ρn
...

...
. . .

...

ρn−1
1 ρn−1

2 · · · ρn−1
n


−1

1
0
...
0

⇔ a = P−1e,

where P = P(ρ1, . . . , ρn) is a Vandermonde matrix, a′ = (a1, a2, . . . , an) and e′ = (1, 0, . . . , 0).
The determinant of P is given by

Det P =
∏

1≤i<j≤n
(ρj − ρi),

and using Cramér’s rule we get expressions for the coefficients

ak =
(−1)k−1(

∏n
i=1, i 6=k ρi)(

∏
1≤i<j≤n, i 6=k, j 6=k(ρj − ρi))∏

1≤i<j≤n(ρj − ρi)

=
(−1)k−1(

∏n
i=1, i 6=k ρi)

(
∏k−1
i=1 (ρk − ρi))(

∏n
j=k+1(ρj − ρk))

=
n∏

i=1,i 6=k

ρi
(ρi − ρk)

.

Remarks:

1. Note that although some of the roots are complex, expression (4.6) is always a real
number.

2. If we considered the positive loading condition to be reversed, recall that ρn = 0 as
explained at the end of Section 3, then we would have an = 1 and all the remaining
coefficents ak = 0, k = 1, ..., n− 1, therefore giving ψ(u) = 1 as expected.
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Example 4.1 For n = 1 (exponential case): Gerber (1979) found that ψ(u) = e−ρu, where
ρ is the unique positive root of the fundamental Lundberg’s equation (2.1).

For n = 2:
ψ(u) =

ρ2

ρ2 − ρ1
e−ρ1u − ρ1

ρ2 − ρ1
e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of
(

1−
( c
λ

)
s
)2

= p̂(s).

For n = 3:

ψ(u) =
ρ2ρ3

(ρ3 − ρ1)(ρ2 − ρ1)
e−ρ1u − ρ1ρ3

(ρ3 − ρ2)(ρ2 − ρ1)
e−ρ2u

+
ρ1ρ2

(ρ3 − ρ1)(ρ3 − ρ2)
e−ρ3u,

where ρ1, ρ2, ρ3 are solutions of
(
1−

(
c
λ

)
s
)3

= p̂(s); one root is real and the other two are
complex conjugates.

5 The Laplace transform of the time to ruin

For the Erlang(n) case, the Laplace transform of the time to ruin satisfies the renewal equation

ψ(u, δ) = (1−Kn (t0)) e−δt0 +

∫ t0

0

kn (t) e−δt
∫ ∞
0

p(x)ψ(u− ct+ x, δ)dxdt. (5.1)

with t0 = u/c. The following theorem shows an integro–differential equation for ψ(u, δ).

Theorem 5.1 In the Erlang(n) dual risk model the Laplace transform of the time of ruin
satisfies the integro–differential equation((

1 +
δ

λ

)
I +

( c
λ

)
D
)n

ψ(u, δ) =

∫ ∞
0

p(x)ψ(u+ x, δ)dx, (5.2)

with boundary conditions

ψ(0, δ) = 1,
di

dui
ψ(u, δ)

∣∣∣∣
u=0

= (−1)i
(
δ

c

)i
, i = 1, . . . , n− 1. (5.3)

Proof. Using a similar the procedure as in Theorem 4.1 we take successive derivatives of
(5.1). Then, changing variable the renewal equation can be rewritten in the form

ψ(u, δ) =
(

1−Kn

(u
c

))
e−δ(

u
c

) +
1

c

∫ u

0
kn

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds,

where Wδ(s) =
∫∞

0 ψ(s+ x, δ)p(x)dx.

After applying the operator
((

1 + δ
λ

)
I +

(
c
λ

)
D
)

to the Laplace transform we get((
1 +

δ

λ

)
I +

( c
λ

)
D
)
ψ(u, δ) =

(
1−Kn−1

(u
c

))
e−δ(

u
c

)

+
1

c

∫ u

0
kn−1

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds.
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Similarly, following an inductive argument, we show that((
1 +

δ

λ

)
I +

( c
λ

)
D
)i
ψ(u, δ) =

(
1−Kn−i

(u
c

))
e−δ(

u
c

)

+
1

c

∫ u

0
kn−i

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds,

for i = 1, . . . , n− 1. In particular, we obtain((
1 +

δ

λ

)
I +

( c
λ

)
D
)n−1

ψ(u, δ) =
(

1−K1

(u
c

))
e−δ(

u
c

)

+
1

c

∫ u

0
k1

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s)ds.

Applying once more the operator gives((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

ψ(u, δ) = Wδ(u).

This proves equation (5.2).
For the boundary conditions, clearly ψ(0, δ) = 1. We find the remaining conditions

computing directly the derivatives of ψ(u, δ) and evaluate at u = 0,

di

dui
ψ(u, δ) =

[(
−δ
c

)i (
1−Kn

(u
c

))
− 1

ci

∑i

j=1

(
i

j

)
(−δ)i−j k(j−1)

n

(u
c

)]
e−δ(

u
c

)

+

(
1

c

)∫ u

0

[
1

ci

∑i

j=0

(
i

j

)
(−δ)i−j k(j)

n

(
u− s
c

)]
e−δ(

u−s
c

)Wδ(s)ds,

for i = 1, . . . , n− 1, so that we get di

dui
ψ(u, δ)

∣∣∣
u=0

=
(
− δ
c

)i
, i = 1, . . . , n− 1.

The solution for ψ(u, δ) is given in the following theorem.

Theorem 5.2 The Laplace transform of the time of ruin can be written as a combination of
exponential functions

ψ(u, δ) =

n∑
k=1

 n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

 e−ρku, (5.4)

where ρ1, . . . , ρn are the only roots of the Lundberg’s equation (2.2) which have positive real
parts.

Proof. We use a similar procedure as in Theorem 4.2 to obtain formula (5.4). All the
functions e−ρku, k = 1, ..., n, are solutions of the integro–differential equation((

1 +
δ

λ

)
I +

( c
λ

)
D
)n

f(u) =

∫ ∞
0

p(x)f(u+ x)dx. (5.5)

Since these functions are linearly independent, we can write every solution of (5.5) as a linear
combination of them. Therefore,

ψ(u, δ) =

n∑
i=1

aie
−ρiu, ai constants.

10



where constants ai, i = 1, ...n, are solutions of the system
a1

a2
...
an

 =


1 1 · · · 1
ρ1 ρ2 · · · ρn
...

...
. . .

...

ρn−1
1 ρn−1

2 · · · ρn−1
n


−1

1
δ
c
...(

δ
c

)n−1

⇔ a = P−1Λ,

in matrix form, where P = P(ρ1, . . . , ρn) is a Vandermonde matrix, a′ = (a1, a2, . . . , an) and
Λ′ = (1, δ/c, . . . , (δ/c)n−1).

Finally, we get expressions for the coefficients

ak =
(−1)k−1(

∏n
i=1, i 6=k(ρi −

δ
c ))(

∏
1≤i<j≤n, i 6=k, j 6=k(ρj − ρi))∏

1≤i<j≤n(ρj − ρi)

=
(−1)k−1(

∏n
i=1, i 6=k(ρi −

δ
c ))

(
∏k−1
i=1 (ρk − ρi))(

∏n
j=k+1(ρj − ρk))

=

n∏
i=1,i 6=k

(
ρi − δ

c

)
(ρi − ρk)

.

We note that δ/c is not a root of equation (2.2). Hence, we get the result.
Remarks:

1. The Laplace transform (5.4) shows an interesting form as it corresponds to Formula
(2.12) found by Li (2008), concerning the primal model and applied for the first hitting
time that the surplus risk process, starting from zero, upcrosses a level u > 0. This
result enhances the duality of the two models as explained by Afonso et al . (2011) who
worked the compound Poisson, or Erlang(1), model. We mean, the first hitting time in
the primal model corresponds to the ruin time in the dual model. It is interesting that
the duality features shown for the classical Erlang(1) can be extended. Note that the
loading conditions in the two models are reversed. We refer to the explanations for the
Lundberg’s equations in Sections 2 and 3.

2. Formula (4.6) is a limiting case, as δ → 0+, of (5.4). We couldn’t transpose ot our model
directly Formula (2.12) of Li (2008) derived for the primal model because its limit as
δ → 0+ would lead to a ruin probability of one. This is due to the reverse loading
condition. The first hitting time in the primal model is a proper random variable as far
as the time to ruin in the dual model is a defective one. Formulae (5.4) above and (2.12)
from Li (2008) show the same appearance but parameter c have different admissible
values.

Example 5.1 For n = 1, exponential case, Ng (2009) found that ψ(u, δ) = e−ρ1u, where ρ1

is the positive real solution of 1 + δ
λ −

(
c
λ

)
s = p̂(s).

For n = 2:

ψ(u, δ) =
ρ2 − δ

c

ρ2 − ρ1
e−ρ1u −

ρ1 − δ
c

ρ2 − ρ1
e−ρ2u,

where ρ1, ρ2 > 0 are real, solutions of
(
1 + δ

λ −
(
c
λ

)
s
)2

= p̂(s). The above formula corre-
sponds to expression (2.1) of Dickson and Li (2012).
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For n = 3:

ψ(u, δ) =
(ρ2 − δ

c )(ρ3 − δ
c )

(ρ3 − ρ1)(ρ2 − ρ1)
e−ρ1u −

(ρ1 − δ
c )(ρ3 − δ

c )

(ρ3 − ρ2)(ρ2 − ρ1)
e−ρ2u +

(ρ1 − δ
c )(ρ2 − δ

c )

(ρ3 − ρ1)(ρ3 − ρ2)
e−ρ3u,

where ρ1, ρ2, ρ3 are solutions of
(
1 + δ

λ −
(
c
λ

)
s
)3

= p̂(s). One root is real and positive, the
other two are complex conjugates.

6 Expected Discounted Dividends

From this section on we consider the existence of an upper dividend barrier b so that when
the surplus upcrosses b the excess is paid as dividend.

6.1 An integro-differential equation

In the Poisson case, exponentially distributed interjumps arrivals, see e.g. Afonso et al .
(2011), the expected present value of the discounted dividends, V (u, b), satisfies the renewal
equation, for u ≤ b,

V (u, b) =

∫ u
c

0
λe−(λ+δ)t

{∫ b−u+ct

0
V (u− ct+ y, b)p(y)dy

+

∫ ∞
b−u+ct

[y + u− ct− b+ V (b, b)] p(y)dy

}
dt

Note that V (0, b) = 0, since at u = 0 ruin occurs, and that

V (u, b) = u− b+ V (b, b), for u > b. (6.1)

Changing variable, s = u− ct, and differentiating with respect to u we get((
1 +

δ

λ

)
I +

( c
λ

)
D
)
V (u, b) = Wδ(u, b),

where

Wδ(u, b) =

∫ b−u

0
V (u+ y, b)p(y)dy +

∫ ∞
b−u

(y + u− b+ V (b, b))p(y)dy. (6.2)

In the Erlang(n) model (n ≥ 2), the corresponding renewal equation is given by

V (u, b) =

∫ u
c

0
kn(t)e−δt

[∫ b−u+ct

0
V (u− ct+ y, b)p(y)dy+∫ ∞

b−u+ct
(y + u− ct− b+ V (b, b))p(y)dy

]
dt.

After a similar variable change, we can write it in the following form

V (u, b) =
1

c

∫ u

0
kn

(
u− s
c

)
e−δ(

u−s
c

)Wδ(s, b)ds. (6.3)

The following theorem shows the final form of this equation.
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Theorem 6.1 V (u, b) satisfies the integro–differential equation((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

V (u, b) = Wδ(u, b), (6.4)

with boundary conditions

di

dui
V (u, b)

∣∣∣∣
u=0

= 0, i = 0, . . . , n− 1. (6.5)

Proof. The proof follows exactly the method applied previously, taking successive deriva-
tives of (6.3).

6.2 The annihilator of p(x− u)

Because of condition (6.1), we can not write the solutions of (6.4) as a linear combination of
n exponential functions as we did before in the cases of the ruin probability and the Laplace
transform of the time of ruin. Otherwise, conditions given by (6.5) would led to V (u, b) ≡ 0,
which is a contradiction. We will need instead, more than n exponential functions, the exact
number needed will depend on the nature of the distribution of the single gains, P (x). How-
ever, we can apply the annihilator approach known from the theory of ordinary differential
equations to find the appropriate solutions, e.g. see Zill (2012), Section 4.5.

We can rewrite Wδ(u, b) in (6.2) as

Wδ(u, b) =

∫ b

u
V (x, b)p(x− u)dx+

∫ ∞
b

(x− b+ V (b, b))p(x− u)dx

=

∫ b

u
V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)p(x− u)dx,

with Ṽ (x, b) = x − b + V (b, b). The idea is to find a linear differential operator that will
annihilate p(x − u) (where the variable is u), so that when we apply this operator to the
integro–differential equation (6.4) we obtain a linear homogeneous differential equation of a
higher degree (and the integral term vanish).

From this moment onwards we work the particular case when the single gains follow a
distribution of the Phase-Type family, PH(m). Our notations and definitions are presented
as usually done in this case. Denote by B = (bij)1≤i,j≤m the matrix of the transition rates

between the transient states, let α′ = (α1, α2, . . . , αm) be the vector of the initial probabilities,
η′ = (η1, η2, . . . , ηm) the vector of the exit rates to the absorbing state, and the 1×m vector
1′ = (1, 1, . . . , 1). Let Im denote the identity matrix of order m. It is well known for this
family that the probability and distribution functions are denoted as p(x) = α′eBxη and that
P (x) = 1− α′eBx1, respectively. Let’s consider the following theorem:

Theorem 6.2 One annihilator of degree m for p(x − u) is qB(−D), where D = d
du denote

differentiation with respect to u and qB(y) = Det(B − yIm) is the characteristic polynomial
of the matrix B.

Proof. The proof is based on the Cayley–Hamilton theorem of linear algebra, which states
that every square matrix satisfies its own characteristic equation [see e.g. Lang (2010)].
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Example 6.1 When we consider the exponential(β) distribution for the individual gain size,
we have that p(x) = βe−βx, then B = (−β), α′ = (1), η′ = (β) and 1′ = (1). Hence,

qB(y) = Det(B− yI1) = −β − y and qB(−D) =
d

du
− β.

It is easy to check that
(
d
du − β

)
p(x− u) = 0.

For a more general case when the individual gain size follows an Erlang(m,β) distribution
we have that p(x) = βmxm−1e−βx/(m− 1)!, so that

B =


−β β · · · 0
0 −β · · · 0
...

...
. . .

...
0 0 · · · −β
0 0 · · · 0

0
0
...
β
−β

 ,

α′ = (1, 0, . . . , 0), η′ = (0, 0, . . . , 0, β) and 1′ = (1, 1, . . . , 1). Then

qB(y) = Det(B− yIm) = (−β − y)m and qB(−D) =

(
d

du
− β

)m
.

It is easily verified that
(
d
du − β

)m
p(x− u) = 0.

Now, we want to apply qB(−D) to the integro–differential equation (6.4). We consider
the polynomial expression of qB(−D):

qB(−D) =

m∑
i=0

qi
di

dui
,

where qi, i = 0, 1, ...,m, are constants (namely q0 = Det(B), qm−1 = Trace (B), qm = 1).
Thus, we have the following theorem:

Theorem 6.3 After applying qB(−D) to the integro–differential equation (6.4) we get a lin-
ear homogeneous differential equation of degree m+ n of the following form

0 =

n+m∑
l=0

[ ∑
i+k=l

qi

(
n

n− k

)(
1 +

δ

λ

)n−k ( c
λ

)k] dl

dul
V (u, b)

+

m−1∑
j=0

 m∑
k=j+1

qkα
′(−B)k−j1

 dj

duj
V (u, b). (6.6)

Proof. Since, expanding the binomial, with d0

du0
= I,((

1 +
δ

λ

)
I +

( c
λ

)
D
)n

V (u, b) =
n∑
k=0

(
n

n− k

)(
1 +

δ

λ

)n−k ( c
λ

)k dk

duk
V (u, b),

then from one side we have

qB(−D)

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

V (u, b) =

n+m∑
l=0

[ ∑
i+k=l

qi

(
n

n− k

)(
1 +

δ

λ

)n−k ( c
λ

)k] dl

dul
V (u, b),
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and from the other side

qB(−D)Wδ(u, b) = qB(−D)

[∫ b

u
V (x, b)p(x− u)dx+

∫ ∞
b

Ṽ (u, b)p(x− u)dx

]
=

∫ b

u
V (x, b)qB(−D)p(x− u)dx+

∫ ∞
b

Ṽ (x, b)qB(−D)p(x− u)dx

−
m∑
k=1

qk

k−1∑
j=0

dj

duj
V (u, b)

[
dk−1−j

duk−1−j p(x− u)

∣∣∣∣
x=u

]

= −
m−1∑
j=0

 m∑
k=j+1

qkα
′(−B)k−j1

 dj

duj
V (u, b).

The result follows.

6.3 Expression for the expected discounted dividends

We look for solutions of (6.6) of the form

V (u, b) =
n+m∑
k=1

ake
−rku (6.7)

for some coefficients ak and some exponents rk that are up to be determined. Replacing (6.7)
in (6.6) we get

0 =

((
1 +

δ

λ

)
I +

( c
λ

)
D
)n

V (u, b)−W (u, b)

=
n+m∑
l=1

al

[(
1 +

δ

λ
−
( c
λ

)
rl

)n
− p̂(rl)

]
e−rlu

−α′
[
n+m∑
l=1

ale
−rlb

(
(rlIm −B)−1B + Im

)
−B−1

]
eB(b−u)1. (6.8)

Since equation (6.8) holds for any u ≥ 0, the coefficients of e−rlu and eB(b−u) must be zero.
This means that (

1 +
δ

λ
−
( c
λ

)
rl

)n
− p̂(rl) = 0, l = 1, . . . , n+m,

so the exponents rl, l = 1, ..., n + m, are all the m + n roots of the generalized Lundberg’s
equation (2.2), from those n roots have positive real parts, namely ρ1, ρ2, . . . , ρn, and m roots
with negative real parts, ρn+1, ρn+2, . . . , ρn+m. Also, we must have

α′

[
n+m∑
l=1

ale
−rlb

(
(rlIm −B)−1B + Im

)
−B−1

]
= 0. (6.9)

This gives a homogeneous system of m equations on the m+ n unknown coefficients al. The
remaining n equations that we need (to have a full system of m+ n equations on the m+ n
unknowns), are the n boundary conditions (6.5).
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Example 6.2 Lets assume that the time between two consecutive jumps is Erlang(2) dis-
tributed and the individual jump amounts are Erlang(2, β) distributed. Then, the negative
loading condition is c < λ/β and the generalized Lundberg’s equation (2.2) is given by

(λ+ δ − cs)2(β + s)2 = λ2β2. (6.10)

Let

V (u, b) =
4∑
l=1

ale
−ρlu

Then the exponents ρl are the four roots of (6.10). Say that ρ1, ρ2 are the two roots with
positive real parts and ρ3, ρ4 are the ones with negative real parts. From the two boundary
conditions (6.5) we get

4∑
l=1

al = 0, and
4∑
l=1

alρl = 0,

and from (6.9) we get

4∑
l=1

ale
−ρlb ρl

ρl + β
= − 1

β
,

4∑
l=1

ale
−ρlb ρlβ

(ρl + β)2
= − 1

β
,

so we have a system of four equations in the four unknowns a1, . . . , a4. In matrix form we
have

a1

a2

a3

a4

 =


1 1 1 1
ρ1 ρ2 ρ3 ρ4

e−ρ1b ρ1
ρ1+β e−ρ2b ρ2

ρ2+β e−ρ3b ρ3
ρ3+β e−ρ4b ρ4

ρ4+β

e−ρ1b ρ1β
(ρ1+β)2

e−ρ2b ρ2β
(ρ2+β)2

e−ρ3b ρ3β
(ρ3+β)2

e−ρ4b ρ4β
(ρ4+β)2


−1

0
0
− 1
β

− 1
β

 .

Now, set the values for the parameters λ = β = 1, c = 0.75, δ = 0.02. Then ρ1 =
0.423, ρ2 = 1.831, ρ3 = −0.063 and ρ4 = −1.471. After computing the coefficients we
obtain the values of the expected discounted dividends, for u ∈ {1, 3, 5, 10, 15, 20} and b ∈
{2, 3, 6, 10, 30, 40}, that are shown in Table 6.1. The values are quite similar to those in
Table 7.1 of Afonso et al. (2011) although a little bit smaller. Also we notice that for a
fixed u the value of V (u, b) increases until a certain value of b and then decreases rapidly.
This behavior is expected and corroborates the findings of Afonso et al. (2011) and Avanzi
et al. (2007).

6.4 Higher moments of the discounted dividends

In the Erlang(n) model, the k-th ordinary moment of the discounted dividends Vk(u, b) sat-
isfies the renewal equation

Vk(u, b) =

∫ u
c

0
kn(t)e−k(δ)t

[∫ b−u+ct

0
Vk(u− ct+ y, b)p(y)dy+∫ ∞

b−u+ct
Ṽk(u− ct+ y, b)p(y)dy

]
dt,
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u\b 2 3 6 10 30 40

1 1.049 1.301 1.856 1.781 0.526 0.279
3 4.533 6.451 6.189 1.826 0.972
5 9.374 8.993 2.653 1.412

10 13.829 4.081 2.172
15 5.647 3.006
20 7.746 4.123

Table 6.1: Expected discounted dividends

with

Ṽk(x, b) =

k∑
j=0

(
k

j

)
(x− b)jVk−j(b, b), x ≥ b.

In the above expression we assume the convention V0(u, b) ≡ 1. The corresponding integro–
differential equation is((

1 +
kδ

λ

)
I +

( c
λ

)
D
)n

Vk(u, b) = Wkδ(u, b), (6.11)

with boundary conditions

di

dui
Vk(u, b)

∣∣∣∣
u=0

= 0, i = 0, . . . , n− 1, (6.12)

where

Wkδ(u, b) =

∫ b

u
Vk(x, b)p(x− u)dx+

∫ ∞
b

Ṽk(x, b)p(x− u)dx.

Assuming that the gains follow a PH(m) distribution we can apply an analogous method
to find and an expression for Vk(u, b), and numerical values in the same way. We apply the
same annihilator qB(−D) to the integro–differential equation (6.11) to obtain

0 =
n+m∑
l=0

∑
i+j=l

qi

(
n

n− j

)(
1 +

kδ

λ

)n−j ( c
λ

)j dl

dul
Vk(u, b) +

m−1∑
j=0

 m∑
i=j+1

qiα
′(−B)i−j1

 dj

duj
Vk(u, b).. (6.13)

Therefore we seek for solutions of (6.13) of the form

Vk(u, b) =

n+m∑
l=1

ale
−rlu. (6.14)

Replacing (6.14) in (6.13) gives
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0 =

((
1 +

kδ

λ

)
I +

( c
λ

)
D
)n

V (u, b)−W (u, b)

=
n+m∑
l=1

al

[(
1 +

kδ

λ
−
( c
λ

)
rl

)n
− p̂(rl)

]
e−rlu

−α′
[
n+m∑
l=1

ale
−rlb

(
(rlIm −B)−1B + Im

)
+

k∑
j=1

j

(
k

j

)
Vk−j(b, b)(−B)−j

 eB(b−u)1. (6.15)

Since (6.15) is valid ∀u then we must have(
1 +

kδ

λ
−
( c
λ

)
rl

)n
− p̂(rl) = 0, l = 1, . . . , n+m,

so the exponents rl, l = 1, ..., n + m, are all the m + n roots of the generalized Lundberg’s
equation (2.2), from those n roots have positive real parts, namely ρ1, ρ2, . . . , ρn, and m roots
with negative real parts, ρn+1, ρn+2, . . . , ρn+m. Also, we must have

α′

n+m∑
l=1

ale
−rlb

(
(rlIm −B)−1B + Im

)
+

k∑
j=1

j

(
k

j

)
Vk−j(b, b)(−B)−j

 = 0. (6.16)

Example 6.3 We want to compute V2(u, b). Lets assume that the time between two con-
secutive jumps is Erlang(2) distributed and the individual jump amounts are Erlang(2, β)
distributed. Then, the negative loading condition is c < λ/β and the generalized Lundberg’s
equation (2.2) is given by

(λ+ kδ − cs)2(β + s)2 = λ2β2. (6.17)

Let

V2(u, b) =
4∑
l=1

ale
−ρlu

Then the exponents ρl are the four roots of (6.17). Say that ρ1, ρ2 are the two roots with
positive real parts and ρ3, ρ4 are the ones with negative real parts. From the two boundary
conditions (6.12) we get

4∑
l=1

al = 0, and
4∑
l=1

alρl = 0,

and from (6.16) we get

4∑
l=1

ale
−ρlb ρl

ρl + β
= −2V (b, b)

1

β
− 2

β2
,

4∑
l=1

ale
−ρlb ρlβ

(ρl + β)2
= −2V (b, b)

1

β
− 4

β2
,

so we have a system of four equations in the four unknowns a1, . . . , a4.
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In matrix form we have
a1

a2

a3

a4

 =


1 1 1 1
ρ1 ρ2 ρ3 ρ4

e−ρ1b ρ1
ρ1+β e−ρ2b ρ2

ρ2+β e−ρ3b ρ3
ρ3+β e−ρ4b ρ4

ρ4+β

e−ρ1b ρ1β
(ρ1+β)2

e−ρ2b ρ2β
(ρ2+β)2

e−ρ3b ρ3β
(ρ3+β)2

e−ρ4b ρ4β
(ρ4+β)2


−1

0
0

−2V (b, b) 1
β −

2
β2

−2V (b, b) 1
β −

4
β2

 .

Set values for the parameters as λ = β = 1, c = 0.75, δ = 0.02. Then ρ1 = 0.494, ρ2 =
1.853, ρ3 = −0.107 and ρ4 = −1.467. After computing the coefficients we obtain the values
for the standard deviation of D(u, b), for u ∈ {1, 3, 5, 10, 15, 20} and b ∈ {2, 3, 6, 10, 30, 40},
that are shown in Table 6.2.

u\b 2 3 6 10 30 40

1 2.534 3.389 4.893 4.638 1.655 0.973
3 5.058 7.335 6.906 2.667 1.621
5 7.483 6.985 2.966 1.841

10 6.864 3.531 2.277
15 4.269 2.829
20 5.093 3.496

Table 6.2: Standard deviation of the discounted dividends
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ISEG and CEMAPRE CMA and FCT ISEG and CEMAPRE

Department of Mathematics Department of Mathematics Department of Management
Technical University of Lisbon New University of Lisbon Technical University of Lisbon

Rua do Quelhas 6 Monte de Caparica Rua do Quelhas 6
1200–781 Lisboa, Portugal 2829–516 Caparica, Portugal 1200–781 Lisboa, Portugal

evrodriguez@gmail.com rrc@fct.unl.pt alfredo@iseg.utl.pt

21


