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Abstract

This work examines the stability and accuracy of four di¤erent methods to esti-
mate Risk-Neutral Density functions (RNDs) using European options. These meth-
ods are the Double-Lognormal Function (DLN), the Smoothed Implied Volatility
Smile (SML), the Density Functional Based on Con�uent Hypergeometric function
(DFCH) and the Edgeworth expansions (EE).

These methodologies were used to obtain the RNDs from the option prices with
the underlying USDBRL (price of US dollars in terms of Brazilian reals) for di¤erent
maturities (1, 3 and 6 months), and then tested in order to analyze which method
best �ts a simulated "true" world as estimated through the Heston model (accuracy
measure) and which model has a better performance in terms of stability.

We observed that in the majority of the cases the DFCH and DLN outperformed
the SML and the EE methods in capturing the "true" implied skewness and kurtosis.
However, due to the higher sensitivity of the skewness and kurtosis measures to the
tails of the distribution (all the information outside the available strike prices is
extrapolated and the probability masses outside this range can have in�nite forms)
we also compared the tested models using the root mean integrated squared error
(RMISE) which is less sensitive to the tails of the distribution. We observed that
using the RMISE criteria, the DFCH outperformed the other methods as a better
estimator of the "true" RND.

Key words: Risk�neutral density; Option pricing, Natural spline, Hypergeometric
function, Double-Lognormal, Edgeworth function, Heston model

1 Introduction

It is accepted by market participants that the prices of �nancial derivatives
provide information about future expectations of the underlying asset prices,
especially forwards, futures and options. Forwards and futures only give us
the expected value for the underlying asset under the assumptions of risk
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neutrality, which makes using cross-sections of observed option prices more
attractive because they allow estimation of an implied probability density
function.
It is known that the Black and Scholes model has several limitations, because

it assumes that the price of the underlying asset evolves according to the
geometric Brownian Motion (GBM) with a constant expected return and a
constant volatility. The volatility is constant until maturity and also across
all quoted strikes, which ignores phenomena like volatility smile and as such
distorts probabilities for extreme scenarios. In fact, higher volatilities for strike
prices deep out-of-the-money make it more likely that future prices will be very
di¤erent from current market values. This in turn increases the probability
of these option prices being in-the-money in the future and leads to more
expensive prices for deep out-of-the-money options, when compared to prices
calculated through the B&S model. This results in fatter tails of the true
probability density function (pdf) when compared with a lognormal pdf.
To tackle these problems, various methods have been suggested to extract

Risk-Neutral Density Functions (RNDs) from option prices and several studies
have been carried out to examine the robustness of these estimates and their
information power.
In this work we compare four methods of extracting RNDs from USD-

BRL European type exchange rate options. These methods are the Double-
Lognormal Function, the Smoothed Implied Volatility Smile, the Density Func-
tional Based on Con�uent Hypergeometric function and the Edgeworth ex-
pansions. We test the stability of the estimated RNDs and their robustness as
regards small errors by randomly perturbing option prices by half of the quota-
tion of the tick size as in Bliss and Panigirtzoglou (2002) before re-estimating
the RNDs and their accuracy by experimenting their capacity to recover the
"true" RNDs. The "true" probability density function (pdf) was estimated us-
ing the method developed in Cooper (1999), who generated pseudo prices from
Heston�s stochastic volatility model, and then compared the performance of
the di¤erent methods using Monte Carlo simulations in order to obtain RNDs,
whereby the input was the option prices calculated by these pseudo prices.
The remainder of this work is organized into seven chapters. Chapter Two

gives a presentation of the Black and Scholes model and its theoretical back-
ground. In this chapter, we also describe how option prices can provide in-
formation about implied probabilities given by market participants to future
events and its use as an instrument to extract probability density functions of
future prices using the formula proposed in Breeden and Litzenberger (1978).
Chapter Three describes the �ve models used in this work (DLN, SML,

DFCH, EE and Heston). Jondeau et al. (2006) divide the alternative methods
into two categories: structural and non-structural. A structural model assumes
a speci�c dynamic for the price or volatility process. A non-structural method
allows the estimation of a RND without describing any evolving process for
the price or volatility of the underlying asset. The non-structural approaches
can be divided into three subcategories: parametric (propose a form for the
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RND without assuming any price dynamics for the underlying asset), semi-
parametric (suggest an approximation of the true RND) and non-parametric
models (do not propose an explicit form for the RND).
Chapter Four describes the measures used to evaluate the performance of

the four models tested (MLN, SML, DFCH and EE) in terms of accuracy and
stability.
The results of the Monte Carlo simulation experiments and the comparisons

of the models tested are presented and discussed in Chapter Five and Six.
In Chapter Five we analyze the accuracy and stability performance using the
"true" RNDs generated by the Heston parameters proposed in Cooper (1999).
In Chapter Six, a similar analysis was carried out. However, the "true" RNDs
were obtained through the previously calibrated Heston parameters. The He-
ston parameters were calibrated taking into account the observed quotes for
the USDBRL European options between June 2006 and February 2010.
The historical RND summary statistics obtained using the DLN, SML,

DFCH and EE methods for the USDBRL in the time period described above
are presented in Chapter Seven.
Finally, Chapter Eight presents the conclusions.

2 Standard option pricing and extraction of RND

2.1 Black & Scholes model

The widely used Black and Scholes model Black and Scholes (1973) for
option pricing assumes that the underlying asset price has a lognormal distri-
bution and evolves until reaching maturity in line with a geometric Brownian
motion (GBM) stochastic process, with a constant expected return and a con-
stant volatility:

dSt = St�dt+ St�dWt (1)

where St is the price of the underlying asset at time t, dSt denotes instanta-
neous price change, � is the expected return, � is the standard deviation of the
price process and dW are increments from a Brownian motion process. The
parameters � and � are assumed to be constant. Besides constant volatility
during the term of the option, the B&S model also assumes the same volatility
across the whole range of strike prices.
The Black and Scholes Pricing formulas for european call and put options

are:

C(S; t) = SN(d1)-Xe�r(T�t)N(d2) ; S > 0 ; t 2 [0;T ] (2)

P (S; t) = Xe�r(T�t)N(�d2)� SN(�d1) ; S > 0 ; t 2 [0;T ] (3)
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with

d1 =
ln( S

X
) + (r + 1

2
�2)(T � t)

�
q
(T � t)

(4)

and

d2 =
ln( S

X
) + (r � 1

2
�2)(T � t)

�
q
(T � t)

(5)

In a world in which prices are lognormally distributed with constant volatil-
ity and expected returns it is possible to create a risk free portfolio using
delta hedging. The return of this hedged portfolio becomes certain and does
not depend on the change of the stock price.

2.2 Relation between option prices and the extraction of RNDs

It is possible to combine call options that have the same time to maturity
but di¤erent exercise prices, in order to obtain a payo¤ at expiration that is
dependent on the state of the economy at a particular time. The price of these
combined securities (state-contingent securities) also re�ects the probabilities
that investors attribute to those particular states in the future.
This relation between probabilities and the price of a contingent claim 1

was initially proposed in Arrow (1964) who applied a contingent claim model
to the securities market. It was shown that the prices of an elementary claim
(Arrow-Debreu security) 2 are proportional to the risk-neutral probabilities
attached to each of the states.
This Arrow-Debreu security has an important information value and can

be replicated with a combination of European call options, called butter�y
spread, which consists of a long position in two calls with strikes (X ��M)
and (X + �M) and a short position in two calls with strike (X) , where
�M > 0.
Breeden and Litzenberger (1978) applied the developments by Arrow and

Debreu and used a state contingent claim in the form of a butter�y spread to
show that the second partial derivative of a call option pricing function with
respect to the strike prices yields the discounted RND (f(ST )� e�rT ).
These authors showed that a portfolio which contains (1=�2) units of a

butter�y spread is determined by the second partial derivative of the European
call option with respect to the exercise price:

[c(M ��; T )� c(M;T )]� [c(M;T )� c(M +�; T )]

�M2
(6)

The payo¤ of this portfolio at maturity is
n
dK+jST�Kj if ST2[K�dK;K+dK]

0 elsewhere

o
. The

area under the payo¤ function is one. Applying this relation to a range of

1 a claim that can be made when a speci�c outcome occurs.
2 a security paying one unit if a state s occurs and zero otherwise.
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continuum possible values for the underlying asset, leads to the estimation of
the discounted Risk-Neutral Density.

d2C(X;T )

dX2
= e�rTf(ST ) (7)

This condition only holds if C(X;T ) is monotonic decreasing and convex in
the exercise price, otherwise there are arbitrage opportunities and the RND
could be negative [Bahra (1997)].

3 RND estimation - Alternative methods

Despite being widely used, the B&S model has several limitations because
the log normal assumption does not hold in practice and calculates prices that
are di¤erent from market values, which creates the need to analyze and study
di¤erent methods in order to �nd a model that is more e¢ cient at capturing
market expectations and prices.
In this chapter we give an overview of the methods developed in this work in

order to obtain estimates which closely re�ect the expectations of the option
market.
The optimizations we have performed for the calculus of the theoretical

option prices and estimation of the risk-neutral densities using the tested
models were produced using the MATLAB software. The numerical aspects
of the optimizations and the matlab algorithms are shown in Santos (A. D.).

3.1 Structural Models

3.1.1 RND estimation using a model based on stochastic volatility - Heston
Model

The Heston Model was developed in Heston (1993) and represents the
classical stochastic volatility pricing model. It is used in this work to estimate
the density corresponding to the �true�world. This method adds a second
Wiener Process to the price dynamics (volatility modeling), which leads to the
dynamics of the underlying asset price (St) based on the geometric Brownian
Motion with time varying volatility

dSt= �Stdt+ St
p
vtdZ1;t (8)

dvt= �(� � vt)dt+ �v
p
vtdZ2;t

where
p
vt denotes current volatility of the underlying asset price, Z1;t and Z2;t

represents the correlated Brownian motion processes with correlation parame-
ter �, vt is the volatility of the underlying asset, � is the long run volatility,
�v is the volatility of the volatility process and � is the speed at which the
volatility returns to its long run average.
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These parameters guide the trajectory of the square root process, which
means that along its path, vt goes around �, crossing the long run volatility
more frequently when k is higher and the trajectory of vt is more volatile when
� is higher.
The parameter � de�nes the correlation between returns and volatility and

can change the form of the RND, generating skewness in asset returns. For
example, if � > 0 the volatility of the asset price increases when the asset price
increases, and in this way the weight of the right tail of RND will increase.
In contrast, when � < 0 the decrease in price leads to an increase in volatility
and the weight of the left tail of RND will increase.
Heston introduced the following closed formula for the European call option

price:

C(St; vt; X; T ) = Ste
�r�(T�t)P1 �Xe�r(T�t)P2 ; S > 0 ; t 2 [0;T ]; (9)

Pj =
1

2
+
1

�

Z 1

0
Re[

e�i� ln(k)fj(ln(St); v0; T � t; �)
i�

]d�;

fj(ln(St); v0; T � t; �) = eC(T�t;�)+D(T�t;�)vt+i� ln(St);
C(T � t; �) = (r � r�)�i(T � t) + a

�2v
f(bj � ��v�i+ d)(T � t)

� 2 ln[1� ge
d(T�t)

1� g ]g;

D(T � t; �) = bj � ��v�i+ d
�2v

[
1� ed(T�t)
1� ged(T�t) ];

g =
bj � ��v�i+ d
bj � ��v�i� d

;

d =
q
(��v�i� bj)2 � �2v(2uj�i� �2);

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �+ �� ��v; b2 = �+ �; i =

p
�1

3.2 Non-Structural Models

3.2.1 Parametric models
3.2.1.1 Mixture of lognormal distribution The mixture of lognor-
mals (MLN) was proposed by Bahra (1997) and Melick and Thomas (1997)
and assumes a functional form for the risk-neutral density (RND) that acco-
modates various stochastic processes for the underlying asset price. Instead of
specifying a dynamic for the underlying asset price (which leads to a unique
terminal value), it is possible to make assumptions about the functional form
of the RND function itself and then obtain the parameters of the distribution
by minimizing the distance between the observed option prices and those that
are generated by the assumed parametric form. According to the authors, this
makes this model more �exible than the Black and Scholes model and increases
its ability to capture the main contributions to the smile curve, namely the
skewness and the kurtosis of the underlying distribution.
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It is known that the prices of European call and put options can be expressed
as the discounted sum of all expected future payo¤s:

C0(X;T ) = e
�rT

Z 1

X
q(St)(St �X)dSt (10)

P0(X;T ) = e
�rT

Z 1

X
q(St)(X � St)dSt

According to Bahra (1997), any functional form for the RND q(St) can
be assumed because the parameters would be estimated through optimiza-
tion (minimizing the di¤erence between the prices obtained through the MLN
model and market prices). Nevertheless, the author assumed that the asset
price distributions are closer to the lognormal distribution and consequently
it would be plausible to use a weighted sum of lognormal density functions,

q(St; �) =
kX
i=1

[wiL(�i; �i; St)] (11)

where L(�i; �i; St) is the ith lognormal distribution with parameters �i and

�i . It has the following expression:

L(�i; �i; St) =
1

St�i
p
2�
e[�(ln(St)��i)

2=2�2i ]; (12)

�i = ln(St) + (�i �
1

2
�2i )(T � t);

�i = �i
q
(T � t):

The term � represents the vector of unknown parameters �i, �i, �i for i =
1; :::; k, and k de�nes the number of mixtures describing the RND. In order to
guarantee that q is a probability density, wi > 0 for i = 1; :::k, and

Pk
i=1wi = 1.

In this way q will be a combination of the lognormal densities.
While Melick and Thomas applied this method on the extraction of RNDs

from the prices of American options on crude oil futures using a mixture of
three independent lognormals, Bahra obtained the RNDs using European op-
tions on LIFFE equity index, LIFFE interest rate options and Philadelphia
Stock Exchange currency options using a mixture of two independent lognor-
mals. The choice of a mixture of two lognormals is based on the lower number
of parameters to be estimated (5 parameters). In fact, options are traded
across a relatively small range of exercise prices, hence there are limits on the
number of parameters that can be estimated from the data.
Extending the mixture of lognormals to the European call option prices

given by equation (10) we have the following option prices for each strike
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price (Xi) and with time to maturity � = (T � t):

c(Xi; �) = e
�r�

Z 1

X
(St �X)

kX
i=1

wiL(�i; �i; ST )dSt; (13)

c(Xi; �) = e
�r�

kX
i=1

wi

Z 1

X
(St �X)L(�i; �i; ST )dSt:

The integral in equation (13) can be rewritten as (see Jondeau et al. (2006)):

c(Xi; �)= e
�r�

kX
i=1

wie
�i+

1
2
�2iN(

� ln(X) + �i + �2i
�i

) (14)

�e�r�X
kX
i=1

N(
� ln(X)� �i

�i
]:

Applying the mixture of two lognormals used by Bahra, we get the following
closed formula for a European call option,

c(X; �)= e�r�fw[e�1+ 1
2
�21N(d1)�XN(d2)] (15)

+(1� w)[e�2+ 1
2
�22N(d3)�XN(d4)]g

where

d1 =
� ln(X) + �1 + �21

�1
; (16)

d2 = d1 � �1;

d3 =
� ln(X) + �2 + �22

�2
;

d4 = d3 � �2:

For the European put option, Bahra presented the following pricing formula,

p(X; �)= e�r�fw[�e�1+ 1
2
�21N(�d1)�XN(�d2)] (17)

+(1� w)[�e�2+ 1
2
�22N(�d3)�XN(�d4)]g:

In order to �nd the parameters of the implied RND (vector �) we have to
solve the minimization problem,

min
�1;�2;�1;�2;wi

nX
i=1

[c(X; �)� bc]2 + nX
i=1

[p(X; �)� bp]2 (18)

+[we�1+
1
2
�21 + (1� w)e�2+ 1

2
�22 � er�S]

where the �rst two terms refer to the sum of the squared deviation between
option prices estimated through MLN and the observed market prices. Call
and put prices can be considered in equation (18) because both refer to the
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same underlying distribution. The third term of the equation states that the
expected value of the RNDmust be equal to the forward price of the underlying
asset in order to avoid the violation of the arbitrage condition (martingale
condition). After estimating parameters �1; �2; �1; �2; w, we insert them into
equation (11) and then the implied RND is obtained.
The optimization problem (18) can be a¤ected by a problem related to the

symmetry between the densities because in an optimization program, various
parameter vectors can be associated to the same density, which in turn can
result in numerically unstable programs where the optimizer goes round in
an in�nite loop. In Jondeau et al. (2006), the authors recommended the
imposition of �1 > �2 (�rst density will have a larger standard deviation than
the second one) in order to avoid this symmetry problem.

3.2.1.2 Mixture of hypergeometric functions This method allows the
estimation of a probability density function (pdf) without assuming a speci�c
functional form for it. It consists of the use of a formula that encompasses
various densities, such as normal, gamma, inverse gamma, weibull, pareto and
mixtures of these probability densities.
In Abadir and Rockinger (2003), the authors developed a function based

on the con�uent hypergeometric function (1F1), also known as the function for
the case of double integrals of densities. These authors believe the usefulness
of 1F1 relies on the fact that it includes special cases of incomplete gamma,
normal distributions and mixtures of the two. In fact, this function has the
advantage of being more e¢ cient than fully nonparametric estimation for small
samples and more �exible than parametric methods because it does not restrict
functional forms.
The Kummer function 1F1 can be de�ned by:

1F1 �
1X
j=0

(�)j
�j

zj

j!
� 1 + �

�
z +

�(�+ 1)

�(� + 1)

z2

2
+
�(�+ 1)

�(� + 1)

z2

2
+ :::, (19)

(�)j � (�)(�+ 1):::(�+ j � 1) �
�(a+ j)

�(a)

with �(v), for v 2 R being the gamma function and � 2 N.
The function considered for option pricing is called DFCH (density function

based on con�uent hypergeometric functions) and speci�es the European call
price as a mixture of two con�uent hypergeometric functions:

C(X) = c1 + c2X + lX>m1a1((X �m1)
b1)1F1(a2; a3; b2(X �m1)

b3) (20)
+ (a4)1F1(a5; a6; b4(X �m2)

2);

where a3;a6 2 N , b2; b4 2 R� and a1 ; a2; a4; a5; b1; b3 2 R. The indicator
function l represents a component of the density with bounded support.
The �rst 1F1 function can represent a gamma or other asymmetric gener-

alizations, whereas the second 1F1 covers symmetric quadratic exponentials,
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such as the normal.
To get the implied probability density function, the formula stated in equa-

tion (7) is applied to C(X):

e�rTf(X) =
d2C(X)

dX2
= lX>m1a1(X �m1)

b1�2[b1(b1 � 1)1F1(a2; a3; b2(X �m1)
b3)

(21)

+
a2
a3
b2b3(2b1 + b3 � 1)(X �m1)

b3

�1 F1(a2 + 1; a3 + 1; b2(X �m1)
b3) +

a2(a2 + 1)

a3(a3 + 1)
b22b

2
3(X �m1)

2b3

�1 F1(a2 + 2; a3 + 2; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4[1F1(a5 + 1; a6 + 1; b4(X �m2)

2)

+ 2
a5 + 1

a6 + 1
b4(X �m2)

2
1F1(a5 + 2; a6 + 2; b4(X �m2)

2)]:

The integral of the density is given by:

dC(X)

dX
= c2 + lX>m1a1(X �m1)

b1�1[(b1)1F1(a2; a3; b2(X �m1)
b3) (22)

+
a2
a3
b2b3((X �m1)

b3)1F1(a2 + 1; a3 + 1; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4(X �m2)1F1(a5 + 1; a6 + 1; b4(X �m2)

2):

As stated above, some restrictions must be set in order to guarantee that
f(X) integrates to 1 between Xl and Xu,Z Xu

Xl

f(X)dX = 1: (23)

Through these restrictions, we obtained the following expressions for c2 and
a4 (the details are presented in the Appendix).

c2 = �1 + a4
q
�b4�; (24)

a4 =
1

2
p
�b4�

"
1� a1(�b2)�a2

�(a3)

�(a3 � a2)

#
:

As X tends to1, the value of the call option price will be approximately 0
(C(1) = 0), which is the obvious conclusion for call options very nearly out
of the money (the probability to become in the money is near 0). The option
value in equation (20) will pay a minimum of c1, which leads to the following
simpli�cation:

c1 = �c2m2
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Using assumptions b1 = 1 + a2b3; a5 = �1
2
; a6 =

1
2
; formula (20) can be

further simpli�ed (see Abadir and Rockinger (2003)).
The �nal reduction was based on the no-arbitrage condition St = exp�r(T�t)E(ST ),

with r being the risk free rate and E(X) the expected value of the underlying
price at maturity,

E(X) = a1
�(a3)

�(a3 � a2)
(�b2)�a2(m1 �m2) +m2: (25)

With the restrictions de�ned above, the number of parameters to estimate
in the calculation of the theoretical price in equation (20) is reduced to seven.
In order to obtain the implicit RND we have to proceed with the following

minimization problem:

min
a2;�3;b2;b3;b4;m1;m2

nX
i=1

[c(Xi; �)� bci]2 (26)

where a2, a3, b2, b3, b4, m1 and m2 are the parameters to be estimated. Given
the restrictions above, c(X; �) is the theoretical price given in equation (20),bc are the option prices observed in the market and n is the number of strike
prices. The RND is obtained by inserting the parameters into equation (21).

3.2.2 Semi-parametric models
3.2.2.1 Edgeworth expansions The Black and Scholes assumption of
a lognormal distribution for the underlying asset is relaxed by this method
that uses a more �exible distributional form of an Edgeworth series expansion
around a lognormal distribution. This technique was developed by Jarrow and
Rudd (1982) and captures deviations from log-normality by an Edgeworth
expansion. The original Edgeworth expansion use the standard normal as the
approximating distribution (see Kendall (1945)). Edgeworth expansions are
conceptually similar to Taylor expansions, but are applied to densities instead
of points.
To demonstrate how Edgeworth expansion can be obtained lets consider

the true cdf F , the aproximating cdf L, the fdp f , the fdp l, its random
variable ST and the characteristic function of F (�F (u) =

R1
�1 e

iusf(s)ds).
Given n moments uj(F ) exist, the �rst n� 1 cumulants kj(F ) also exist and
are de�ned by the expansion (cumulant-generating function)

log(�F (u)) =
n�1X
j=1

kj(F )
(it)j

j!
+ o(un�1): (27)

Thus, if the characteristic function �F (u) is known, it is possible to obtain
the cumulants by taking an expansion of its logarithm around u = 0.
The relationships between moments and cumulants up to fourth order are
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k1(F )=u1(F ) = E(ST ); (28)
k2(F )=u2(F ) = V ar(ST ); (29)
k3(F )=u3(F ) = E[(ST � E[ST ])3]; (30)
k4(F )=u4(F )� 3u22(F ) = E[(ST � E[ST ])4]� 3V ar(ST )2: (31)

The same notation is applied to the approximating cdf L.
Jarrow and Rudd (1982) show that after imposing the equality of the �rst

moment of the approximating density and true density, the implied probability
density function can be written as (see appendix):

f(ST )= l(ST ) +
k2(F )� k2(L)

2!

d2l(ST )

dS2T
� k3(F )� k3(L)

3!

d3l(ST )

dS3T
(32)

+
(k4(F )� k4(L)) + 3(k2(F )� k2(L))2

4!

d4l(ST )

dS4T
+ "(ST );

where "(ST ) captures the neglected terms of this fourth order expansion around
the true cdf L(ST ), the second term of the expansion denotes di¤erences in
variance between f(ST ) and l(ST ) and the third and fourth terms of the expan-
sion adjust l(ST ) to account diferences in skewness and kurtosis respectively.
Jarrow and Rudd (1982) suggest that with a good choise for the approxi-
mating density, the remainder terms of the expansion "(ST ) are likely to be
negligible. Because of its use in option pricing theory, Jarrow and Rudd sug-
gested the lognormal distribution l(ST ) as the approximating function. Due
to the multicolinearity problem between the second and the fourth moments
Jarrow and Rudd (1982) also imposed k2(F ) = k2(L).
After imposing the equalities of the �rst and second moments of the ap-

proximating and true densities and using the fdp given in equation (32) in
equation (10) we have the following option prices for each strike price (Xi)
and with time to maturity � = (T � t) :

C(F )=C(L)� e�rT k3(F )� k3(L)
3!

dl(X)

dST
(33)

+e�rT
(k4(F )� k4(L)) + 3(k2(F )� k2(L))2

4!

d2l(K)

dS2T

Rather than estimating the cumulants k3(F ) and k4(F ), Corrado and Su
(1986) rewrote equation (33) in order to estimate directly skewness, 
1(F ),
and kurtosis, 
2(F ), using the relationships:


1(F )=
k3(F )

k2(L)3=2
; (34)


2(F )=
k4(F )

k2(L)2
;

thus obtaining:
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C(F )=C(L)� e�rT (
1(F )� 
1(L))
k2(L)

3=2

3!

dl(X)

dST
(35)

+e�rT (
2(F )� 
2(L))
k2(L)

2

4!

d2l(K)

dS2T
;

where the partial derivatives of the lognormal function are:

dl(ST )

dST
=�

 
1 +

log(ST )�m
�2�

!
l(ST )

ST
; (36)

d2l(ST )

dS2T
=�

 
2 +

log(ST )�m
�2�

!
1

ST

dl(ST )

dST
� 1

S2T�
2
�

l(ST ); (37)

d3l(ST )

dS3T
=�

 
3 +

log(ST )�m
�2�

!
1

ST

d2l(ST )

d2ST
� 2

S2T�
2
�

dl(ST )

dST
+

1

S3T�
2
�

l(ST );(38)

d4l(ST )

dS4T
=�

 
4 +

log(ST )�m
�2�

!
1

ST

d3l(ST )

d3ST
� 3

S2T�
2
�

d2l(ST )

dS2T
+

3

S3T�
2
�

dl(ST )

dST
(39)

� 2

S4T�
2
�

l(ST ); (40)

with m = log(St)+ (r� �2

2
). The parameters to be estimated in equation (35)

are the implied volatility, �2, skewness, 
1(F ), and kurtosis, 
1(F ).

3.2.3 Non-parametric models
3.2.3.1 Spline methods This method consists of the derivation of the
RND using the results of Breeden and Litzenberger (1978), but with a prelim-
inary process of smoothing the volatility smile. The �rst approach using this
method was made by Shimko (1993), who proposed smoothing the volatility
smile via a low order polynomial (using a quadratic polynomial) that �tted
the implied volatilities (on the y-axis) and the associated strike prices (on the
x-axis),

�i = a0 + a1Ki + a2K
2
i , for i = 1; :::; N; (41)

withN as the number of observed strike prices. The continuous implied volatil-
ity function obtained (on strike prices space) is then inserted back into Black
and Scholes formula (2) and the probability density function is obtained
through dC2

dS2
. The option currency markets are quoted in terms of implied

volatility for a speci�c delta (� = dC
dS
), which makes it necessary to convert

the deltas into strike prices via the Black and Scholes model.
Malz (1996) applied smoothing of the volatility smile using the delta as

the x-axis instead of the strike price. Using delta rather than strike, away-
from-the-money groups implied volatilities closer than near-the-money implied
volatilities, which gives more weight to the centre of the distribution where
the data is more reliable (more frequently traded).
Campa et al. (1997) used the spline method instead of the quadratic poly-

nomial to smooth the smile curve. A natural cubic spline was applied using
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the strike prices as the X-axis. This method allows the smoothness of the �t-
ted curve to be controlled and is less restrictive about the shape of the �tted
function.
Bliss and Panigirtzoglou (2002) applied a natural cubic spline in the volatil-

ity/delta space.
The cubic spline interpolation consists of connecting the adjacent points

(�i; �i), (�i+1; �i+1), using the cubic functions �̂i; i = 0; :::; n � 1 in order to
piece together a curve with continuous �rst and second order derivatives.

�̂i =

8>>>>>>>>>>>><>>>>>>>>>>>>:

�̂0(�) if � < �1

�̂1(�) if �1 < � < �2

...

�̂n�1(�) if �n�1 < � < �n

�̂n(�) if � > �n

(42)

where �̂i is a third order polynomial de�ned by:

�̂i(�) = di + ci(���i) + bi(���i)
2 + ai(���i)

3 (43)

with � being in the interval [�i;�i+1]. At �i the value of the function is di.
The �rst and second derivatives of equation (43) are:

�̂0i(�) = ci + 2bi(���i) + 3ai(���i)
2; (44)

�̂00i (�) = 2bi + 6ai(���i); (45)

which means that the second-order derivative (�̂00i ) is given as a linear inter-
polation between knot points.
The condition that the cubic functions �̂i and �̂i�1 must meet at the point

(�i; yi) is expressed as:

�̂i�1(�i) = �̂i(�i) = yi (46)
yi = di = ai�1(�i ��i�1)

3 + bi�1(�i ��i�1)
2 + ci�1(�i ��i�1) + di�1

The conditions regarding the continuous nature of the �rst and second deriv-
atives in the knot points are:

�̂0i�1(�i) = �̂
0
i(�i) (47)

3ai�1(�i ��i�1)
2 + 2bi�1(�i ��i�1) + ci�1 = ci
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�̂00i�1(�i) = �̂
00
i (�i) (48)

6ai�1(�i ��i�1)
2 + 2bi�1(�i ��i�1) = 2bi

In a natural smoothing spline the second order derivatives in the extreme
knot points are 0, S 00(x0) = 0 and S 00(xn) = 0 (leading to a spline function
that is linear outside the range of available data). This condition can result
in negative values when extrapolating outside the extreme points, which can
yield a negative �tted fdp in the extrapolated points (in this work we did not
have this problem). In a natural spline, the smoothness of the interpolating
polynomial is controlled by a smoothness parameter �, which weights the de-
gree of curvature of the spline function. According to Bliss and Panigirtzoglou
(2002), the cubic interpolating spline has the disadvantage of following the
same random �uctuations as the data points, which distorts the nature of the
underlying function, which explains why they used a cubic smoothing spline.
The natural spline minimizes the following objective function:

min
�
(1� �)

NX
i=1

wj(�i � �̂i(�i; �))
2 + �

Z 1

�1
(�00(�; �))2d�; (49)

where N is the number of quoted deltas (� = dC
dS
), �̂i(�i; �) is the implied

volatility corresponding to the spline parameters represented by vector � and
wi represents the weight attributed to each observation. The �rst termmeasure
the goodness of �t and the second term measures the smoothness of the spline.
If � = 0 the cubic spline has an exact �t to the data (the closeness of the spline
to the data is the only concern). If � = 1 the interpolating function will be a
straight line (smoothness is all that matters).
In the estimation of the RNDs through the SML model we used the method

proposed in Bliss and Panigirtzoglou (2002).
The variable regarding the weight parameter w in equation (49) is described

by Bliss and Panigirtzoglou as a source of price error. It is known that in the
context of the Black and Scholes formula, the only unobservable parameter is
volatility (�), which means that the uncertainty regarding the PDF lies in �.
The greek vega (v) measures the relationship between volatility � and option
price (v = dC

d�
) and re�ects the uncertainty concerning the volatility. The value

of v is approximately 0 for far deep-out-the-money options and reaches its
maximum for at-the-money options 3 . As in Bliss and Panigirtzoglou (2002)
we use this v weighting when �tting the volatility smile because this weighting
scheme places more weight on near-the-money options and less weight on away-
from-the-money options. However, the authors admitted that it was di¢ cult

3 The value of out-the-money and in-the-money options relies mainly in the intrinsic
value. The part that depends of the time value, (which depends on �) is smaller.
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to choose a good weighting scheme that takes into account all the sources of
price error. In this work we tested the SML model using both vega weighting
(wi = vi) and equal weighting (wi = 1) and observed that the performance is
similar for both (with a slight improvement for the vega weighting).
We also tested this method using the value � that minimizes the RMISE

(root mean integrated squared error). Nevertheless, because in the real world
we don�t know the "true" RND, we are unable to get the � that minimizes
RMISE. As such, we also performed the SML technique using a speci�c value
for the smoothing parameter (� = 0:9).
In conclusion, we tested this method using di¤erent schemes for the weight-

ing parameter (wi = vi and wi = 1) and for the smoothness of the spline (�
that minimizes the RMISE and � = 0:9). We observed that the performance
is very similar for the di¤erent schemes (see �gures B.3 in Appendix B).

4 Accuracy and Stability analysis of the tested PDF estimation
methods

4.1 Data

The RNDs analyzed in this work were extracted from currency OTC options
with the underlying USDBRL (price of US dollars in terms of Brazilian reals).
The quotes used as inputs were taken from the daily settlement bid prices

in Bloomberg for O¤shore USDBRL FX Options 4 . The data collected covers
the period from June 2006 (half a year before the problems regarding the
subprime crisis started to worsen) to February 2010 (seven months after the
Brazilian general election) and comprises the monthly quotes (end of month
prices).
The calls and puts used are of the European type and are priced in volatil-

ity as a function of delta. The grid of quoted deltas is 0.05, 0.1, 0.15, 0.25,
0.35 and 0.5 deltas. This means that we only considered out-of-the money
options (calls and puts) and at-the-money options 5 , which con�rms the gen-
eral understanding that out-the-money options tend to be more liquid than
in-the-money options. In this work, we estimate the RNDs using 1, 3 and 6
months to maturity options.

4 Information provided by Bloomberg for the OTC Market. The USDBRL is quoted
in volatility in terms of delta according to international conventions (does not use
the speci�c maturity of BM&F calendar and a day count of business days/252 just
like other �nancial instruments traded in BM&F)
5 The delta value varies from 0 for very out-the-money options to 1 for deeply
in-the-money options. At the money options have a delta close to 0.5.
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4.2 Testing PDF estimation techniques using Monte Carlo approach

To test the accuracy of the tested methods at capturing the risk-neutral
density functions, we have to see how closely they �t the true risk-neutral
density. Unfortunately, the true RND is unobservable, so we use the method
proposed in Cooper (1999). In the absence of the true RND, Cooper suggested
the use of simulated option prices data that correspond to a given risk-neutral
density function, and then, using these simulated prices as input, test what
methods produce a better performance in recovering the given RND.
In order to test the ability of the estimation methods tested to capture

a wide range of possible shapes of the "true" RNDs, we establish a set of
six scenarios divided into low and high volatility and which have three levels
of skewness (strong negative skewness, weak positive skewness and strong
positive skewness) as in Cooper (1999) and Bu and Hadri (2007). The authors
chose the long-run volatility based on the levels of implied volatility typically
observed within equity markets and for the low volatility scenarios chose the
long run volatility typically observed in stock index, currency and interest rate
markets.

Table 4-1: Parameters used in Heston model under each scenario

Strong negative Skew Weak positive skew Strong positive skew

Low
volatility

Scenario 1

� = 2;
p
� = 0:1

� = 0:1; � = �0:9

Scenario 2

� = 2;
p
� = 0:1

� = 0:1; � = 0

Scenario 3

� = 2;
p
� = 0:1

� = 0:1; � = 0:9

High
volatility

Scenario 4

� = 2;
p
� = 0:3

� = 0:4; � = �0:9

Scenario 5

� = 2;
p
� = 0:3

� = 0:4; � = 0

Scenario 6

� = 2;
p
� = 0:3

� = 0:4; � = 0:9

In generating these scenarios, as input we considered a grid of strike prices
which results from the average of historical strike prices between January 1996
and February 2010 (end of month prices) for each delta, in order to obtain the
average interval between strike prices for this period. Because the quotes are
given in volatility in terms of delta, at each considered date, we converted the
deltas into strike prices using the formulas

Xcall = Ste
�N�1(�calle

rusdT )�
p
T+(rbrl�rusd+�2=2)T (50)

Xput = Ste
N�1(��puterusdT )�

p
T+(rbrl�rusd+�2=2)T ,

where St is the USDBRL exchange rate, rbrl is the domestic risk-free interest
rate (Brazilian interest rate) and rusd the foreign interest rate (US interest
rate) Espen (2007). As with strike prices, in the Heston model we also used
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the average and the volatility of the spot USDBRL FX rate for the period
starting on June 2006 and �nishing on February 2010 for S0 (USDBRL price
at t = 0) and v0 (volatility of the USDBRL price at t = 0). The interest rates
rbrl and rusd are also an average from the money market rates (US Libor
and SICOR for Brazil) for the same period and have a maturity of 1, 3 or 6
months, depending on the maturity of the "true" RND. In total, we generate
six scenarios for each maturity which results in eighteen di¤erent RNDs.
Our goal using this method was to produce risk-neutral densities that incor-

porate the di¤erent shapes and scenarios discussed above in order to test the
capacity of the MLN, SML, DFCH and EE methods to recover these RNDs.
Doing this does not assume that equation (8) explains the asset price dynamics
in the real world.
To test the robustness of the MLN, SML, DFCH and EE models in recov-

ering the "true" RNDs, we �rst derive the call option prices using equation
(9) for each combination of scenario and maturity. We then add a uniformly
distributed random noise perturbation in prices of size between minus half and
half of the tick size (according to BM&FBOVESPA, the minimum tick size
is 0.001) as in Bliss and Panigirtzoglou (2002). Given these shocked option
prices, we use the MLN, SML, DFCH and EE methods to estimate the RNDs.
This process of �rst shocking prices and then �tting the RND is repeated 500
times for the eighteen combinations of maturities and scenarios (Monte Carlo
Simulation).
In order to approximate the methodology described above to the charac-

teristics of the USDBRL option market, we proceed with the calibration of
the Heston model for the end of month USDBRL option quotes between June
2006 and February 2010 (the results are presented in �gure B.11 in Appen-
dix B) and we also produced the tests described above for 12 dates (6 low
volatility dates and 6 high volatility dates). For the low volatility dates we
select the period between October 2006 and March 2007 (before the increased
problems regarding the subprime crisis). For the high volatility dates we select
the period between September 2008 and February 2009 (peak of the �nancial
crisis). For these periods, we generate the "true" RNDs using the calibration
parameters and the strike prices obtained for each tested date.
The di¤erent methods are then compared using some statistical measures

that will be described below.

4.3 Statistics used in comparison of di¤erent techniques

In this work the di¤erent methods were compared using di¤erent approaches
adopted by di¤erent authors.
In Cooper (1999) and Bliss and Panigirtzoglou (2002) the mean, stan-

dard deviation, skewness and kurtosis of the estimated RNDs were analyzed.
However, Bliss and Panigirtzolou focused on stability analysis.
In Cooper the robustness of the MLN and SML methods was studied by

comparing the mean of the summary statistics obtained from the Monte Carlo
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simulations with the summary statistics of the "true" RNDs. The process of
shocking the prices 6 and then �tting the RNDs was repeated 100 times.
The author also tested the stability of these models by analyzing the standard
deviation of the summary statistics, arguing that the model with the best per-
formance in terms of stability has a lower standard deviation for the di¤erent
descriptive statistics. He concluded that the SML method performed better
than the MLN method in terms of accuracy and stability.
Bliss and Panigirtzolou tested the stability of the MLN and SML methods,

but instead of shocking the �tted prices obtained from the Heston model, they
introduced a noise in market prices. The authors believed a good estimation
method would have better behavior in the convergence results of the processed
simulations. These authors did not adopt the methods followed by Cooper,
arguing that goodness-of-�t results outside the range of available strike prices
(tails of the distribution) can be unreliable, in the sense that there is an
in�nite variety of probability masses in the tails of the RNDs obtained. In
fact, the summary statistics with higher moments like skewness and kurtosis
are very sensitive to the tails of the distribution, and the data outside the set
examined is heavily dependent on the estimation method used. For example,
when the assumed PFD has a double-lognormal functional form, the MLN
estimation method may do better than the other methods. We agree with
these arguments and hence we give more importance to the RMISE analysis
(root mean integrated analysis) as in Bu and Hadri (2007).
Bu and Hadri (2007) tested the accuracy and stability of the DFCH and

SML methods using the root mean integrated squared error (RMISE), which
has the advantage of being less sensitive to the tails of the distribution. An-
other advantage of RMISE is that it can be broken down into RISB (root inte-
grate square bias) that measures the accuracy and RIV (root integrated vari-
ance) which indicates the stability of the distribution. As in Cooper (1999),
Bu and Hadri also compared the performance of the methods in terms of a
"true" PDF produced from an assumed Heston stochastic volatility price and
using the pseudo-prices generated from the PDFs as input. For each combina-
tion of maturity and scenario, the authors carry out 500 simulations and �nd
that in the majority of the cases the DFCH method performs better than the
SML method in terms of accuracy (RISB) and stability (RIV).
In this work we tested both accuracy and stability of the DFCH, MLN,

SML and EE methods using the RMISE as in Bu and Hadri (2007) and using
the mean, standard deviation, skewness and kurtosis summary statistics as in
Cooper (1999) and Bliss and Panigirtzoglou (2002). We also carry out 500
simulations for each scenario.
A de�nition of RMISE is provided below:
i. RMISE : the root mean integrated squared error. By considering f̂(St) as

the estimator of the true RND, then the RMISE is de�ned as

6 each price was shocked by a random number uniformly distributed from -1/2 to
+1/2 a tick size
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RMISE(f̂) =

s
E[
Z 1

�1
(f̂(St)� f(St))2dSt] (51)

representing a measure of the average integral of the squared error over the
support of the RND. It is a measure of the quality of the estimator and is not
as sensitive to the tails of the distribution as the skewness and kurtosis.
The squared of RMISE can also be broken down into the sum of the squared

RISB (root integrated squared bias) and squared RIV (root integrated vari-
ance):

RMISE2(f̂) = RISB2(f̂) +RIV 2(f̂) (52)

RISB(f̂) =

sZ 1

�1
(E[f̂(St)]� f(St))2dSt] (53)

RIV (f̂) =

sZ 1

�1
E[(f̂(St)� E[f̂(St)])2]dSt (54)

In line with these approaches, the model with better accuracy would present
mean values of summary statistics closer to the "true" RND and lower RISB.
The model with more stability would have a lower standard deviation of sum-
mary statistics and a lower RIV.

5 Comparison of di¤erent methods using the Cooper scenarios

5.1 Analysis using mean, standard deviation, skewness and kurtosis

The graphics with the results from these tests are presented in Appendix B
(�gures B.1, B.2, B.3, B.4).

5.1.1 Accuracy
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Scenarios Expected Value Volatility Skewness Kurtosis
low volatility and negative skewness MLN SPLINE HYPERGEOM HYPERGEOM
low volatility MLN SPLINE MLN SPLINE
low volatility and positive skewness EDGE SPLINE HYPERGEOM SPLINE
high volatility and negative skewness HYPERGEOM HYPERGEOM SPLINE HYPERGEOM
high volatility MLN HYPERGEOM MLN MLN
high volatility and positive skewness EDGE EDGE MLN MLN

low volatility and negative skewness MLN SPLINE HYPERGEOM HYPERGEOM
low volatility MLN SPLINE MLN MLN
low volatility and positive skewness MLN SPLINE HYPERGEOM MLN
high volatility and negative skewness HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM
high volatility MLN MLN MLN MLN
high volatility and positive skewness SPLINE EDGE HYPERGEOM HYPERGEOM

low volatility and negative skewness MLN HYPERGEOM EDGE MLN
low volatility EDGE HYPERGEOM HYPERGEOM HYPERGEOM
low volatility and positive skewness SPLINE HYPERGEOM HYPERGEOM HYPERGEOM
high volatility and negative skewness MLN EDGE EDGE EDGE
high volatility MLN SPLINE MLN MLN
high volatility and positive skewness MLN HYPERGEOM HYPERGEOM HYPERGEOM
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Fig. 1. Best method in terms of accuracy for each combination of scenario and
maturity

If we look at the expected value, we see that the MLN method outperforms
the other models.
Analyzing the volatility, we observe that in general terms the SML method

has a better performance in capturing the volatility of the "true" density.
The EE underperforms the other methods. The volatility of all tested RNDs
increases in line with longer time to maturity, which con�rms the higher un-
certainty attached to longer maturities.
Considering all the maturities, the DFCH method has skewness values that

have a close �t to the "true" skewness when compared to the other models
models. The MLN estimator was less biased than the SML estimator. All
the models except the EE were able to capture the di¤erent levels of skewness
corresponding to each scenario, which demonstrates their ability to incorporate
the changes in skewness observed in the real world. In fact, the changes of the
implied skewness estimated through the EE method were sistematically bellow
the changes captured by the other models.
Regarding the implied kurtosis, it can be seen that the DFCH and MLN

methods have a close �t in the majority of the scenarios. The EE method has
the worst performance in capturing the true kurtosis and showed once again
lower changes between the values obtained for the di¤erent scenarios. This is
due to EE�s di¢ culties accomodating higher moments beyond a certain range
(because it can yield negative densities, there is a limited range of skewness
and kurtosis combinations that yield positive densities).

5.1.2 Stability
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Scenarios Volatility Skewness Kurtosis
low volatility and negative skewness HYPERGEOM SPLINE SPLINE
low volatility MLN SPLINE SPLINE
low volatility and positive skewness EDGE SPLINE SPLINE
high volatility and negative skewness EDGE SPLINE SPLINE
high volatility HYPERGEOM SPLINE SPLINE
high volatility and positive skewness EDGE EDGE EDGE

low volatility and negative skewness EDGE HYPERGEOM SPLINE
low volatility EDGE EDGE EDGE
low volatility and positive skewness EDGE SPLINE EDGE
high volatility and negative skewness SPLINE EDGE EDGE
high volatility MLN SPLINE SPLINE
high volatility and positive skewness EDGE EDGE EDGE

low volatility and negative skewness EDGE HYPERGEOM EDGE
low volatility MLN SPLINE SPLINE
low volatility and positive skewness SPLINE SPLINE SPLINE
high volatility and negative skewness SPLINE SPLINE SPLINE
high volatility SPLINE SPLINE SPLINE
high volatility and positive skewness EDGE EDGE EDGE
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Fig. 2. The most stable method for each combination of scenario and maturity

The SML method has the highest degree of stability in skewness and kur-
tosis estimations and the EE model is the most stable in capturing the "true"
volatility. It should be mentioned that the stability of the SML method in-
creases when the v weighting scheme is applied (see �gure B.3 in Appendix B).
The DFCH and MLN methods were the most unstable models in capturing
the volatility, skewness and kurtosis estimations.

5.2 Analysis using RMISE

Scenarios RISB RMISE RIV
low volatility and negative skewness HYPERGEOM HYPERGEOM SPLINE
low volatility MLN MLN MLN
low volatility and positive skewness MLN MLN MLN
high volatility and negative skewness HYPERGEOM HYPERGEOM EDGE
high volatility MLN MLN EDGE
high volatility and positive skewness HYPERGEOM HYPERGEOM SPLINE

low volatility and negative skewness HYPERGEOM HYPERGEOM SPLINE
low volatility MLN MLN EDGE
low volatility and positive skewness MLN MLN EDGE
high volatility and negative skewness HYPERGEOM HYPERGEOM SPLINE
high volatility MLN MLN SPLINE
high volatility and positive skewness MLN MLN EDGE

low volatility and negative skewness MLN MLN EDGE
low volatility MLN MLN MLN
low volatility and positive skewness MLN MLN SPLINE
high volatility and negative skewness HYPERGEOM HYPERGEOM SPLINE
high volatility MLN MLN SPLINE
high volatility and positive skewness MLN MLN EDGE
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Fig. 3. Best method according to RMISE criteria

The values obtained for the eighteen combinations of scenarios and matu-
rities are presented in �gure B.4 in Appendix B.
Examining the results for the di¤erent maturities, we observe that the RNDs

estimated with the MLN and DFCH methods perform better than the distrib-
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utions obtained with the SML in terms of the overall quality of the RND esti-
mator. In fact, the lower RMISE of the MLN and DFCH methods is observed
in the majority of the eighteen combinations of scenarios and maturities (the
MLN method has the best RND estimator 10 times and the DFCH method 6
times).The EE underperformed the other methods in almost all the scenarios
and maturities.
The DFCH method performs less well in terms of accuracy in the central

scenarios (lower skewness) and longer maturities. For the longest maturities,
the MLN method has a higher overall quality as an estimator (lower RMISE)
and better accuracy.
Analyzing the stability through RIV, we conclude that the EE, the MLN and

SMLmethods have a very similar behavior. The DFCHmethod underperforms
in relation to the other methods in the majority of the cases.
As in the analysis of the summary statistics, we examined the results con-

sidering the impact on the SML method of using both the v weighting scheme
and the equal weighting scheme and the optimal � (minimizes RMISE) as
the smoothing parameter and � = 0:9. In terms of the overall quality of the
estimator which is measured by RMISE, we observe again a slightly better
performance of the SML method when it applies a v weighting approach and
an optimal �.

5.3 Comparison of our results with other studies

In Cooper (1999), the MLN model was compared with the SML method in
terms of accuracy and stability using the summary statistics approach and in
Bu and Hadri (2007) the DFCH method was compared with the SML method
in line with RMISE criteria. In both studies, the accuracy was measured using
the Cooper technique of generating the "true" world through the Heston model
and the SML was estimated interpolating across the volatility smile in �delta-
space�via a cubic smoothing spline (as in our study). In Cooper, the SML
method had a better stability performance and in terms of accuracy neither
technique outperformed the other in skewness and kurtosis estimates. In Bu
and Hadri (2007) the DFCH had a higher accuracy (lower RISB) and the
SML method was more stable in the majority of scenarios (lower RIV).
We added the DFCH and EE methods to Cooper analysis. In our study the

MLN and DFCH methods outperformed the SML and EE methods in skew-
ness and kurtosis accuracy and the MLN had the less biased "true" volatility
estimation. In terms of stability, we obtained the same results as in Cooper. In
fact, the higher moments estimated through the SML method were the most
stable.
The MLN and EE methods were added to Bu and Hadri�s study. According

to the RMISE criterion, the MLN and DFCH were the most accurate models
in the majority of scenarios (lower RISB) and there was no clear "winner" in
terms of stability performance.
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6 Comparison of di¤erent methods using USDBRL Heston cali-
brated parameters

The graphics with the results from these tests are presented in Appendix B
(�gures B.5, B.6, B.7 and B.8).

6.1 Analysis using mean, standard deviation, skewness and kurtosis

6.1.1 Accuracy
Low volatility dates High volatility dates

Scenarios Expected Value Volatility Skewness Kurtosis Expected Value Volatility Skewness Kurtosis
high volatility and negative skewness MLN SPLINE MLN HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM MLN
high volatility EDGE SPLINE HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM MLN
high volatility and positive skewness EDGE SPLINE HYPERGEOM HYPERGEOM EDGE SPLINE HYPERGEOM HYPERGEOM
high volatility and negative skewness EDGE SPLINE HYPERGEOM MLN EDGE SPLINE HYPERGEOM HYPERGEOM
high volatility HYPERGEOM SPLINE MLN HYPERGEOM EDGE SPLINE HYPERGEOM MLN
high volatility and positive skewness MLN EDGE MLN HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM

high volatility and negative skewness EDGE HYPERGEOM HYPERGEOM MLN EDGE SPLINE MLN HYPERGEOM
high volatility EDGE SPLINE MLN HYPERGEOM EDGE HYPERGEOM HYPERGEOM HYPERGEOM
high volatility and positive skewness MLN HYPERGEOM MLN HYPERGEOM EDGE HYPERGEOM HYPERGEOM MLN
high volatility and negative skewness EDGE SPLINE HYPERGEOM MLN EDGE HYPERGEOM HYPERGEOM HYPERGEOM
high volatility MLN SPLINE MLN MLN HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM
high volatility and positive skewness EDGE SPLINE HYPERGEOM MLN HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM

high volatility and negative skewness EDGE SPLINE HYPERGEOM MLN SPLINE MLN MLN MLN
high volatility EDGE SPLINE MLN MLN SPLINE SPLINE HYPERGEOM HYPERGEOM
high volatility and positive skewness MLN SPLINE MLN HYPERGEOM SPLINE SPLINE HYPERGEOM MLN
high volatility and negative skewness EDGE SPLINE MLN MLN SPLINE SPLINE MLN MLN
high volatility EDGE SPLINE MLN MLN SPLINE MLN HYPERGEOM HYPERGEOM
high volatility and positive skewness EDGE SPLINE HYPERGEOM MLN SPLINE MLN HYPERGEOM HYPERGEOM
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Fig. 4. Best method in terms of accuracy for the low and high volatility dates

6.1.1.1 Low volatility Dates The implied volatility estimated using the
SML method has the closest �t to the "true" standard deviation for the ma-
jority of dates and maturities. The MLN method performs worse than the
SML and DFCH models in capturing the "true" volatility.
The MLN and DFCH methods outperformed the other models in capturing

the "true" implied skewness with the MLN being slightly better than the
DFCH method.
The implied kurtosis estimated using the MLN method was closer to the

"true" kurtosis for most dates and maturities. The DFCH method was better
in capturing the "true" kurtosis for 1-month term.
As in Cooper scenarios the EE method was unable to capture the highest

moments of the the "true" RNDs and has the worst performance across all
the scenarios.

6.1.1.2 High volatility Dates For the high volatility dates, the best
volatility �t was estimated using the DFCH method. Apart from EE method,
the MLN method has the worst performance in estimating the implied volatil-
ity.
The best �t for skewness and kurtosis was estimated using the DFCH

method and the MLN outperformed the SML model in capturing the "true"
implied kurtosis in the 3 and 6-month terms.
Once again, the EE method has the worst performance in capturing the

moments of the "true" densities.
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6.1.2 Stability

Low volatility dates High volatility dates
Scenarios Volatility Skewness Kurtosis Volatility Skewness Kurtosis

low volatility and negative skewness EDGE EDGE EDGE EDGE EDGE EDGE
low volatility EDGE EDGE EDGE HYPERGEOM SPLINE SPLINE
low volatility and positive skewness EDGE EDGE EDGE EDGE EDGE EDGE
high volatility and negative skewness HYPERGEOM EDGE EDGE MLN SPLINE SPLINE
high volatility EDGE SPLINE EDGE EDGE SPLINE EDGE
high volatility and positive skewness MLN SPLINE EDGE SPLINE SPLINE SPLINE

low volatility and negative skewness EDGE EDGE EDGE EDGE SPLINE SPLINE
low volatility MLN SPLINE EDGE EDGE EDGE EDGE
low volatility and positive skewness EDGE EDGE EDGE HYPERGEOM SPLINE EDGE
high volatility and negative skewness EDGE EDGE EDGE HYPERGEOM SPLINE SPLINE
high volatility EDGE EDGE EDGE EDGE SPLINE SPLINE
high volatility and positive skewness HYPERGEOM EDGE EDGE HYPERGEOM SPLINE SPLINE

low volatility and negative skewness HYPERGEOM SPLINE SPLINE HYPERGEOM SPLINE SPLINE
low volatility EDGE SPLINE EDGE HYPERGEOM SPLINE EDGE
low volatility and positive skewness HYPERGEOM SPLINE EDGE EDGE SPLINE SPLINE
high volatility and negative skewness HYPERGEOM SPLINE SPLINE EDGE EDGE EDGE
high volatility HYPERGEOM SPLINE SPLINE EDGE EDGE EDGE
high volatility and positive skewness EDGE EDGE EDGE HYPERGEOM EDGE EDGE
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Fig. 5. The most stable method for the low and high volatility dates

Regarding the implied volatility estimators, the EE method was the most
stable model for the low volatility dates and high volatility dates. The DFCH
method outperformed the SML and MLN models.
The EE method was the most stable model in capturing the implied skew-

ness in the low volatility dates and the the SML method outperformed the
other models in the high volatility dates. The MLN method was the most
unstable model for the majority of the low volatility dates and the DFCH was
the least stable model for most of the high volatility dates.
The implied kurtosis estimated through EE method were the most stable for

a bigger proportion of the low volatility and high volatility dates. The MLN
and DFCH methods performs the worst in terms of stability.

6.2 Analysis using RMISE

Low volatility dates High volatility dates
Scenarios RMISE RISB RIV RMISE RISB RIV

low volatility and negative skewness HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM EDGE
low volatility HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM MLN
low volatility and positive skewness HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM EDGE
high volatility and negative skewness HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM MLN
high volatility HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM EDGE
high volatility and positive skewness HYPERGEOM HYPERGEOM MLN EDGE EDGE MLN

low volatility and negative skewness MLN MLN EDGE MLN MLN MLN
low volatility HYPERGEOM HYPERGEOM SPLINE HYPERGEOM HYPERGEOM EDGE
low volatility and positive skewness HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM EDGE
high volatility and negative skewness HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM HYPERGEOM
high volatility HYPERGEOM HYPERGEOM EDGE HYPERGEOM HYPERGEOM EDGE
high volatility and positive skewness MLN MLN EDGE HYPERGEOM HYPERGEOM MLN

low volatility and negative skewness MLN MLN HYPERGEOM MLN MLN EDGE
low volatility MLN MLN MLN MLN MLN MLN
low volatility and positive skewness HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM HYPERGEOM SPLINE
high volatility and negative skewness MLN MLN HYPERGEOM MLN MLN EDGE
high volatility MLN MLN HYPERGEOM MLN MLN EDGE
high volatility and positive skewness MLN MLN EDGE HYPERGEOM HYPERGEOM EDGE
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Fig. 6. Best method according to RMISE criteria for high and low volatility dates
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6.2.1 Best Performance of the DFCH and MLN model
The DFCH model was the best estimator of the "true" RND for almost all

the dates tested with maturities of 1 and 3 months. The MLN method was the
best estimator of the "true" 6-month RND. Overall, the DFCHmethod returns
the best performance at capturing the true RND (the DFCH method has a
lower RMISE 23 times and the MLN method 11 times). The EE and SML
methods performed worse than all the other methods in terms of accuracy
with the EE being the most biased model in the majority of scenarios (see
�gures B.9 and B.10).

6.2.2 Stability
In the stability analysis, the EE method outperforms all the other mod-

els. For the lower volatility dates, the EE method has the lower RIV for the
majority of 1 and 3-month RNDs. The DFCH method has a lower RIV for
most 6-month RNDs. For the high volatility dates the EE method has the
best performance for the majority of scenarios.

7 Information contained in the option implied risk-neutral proba-
bility density function

Besides analyzing the accuracy and stability of the MLN, SML, DFCH and
EE methods, we also estimated the end of month RNDs extracted from the
USDBRL option prices for the period between June 2006 and February 2010
in order to compare the measures obtained for the three models tested and to
interpret the information provided by these implied distributions.

7.1 Analyzing changes of implied pdf summary statistics over time

7.1.1 Comparing MLN, SML and DFCH
In this section we compare the summary statistics calculated for the MLN,

SML, DFCH and EE methods and see if the results (regarding the uncertainty,
the skewness and the probability of extreme moves) are similar for the methods
considered, or if they show a similar trend.
The uncertainty around the mean, measured through the standard deviation

of the estimated RNDs, has a strong correlation between the SML/DFCH,
SML/EE and DFCH/EE pairs. The MLN/DFCH, MLN/SML and MLN/EE
pairs have lower correlations for the standard deviation estimates. All methods
capture the increase in volatility between September 2008 and February 2009
7 .

7 This upward movement in volatility reached its maximum in November 2008 after
a sequence of negative events (in September 2008 Government-sponsored enterprises
Fannie Mae and Freddie Mac which owned or guaranteed about half (56.8%) of the
U.S mortgage market were being placed into conservatorship of the FHFA (Federal
Housing Finance Agency), Lehman Brothers �led for bankruptcy and the Bank of

26



Fig. 7. Evolution of one month to maturity standard deviation and correlations
between the standard deviations calculated through MLN, DFCH, SML and EE for
the period between June 2006 and February 2010

Skewness is an indicator of the probability mass around the mean. If the
implied distribution is positively skewed, the right tail is greater than the left
tail and it suggests that market participants are positive about the future
prices. However, a positively skewed distribution has an unweighted proba-
bility above the mean smaller than that below the mean (expected value is
above the median and the mode), because the positive expectations lead to
an upward revision of the expected price. Looking at �gure 8, it is clear that
for the period under consideration it is easier to �nd a trend for the implied
skewness calculated for the DFCH and SML methods than for the MLN and
EE methods (The MLN maintained a level close to 0.2 after December 2007
for "one month to maturity" term). The correlation level between the MLN
method and the other methods is almost null or negative and the correlation
between the SML/DFCH, SML/EE and DFCH/EE pairs is much lower when
compared to the standard deviation estimations.

America purchased Merril Lynch, in October 2008 the US government bailed out
Goldman Sachs and Morgan Stanley) that increased the risk aversion.
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Fig. 8. Evolution of one month and six months to maturity skewness and correlations
between the skewness calculated through MLN, DFCH, MLN and EE for the period
between June 2006 and February 2010

As mentioned earlier in this work, the skewness is very sensitive to the
tails of the distribution, which decreases the reliability of this measure. We
therefore calculated the values for Pearson�s skewness coe¢ cients which are
less sensitive to the tails of the distribution.

Pearson median skewness =
E[X]�median

�
(55)

Pearson mode skewness =
E[X]�mode

�
(56)

For both Pearson measures we saw lower correlation levels for higher matu-
rities, which is shown in tables 6-3 and 6-4.

Fig. 9. Evolution of one month to maturity Pearson mode and correlations between
the Pearson mode calculated through MLN, DFCH, MLN and EE for the period
between June 2006 and February 2010
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Fig. 10. Evolution of one month to maturity Pearson median and correlations be-
tween the Pearson median calculated through MLN, DFCH, MLN and EE for the
period between June 2006 and February 2010

As written earlier in this work, the kurtosis is highly sensitive to the tails
of the distribution. As such, the reliability of the kurtosis measure is poor
and should be interpreted with care. Like in the skewness analysis, the MLN
method shows almost no changes after December 2007 and the estimations
through the EE method have a low variability during this period. Once more,
the correlation between the di¤erent methods was low.
In general terms, we observed that the RNDs corresponding to the real

USDBRL quotes estimated through the EE and MLNmethods did not capture
the increase in skewness and kurtosis during the peak of the �nancial crisis
(between September 2008 and February 2009), contrasting with the DFCH
and SML models.

Fig. 11. Evolution of 6 months to maturity Kurtosis and correlations between the
kurtosis calculated through MLN, DFCH, MLN and EE for the period between
June 2006 and February 2010
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8 Conclusion

This work compared the DFCH method with the widely knowns SML, MLN
and EE methods in the estimation of the Risk-Neutral Densities through op-
tion prices. The methodology adopted consisted of re-estimating the RNDs
after adding a uniformly distributed random noise perturbation in theoretical
option prices generated by Heston�s stochastic volatility model for a set of dif-
ferent scenarios in order to test the ability of the di¤erent methods to recover
the "true" RNDs under di¤erent market conditions. The "true" Heston model
RNDs were produced using two approaches: in Chapter 5 we used the Heston
parameters proposed in Cooper (1999) and in Chapter 6 we considered the
Heston parameters that resulted from the calibration of this model for 6 low
volatility dates (between October 2006 and March 2007) and 6 high volatility
dates (between September 2008 and February 2009).
The four models tested were compared using two di¤erent approaches:

analysis using the RMISE criteria which is a measure of the average dis-
tance between the "true" RND and the estimated ones and analysis using the
summary statistics: mean, variance, skewness and kurtosis.
With the RMISE criteria we observed a higher performance of the DFCH

method, especially for the low volatility dates (between October 2006 and
March 2007) and high volatility dates (between September 2008 and February
2009). However, we noticed that the MLN method was slightly better than
the DFCH model if we take into account only the Cooper scenarios and was
superior in capturing the "true" 6-month RNDs of the USDBRL scenarios.
In the stability analysis, we see the worst performance of the DFCH (higher
RIV) in the Cooper scenarios, with the v weighting SML method showing the
best results. Despite its lower stability, the DFCH method showed a higher
overall quality as the "true" RND estimator in accordance with its estimated
implied RNDs which recovered the true RNDs more closely in the majority
of the cases. We also found that the v weighting scheme applied to the SML
method only generates improvements in terms of stability, with the overall
quality of the SML being una¤ected. For the SML model we also tested a
theoretically optimal � (minimizes RMISE) and � equal to 0.9 (because in the
real world we do not know the optimal �) as the smoothing parameter. We
found that the comparative analysis of the methods tested was not sensitive
to these two choices of the smoothing parameter.
The comparisons using the summary statistics were carried out in terms

of accuracy (comparing the mean values of the summary statistics estimated
from the Monte Carlo simulations and the "true" ones) and stability (standard
deviation of the summary statistics). The results regarding the accuracy of
skewness and kurtosis were better for the MLN and DFCH methods, with the
EE method showing skewness and kurtosis values that are far from the "true"
values in the majority of the cases. In terms of implied volatility, the SML
method performed better in the majority of Cooper and USDBRL scenarios.
In the stability analysis we conclude that the SMLmodel signi�cantly increases
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its stability when the v weighting is adopted. The EE method was the most
stable in the volatility estimation and the SML and EE models had the most
stable estimations for skewness and kurtosis.
Despite also analyzing the summary statistics, we focused our analysis on

the RMISE criteria because of the higher sensitivity of skewness and kurtosis
to the tails of the distribution (RNDs can have an in�nite variety of probability
masses outside the range of available strike prices and those shapes are very
dependent on the estimation methods used).
To sum up, we conclude that the DFCH method is the best estimator of

the "true" RND in 1 and 3 months term and the MLN performs better in
6-months term according to the RMISE criterion. They outperform the SML
and EE methods. It was also interesting to observe that the SML method did
not outperform the MLN as an estimator of the "true" distribution according
to the RMISE criterion (in Cooper (1999) the SML model was considered
marginally better than the MLN model in terms of accuracy of summary
statistics). In fact, despite being less stable than the SML method, the MLN
method showed greater accuracy, having a lower RMISE than the SML model
in most of the scenarios (Cooper, low volatility and high volatility dates). The
SML was the most stable model, and its performance was enhanced when the v
weighting was adopted. The EE method was not �exible enough to capture the
higher moments of the true densities and obtained the more biased estimators.
In this work, we also obtained the USDBRL implied RNDs for the period

between June 2006 and February 2010 in order to analyze the di¤erence in
the summary statistics estimated using DFCH, MLN, SML and EE methods.
We observed a higher correlation between the models tested for the volatility
and found a lower relation between the methods for the skewness, kurtosis,
Pearson mode and Pearson median values, and more importantly, we saw
that the DFCH and SML methods were more able to capture the increase in
volatility, skewness and kurtosis during the peak of the �nancial crisis than
the EE and SML models.

A Appendix 1

A.1 Mixture of hypergeometric functions

The function DFCH (density function based on con�uent hypergeometric
functions), that speci�es European call pricing as a mixture of two con�uent
hypergeometric functions, is given by (see the details in Abadir and Rockinger
(2003)):

C(X) = c1 + c2X + lX>m1a1((X �m1)
b1)1F1(a2; a3; b2(X �m1)

b3) (A.1)
+ (a4)1F1(a5; a6; b4(X �m2)

2);
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where a3;a6 2 N and b2; b4 2 R�. The indicator function l represent a compo-
nent of the density with bounded support.
The Kummer�s function 1F1 was de�ned in equation (19):

1F1(�; �; z) �
1X
j=0

(�)j
�j

zj

j!
� 1 + �

�
z +

�(�+ 1)

�(� + 1)

z2

2!
+
�(�+ 1)(�+ 2)

�(� + 1)(� + 2)

z3

3!
+ :::

(A.2)
The �rst derivative of 1F1(�; �; z) is

1F1(�; �; z)
0 =

�

�
[1F1(�+ 1; � + 1; z)]. (A.3)

The Kummer�s function has the following asymptotic representation forX 2 R
(see the details in Abadir (1999)),

1F1(�; �; z) =

8><>:
�(�)
�(��a) jzj

�a (1 +O
��

1
2

��
; as z �! �1

�(�)
�(a)

jzja�c expz(1 +O
��

1
2

��
; as z �!1

(A.4)

With the formula (A.3) we can obtain the implied probability density function
which is given by the second derivative of C(X) with respect to the strike price
X.

d2C(X)

dX2
= e�r�f(X) = lX>m1a1(X �m1)

b1�2[b1(b1 � 1)1F1(a2; a3; b2(X �m1)
b3)

(A.5)

+
a2
a3
b2b3(2b1 + b3 � 1)(X �m1)

b3

�1 F1(a2 + 1; a3 + 1; b2(X �m1)
b3) +

a2(a2 + 1)

a3(a3 + 1)
b22b

2
3(X �m1)

2b3

�1 F1(a2 + 2; a3 + 2; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4[1F1(a5 + 1; a6 + 1; b4(X �m2)

2)

+ 2
a5 + 1

a6 + 1
b4(X �m2)

2
1F1(a5 + 2; a6 + 2; b4(X �m2)

2)]

The pdf (probability density function) derived from DFCH must be integrate
to 1. To restrict the integral of f(X) we derive
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f(X) =
dC(X)

dX
= � exp�r� (1�G(X)) = (A.6)

= c2 + lX>m1a1(X �m1)
b1�1[(b1)1F1(a2; a3; b2(X �m1)

b3) (A.7)

+
a2
a3
b2b3((X �m1)

b3)1F1(a2 + 1; a3 + 1; b2(X �m1)
b3)]

+ 2a4
a5
a6
b4(X �m2)1F1(a5 + 1; a6 + 1; b4(X �m2)

2)

In order to guarantee that f(X) integrates to 1 between Xl and Xu we set,Z Xu

Xl

f(X)dX = 1; (A.8)

which is equivalent to

dC(Xl)

dX
= G(Xl)� 1 = �1; (A.9)

dC(Xu)

dX
= G(Xu)� 1 = 0: (A.10)

Solving the restrictions on equations (A.9) and (A.10), we obtain explicit
formulas for the parameters c2 and a4. If we assume that Xl < m1 , from the
constrain set in equation (A.9), we conclude that c2 is de�ned as

c2 = �1� 2a4
a5
a6
b4(Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)

2) (A.11)

Applying the restriction on Xu de�ned in equation (A.10), we get c2 plus the
other terms of (A.6) which give the following explicit formula for c2

c2 = �a1(Xu �m1)
b1�1[(b1)1F1(a2; a3; b2(Xu �m1)

b3) (A.12)

+
a2
a3
b2b3((Xu �m1)

b3)1F1(a2 + 1; a3 + 1; b2(Xu �m1)
b3)]

� 2a4
a5
a6
b4(Xu �m2)1F1(a5 + 1; a6 + 1; b4(Xu �m2)

2):

If we compare equations (A.11) and (A.12), we get an explicit formula for a4;

a4 =

8><>: 1� a1(Xu �m1)
b1�1[(b1)1F1(a2; a3; b2(Xu �m1)

b3)

+a2
a3
b2b3((Xu �m1)

b3)1F1(a2 + 1; a3 + 1; b2(Xu �m1)
b3)]

9>=>; (A.13)

�

8><>: 2
a5
a6
b4[(Xu �m2)1F1(a5 + 1; a6 + 1; b4(Xu �m2)

2)

�(Xl �m2)1F1(a5 + 1; a6 + 1; b4(Xl �m2)
2)]

9>=>;
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In Abadir and Rockinger (2003), the assumptions b1 = 1 + a2b3; a5 = �1
2

and a6 = 1
2
were applied in equations (A.11) and (A.13). Using the asymp-

totic representation of Kummer�s function in equation (A.4), equation (A.11)
simpli�es to

c2 = �1 + a4
q
�b4 � � (A.14)

and equation (A.13) simpli�es to

a4 =
1

2
p
�b4�

"
1� a1(�b2)�a2

�(a3)

�(a3 � a2)

#
: (A.15)

This formula was deduced by simplifying the two terms of equation (A.13)
separately. The �rst term is

1� a1(Xu �m1)
b1�1[(b1)1F1(a2; a3; b2(Xu �m1)

b3) (A.16)

+
a2
a3
b2b3((Xu �m1)

b3)1F1(a2 + 1; a3 + 1; b2(Xu �m1)
b3)]

applying the relation 1F1(�; �; z) = exp
z
1F1(� � �; �;�z) 8 we continue the

simpli�cation of the �rst term

= 1� a1(Xu �m1)
b1�1b1

�(a3)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2 (A.17)

� a1(Xu �m1)
b1�1a2

a3
b2b3(Xu �m1)

b3
�(a3 + 1)

�(a3 � a2)
(�b2(Xu �m1)

b3)�a2�1.

Taking into account that �(a3 + 1) = a3! we transform the �(a3 + 1) into
�(a3)� a3, which gives

1� a1(Xu �m1)
b1�a2b3�1b1

�(a3)

�(a3 � a2)
(�b2)�a2 (A.18)

� a1(Xu �m1)
b1�a2b3�1a2b3

�(a3)

�(a3 � a2)
(�b2)�a2b2(�b2)�1

= 1� a1(�b2)�a2
�(a3)

�(a3 � a2)
:

Applying the same transformation set in the �rst term 1F1(�; �; z) = ez

1F1(� � �; �;�z), the second term of equation (A.13) is

�4(�b4)
1
2
�(a6 + 1)

�(a6 � a5)
= �4

q
�b4

�(3
2
)

�(1)
= 2

s
b4(�(

3

2
)2)22 = 2

q
b4� (A.19)

8 This transformation is shown by Karim Abadir (1999) in "An introduction to
hypergeometric functions for economiste"
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Taking into account that (�(3
2
)2)22 = �, we have that

4
q
�b4�(

3

2
) = 2

s
�b4(�(

3

2
)2)22 = 2

q
�b4�: (A.20)

A.2 Edgeworth Expansion

After imposing k1(F ) = k1(L) and k2(F ) = k2(L) the option price formula
becames:

C(F )= e�rt
Z 1

�1
max(0; St �X)f(ST )dS = C(A) (A.21)

�e�rtk3(F )� k3(L)
3!

Z 1

�1
max(0; St �X)

d3l(ST )

dS3T
dS (A.22)

+e�rt
(k4(F )� k4(L)) + 3(k2(F )� k2(L))2

4!

Z 1

�1
max(0; St �X)

d4l(ST )

dS4T
dS + "

Integrating by parts we know that
R1
X (St�X)

dja(ST )

dSjT
dSt =

�
(St �X)d

j�1a(ST )

dSj�1T

�1
X
�R1

X (St�X)dSt =
dj�2a(K)

dSj�2T

, which gives the following call option formula writ-

ten in terms of cumulants:

C(F )=C(A)� e�rtk3(F )� k3(L)
3!

dl(ST )

dST
(A.23)

+e�rt
(k4(F )� k4(L)) + 3(k2(F )� k2(L))2

4!

dl2(ST )

dS2T
dS + "

B Appendix 2
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Fig. B.1. Cooper scenarios: Summary statistics obtained for Heston model (true
density) and mean of summary statistics obtained for DFCH, MLN, SML and EE
methods. The results estimated for the SML method were processed with v weight-
ing and with the smoothing that minimizes RMISE.
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Fig. B.2. Cooper Scenarios: Standard Deviation of the summary statistics for the
SML, MLN, DFCH and EE methods

Fig. B.3. Cooper Scenarios: Standard deviation of the summary statistics for the
SML method under 4 scenes: with or without v weighting and for each weight-
ing approach using a smoothing parameter that minimizes RMISE or a smoothing
parameter with a value of 0,9.
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Fig. B.4. Cooper Scenarios: Values for RMISE, RISB and RIV. The results shown for
the SML method were processed with v weighting and the parameter that minimizes
RMISE

Fig. B.5. USDBRL scenarios - Low Volatility Dates: Summary statistics obtained for
Heston model (true density) and mean of summary statistics obtained for DFCH,
MLN, SML and EE methods.
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Fig. B.6. USDBRL scenarios - High Volatility Dates: Summary statistics obtained
for Heston model (true density) and mean of summary statistics obtained for DFCH,
MLN, SML and EE methods.

Fig. B.7. USDBRL scenarios - Low Volatility Dates: Standard Deviation of the
summary statistics for the SML, MLN and DFCH methods
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Fig. B.8. USDBRL scenarios - High Volatility Dates: Standard Deviation of the
summary statistics for the SML, MLN and DFCH methods

Fig. B.9. USDBRL scenarios - Low Volatility Dates: Values for RMISE, RISB and
RIV.
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Fig. B.10. USDBRL scenarios - High Volatility Dates: Values for RMISE, RISB and
RIV.

Fig. B.11. Heston model parameters obtained through calibration between June
2006 and February 2010

41



References

Abadir, K. M. (1999). An introduction to hypergeometric functions for econo-
mists. Econometric Reviews 18 (2003).

Abadir, K. M. and Rockinger, M (2003). Density functionals, with an option-
pricing application. Econometric Theory 19, 778�811.

Santos, A. D. (2011). Implied probability density functions: Estimation using
hypergeometric, spline and lognormal functions. Master Thesis, ISEG-UTL.

Arrow, K. J. and Debreu, G. (1954). Existence of an equilibrium for a com-
petitive economy. Econometrica 22:265-290.

Arrow, K. J. (1964). The Role of Securities in the Optimal Allocation of Risk-
Bearing.Review of Economic Studies, 31, No. 2 (April), pages 91-96.

Bahra, B. (1997). Implied risk-neutral probability density functions from option
prices: Theory and application. Working Paper, Bank of England.

Black, F. and Sholes, M. (1973), Pricing of Options and Corporate Liabilities,
Journal of Political Economy, 81, pages 637-659.

Bliss, R. and Panigirtzoglou, N. (2002). Testing the stability of implied proba-
bility density functions. Journal of Banking and Finance 26, 381�422.

Breeden, D. T. and Litzenberger, R. H. (1978). Prices of state-contingent
claims implicit in option prices. Journal of Business 51, 621�51.

Bu, R. and Hadri, K. (2007). Estimating option implied risk-neutral densities
using spline and hypergeometric functions. Journal of Econometrics 10, 216-
244.

Campa, J.C., Chang, P.H.K., and Reider, R.L. (1997). ERM bandwidths for
EMU and after: evidence from foreign exchange options. Economic Policy,
55�87.

Cooper, N. (1999).Testing techniques for estimating implied RNDs from the
prices of European and American options. Working Paper, Bank of England.

Cox, J. and Ross, S. (1976), The Valuation of Options for Alternative Sto-
chastic Processes, Journal of Financial Economics, 3, pages 145-66.

Corrado, C.J., Su, T., 1996. S&P500 index option tests of Jarrow and Rudd�s
approximate option valuation formula. Journal of Futures Markets 6, 611�
629.

Espen, G. H. (2007). Option Pricing Formulas, second edition.
Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatil-
ity With Applications to Bond and Currency Options, The Review of Finan-
cial Studies, Vol 6, No 2, pp 327-343.

Jarrow, R. and Rudd, A. (1982), Approximate option valuation for arbitrary
stochastic processes. Journal of Financial Economics, 10, 347-369.

Jondeau, E. and Rockinger, M. (2000). Reading the smile: The message con-
veyed by methods which infer risk neutral densities. Journal of International
Money and Finance 19, 885�915.

Jondeau, E., Poon, S.H and Rockinger, M. (2006). Financial Modeling Under
Non-Gaussian Distributions.

Kendall, M (1945), The Advanced Theory of Statistics, Vol 1, 2th ed.

42



Lee, S. H. (2008). Three essays on estimation of risk neutral measures us-
ing option pricing models. Dissertation presented for the Degree Doctor of
Philosophy in the Graduate School of The Ohio State University

Malz, A.M., (1996). Options-based estimates of the probability distribution of
exchange rates and currency excess returns, mimeo. Federal Reserve Bank
of New York.

Malz, A. M. (1997). Estimating the probability distribution of the future ex-
change rate from options prices. Journal of Derivatives, Winter, pages 18-36.

Melick, W. R. and Thomas, C. P. (1997). Recovering an Asset�s Implied PDF
from Option Prices: An Application to Crude Oil during the Gulf Crisis,
Journal of Financial and Quantitative Analysis, Vol 32, pages 91-115.

Shimko, D. C. (1993), Bounds of probability, Risk 6, pages 33-37.

43


